
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Application-Level Service Assurance
with 5G RAN Slicing

Arjun Balasingam, MIT CSAIL; Manikanta Kotaru and Paramvir Bahl, Microsoft
https://www.usenix.org/conference/nsdi24/presentation/balasingam

Application-Level Service Assurance with 5G RAN Slicing

Arjun Balasingam

MIT CSAIL

Manikanta Kotaru

Microsoft

Paramvir Bahl

Microsoft

Abstract

This paper presents Zipper, a novel Radio Access Network

(RAN) slicing system that provides assurances of application-

level throughput and latency. Existing RAN slicing systems

optimize for slice-level assurance, but these methods fail to

provide predictable network performance to individual mobile

apps. Extending the slice-level formulation to app-level

introduces an intractable optimization problem with exploding

state and action spaces. To simplify the search space, Zipper

casts the problem as a model predictive controller, and

explicitly tracks the network dynamics of each user. It uses

an efficient algorithm to compute slice bandwidth allocations

that meet each app’s requirements. To assist operators with

interfacing admission control policies, Zipper exposes a

primitive that estimates if there is bandwidth available to

accommodate an incoming app’s requirements.

We implemented Zipper on a production-class 5G virtual

RAN testbed integrated with hooks to control slice bandwidth,

and we evaluated it on real workloads, including video

conferencing and virtual reality apps. On a representative

RAN workload, our real-time implementation supports up to

200 apps and over 70 slices on a 100 MHz channel. Relative

to a slice-level service assurance system, Zipper reduces tail

throughput and latency violations, measured as a ratio of

violation of the app’s request, by 9×.

1 Introduction

A rapidly growing number of mobile applications—such as

mixed reality, cloud gaming, video conferencing, and cloud

robotics—require predictable network connectivity (i.e.,

throughput and latency). The 3GPP specifications for 5G

Radio Access Networks (RANs) recognized this requirement

for next-generation mobile apps and introduced network

slicing [20], a virtualization primitive that allows an operator to

run multiple differentiated virtual networks, called slices, atop

a single physical network. A slice can support a set of users or

a set of applications1 with similar connectivity requirements.

1By “app”, we refer to a single mobile application. “User” refers to a

mobile device, which can run multiple apps.

It can span multiple network domains, including the radio

access network (RAN) [15,24,41], core [46,68], transport [59]

and fronthaul [8]. Operators can distribute resources, like

physical resource blocks (PRBs) in the RAN, amongst the

slices to provide differentiated connectivity. RAN slicing is of

particular interest for service assurance [13] since the last-mile

wireless link is often the bottleneck for mobile apps [4, 6].

Existing approaches [7, 15, 24, 41, 72] allocate PRBs to

different slices to guarantee slice-level service assurance,

e.g., through service-level agreements (SLAs) for total slice

throughput. However, in order to realize the vision of network

slicing, where apps achieve the network performance that

they require, the service assurance should be provided at

application-level. Existing approaches fall short of enabling

operators to provide this important capability. Slice-level

service assurance does not guarantee throughput and latency to

each app in the slice, since different users in the same slice can

experience wildly different channel conditions, as we explain

in §3. We need app-level service assurance in order to meet the

requirements of each app within a slice. However, two key chal-

lenges arise when optimizing for app-level service assurance:

Challenge #1: Search space complexity. Prior approaches [7,

24, 41, 72] provide slice-level service assurance by tracking

a state space consisting of aggregate slice-level statistics, in-

cluding the average channel quality of all users in a slice, the

observed slice throughput, etc. To extend these slice-level meth-

ods to support app-level requirements, one could potentially

expand the state space to track the channel quality, the observed

throughput, and the observed latency experienced by each app

in a slice,essentially treating each app as a slice for the purposes

of service assurance. However, the state space, consisting of all

possible values that the tracked variables can take, grows ex-

ponentially in terms of the number of tracked variables. Thus,

treating each app as a slice grows the state space exponentially

in the number of apps rather than in the number of slices. Fur-

ther, the control policy involves searching through this state

space to determine an allocation of PRBs to slices that com-

plies with the SLA constraints. This results in an intractable

optimization problem for practical deployments, where each

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 841

S
u
b
c
a
rr
ie
rs

Time

Radio Resources

Communication

Service Provider

Apps

Each app requests SLAs
(e.g., min throughput,

max latency)
Realized throughputs

and latencies

Allocate subcarriers (bandwidth)
to slices to meet app SLAs

2 slices

Figure 1: Apps express their connectivity requirements in terms of

SLAs, and the operator provisions slice bandwidths to fulfill all SLAs.

slice accommodates tens to hundreds of apps (§3.2).

Challenge #2: Determining resource availability. To

compute slice bandwidth allocations within the total available

bandwidth, operators typically run admission controllers that

admit or reject incoming apps according to a policy that de-

pends on slice monetization preferences, fairness constraints,

and other objectives. Algorithms for admission control have

been studied widely [9, 10, 52, 62] and are not the focus of this

paper. However, operators need a way to determine if the RAN

has resources to accommodate the SLAs of an incoming app,

in addition to the apps already admitted. We cannot adapt prior

approaches [29, 37, 40], which compute required PRBs to

support slice-level SLAs, because the state-space complexity

precludes treating each app as a slice (§3.3).

This paper presents Zipper, a real-time RAN slicing system

that dynamically allocates PRBs (i.e., bandwidth) to network

slices to ensure app-level throughput and latency SLAs for ev-

ery app in every slice.2 As illustrated in Fig. 1, under this model,

apps express their network requirements to the operator in the

form of SLAs, i.e., minimum throughput and maximum latency.

The operator then fulfills these SLAs over the shared wireless

medium by bundling apps into slices, and then computing and

allocating the PRBs required by each slice. This paradigm of

operators provisioning connectivity, so that each app meets its

desired network requirements, is similar to the familiar model

of cloud computing—where the developer requests a combina-

tion of compute, memory, and I/O bandwidth for a particular

workload, and the cloud service provider finds the right allo-

cation of resources to reliably deliver the desired performance.

Zipper addresses the challenges in enabling app-level ser-

vice assurance via three contributions:

• To manage the search space complexity, we decouple

the network model and the control policy by formulating

SLA-compliant PRB allocation as a model predictive

control (MPC) problem. Zipper uses standalone predictors

to forecast each of the tracked state space variables, such as

the wireless channel experienced by each app. It then feeds

these predictions into a control algorithm that computes a

sequence of future bandwidths for each slice based on the

predicted state. Our insight is that Zipper does not need to

enumerate different future states within the state space, by

using the well-known MPC framework (§4.1).

• We propose an efficient control algorithm to allocate

2We focus on app-level, but our solution also generalizes to the user-level.

PRBs (i.e., bandwidth) amongst the slices. Zipper efficiently

prunes the search space of possible PRB allocations

using the insight that app throughput and latency vary

monotonically with the number of PRBs (§4.2).

• We forecast RAN resource availability, guided by the

following question: for an incoming app A, does the RAN

have enough PRBs to admit A, given the other apps already

admitted? Naively applying Zipper’s bandwidth estimation

algorithm for a distribution of possible channel conditions

experienced by the app resulted in prohibitive estimation

times. We instead design a family of deep neural networks

(DNNs) to predict the distribution of required PRBs. We

train these neural networks on simulations of Zipper’s

control algorithm offline and then apply them to predict the

resource availability in real time (§4.3).

We design an O-RAN-compatible [34] architecture to realize

these algorithmic concepts (Fig. 4). We have implemented

Zipper atop a production-class end-to-end 5G vRAN platform,

implementing hooks [25] across different modules in vRAN

Distributed Unit (DU) to control slice bandwidth dynamically

without compromising real-time performance (§5). On a

typical RAN workload consisting of video streaming, con-

ferencing, IoT, and virtual reality apps, our real-time system

can support up to 200 apps and over 70 slices on a 100 MHz

channel. We find that Zipper outperforms prior schedulers

and slicing frameworks (§6); relative to a slice-level service

assurance scheduler [41], Zipper reduces SLA violations,

measured as a ratio of the violation of the app’s request, by 9×.

2 Related Work

RAN slicing. While a static allocation of PRBs to slices

provides traffic isolation and simplifies radio resource

management [57], it does not guarantee reliable slice

performance, since throughput and latency vary with dynamic

wireless channel conditions. Orion [24] and SCOPE [7]

are slicing-capable RAN virtualization frameworks, and

implement existing slice bandwidth schedulers like Network

Virtualization Substrate (NVS) [41]. NVS, designed originally

for WiMAX, allocates PRBs among slices to deliver a target

aggregate slice throughput, assuming invariant Modulation

and Coding Scheme (MCS) conditions. However, RAN

operators adjust MCS according to time-varying channel

conditions. Slice-level service assurance is also the primary

focus of many other RAN slicing proposals [3, 14, 17, 45, 55].

RadioSaber [15], a recent RAN slicing system, allocates

PRBs to slices in a channel-aware manner, by extending

NVS to query each slice’s Medium Access Control (MAC)

scheduler and find the PRBs that are best-suited for each user’s

channels. RadioSaber is complementary to Zipper: it focuses

on slice-level throughput assurance for enterprise slices, while

Zipper is designed for app-level SLAs. Future work includes

incorporating RadioSaber’s techniques for channel-aware

PRB allocation into Zipper.

LACO [72] proposes a reinforcement learning-based

842 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Slice A

VR rendering x 2
8 Mbps, 60 ms

Slice B

File sync x 1
20 Mbps, 250 ms

0

10

20

30

0 10 20 30 40

Time (s)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

App 1 (Slice A) App 2 (Slice A)

ZipperNVS

0

5

10

15

20

0 10 20 30 40

Time (s)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

App 1 (Slice A) App 2 (Slice A)

10

100

1000

10000

0 10 20 30 40

Time (s)

L
a
te

n
c
y
 (

m
s
)

App 1 (Slice A) App 2 (Slice A)

10

30

100

0 10 20 30 40

Time (s)

L
a
te

n
c
y
 (

m
s
)

App 1 (Slice A) App 2 (Slice A)

Zipper NVS

0 10 20 30 40 0 10 20 30 40

0.0

2.5

5.0

7.5

10.0

Time (s)

B
a

n
d

w
id

th
 (

M
H

z
)

−5

0

5

10

15

0 10 20 30 40

Time (s)

S
N

R
 (

d
B

)

App 1 (Slice A) App 2 (Slice A) App 3 (Slice B)

Figure 2: Zipper can efficiently manage an expressive and comprehensive state space to deliver SLAs for each app in each slice.

framework to provide latency guarantees in multi-tenancy

environments by minimizing the number of bits missing the

specified latency tolerance. By contrast, this paper presents

a novel framework that tailors radio resource schedules for

applications SLAs such as throughput and latency in the

presence of dynamic wireless channel conditions.

Admission control. Admission control proposals for RAN

slicing cover traffic prediction [58], load balancing [9], pric-

ing [52,62], and game-theoretic formulations [10]. Zipper does

not propose a new method for admission control; instead, we

recognize that, to use Zipper on production networks, operators

need to know if Zipper’s slice controller has resources to ac-

commodate the SLAs of an incoming app. Typical approaches

to assess resource availability [29, 40] are not compatible with

Zipper’s app-level formulation; we elaborate in §3.3. Recent

5G network slicing proposals [15, 24, 72] do not address how

to estimate resource availability, which is vital for operators to

use these systems in practice.

RAN virtualization. Virtual RANs serve multiple logical

RANs from the same physical hardware. They have garnered

significant attention [18, 21, 65], with a number of proposals

across different compute platforms, including CPUs [21, 27,

61,67], DSPs [5] and GPUs [50]. Zipper leverages this body of

work to dynamically allocate RAN resources among different

virtual resources and expose them to the network slices.

Scheduling. Efficient RAN utilization is a key principle of

mobile network design [30, 32]. Canonical algorithms, such as

proportionally-fair [63], round-robin, and priority-based [71]

schedulers, only consider aggregate throughput and fairness.

3 Problem Setup and Challenges

In this section, we formalize the optimization problem of

providing app-level throughput and latency assurance, and

illustrate, through a toy example, the challenges in computing

slice bandwidth allocations efficiently.

3.1 Problem formulation

Zipper allocates slice bandwidths to meet app-level through-

put and latency SLAs, while (i) each app’s wireless channel

quality fluctuates and (ii) apps join and leave the network

asynchronously. We assume that the operator configures its

RAN with a set of slices, catering to different traffic types (e.g.,

cloud gaming, video streaming, etc.) and to different enterprise

policies (e.g., separate slices for Zoom and Microsoft Teams

sessions). The operator configures each each slice with a partic-

ular MAC scheduler, which is responsible for allocating PRBs

to apps in each slice. Fig. 2 illustrates a RAN serving two

slices: slice A for VR remote rendering and slice B for video

downloads (e.g., video editing).

Formalizing SLAs. We assume that each app selects a slice,

based on its specific throughput and latency requirements.3 For

example, in Fig. 2, the two VR apps each require a minimum

throughput of 8 Mbps and a worst-case latency of 60 ms, while

the file sync app requests a minimum throughput of 20 Mbps

and a worst-case latency of 250 ms. Let xSLA
a and dSLA

a denote

the throughput and latency SLAs for an app a.

Let x̄a(t) be the average throughput over a moving window

of Tw slots. App a requires that x̄a(t) ≥ xSLA
a . Similarly, let

d̄a(t) be the average latency over Tw. When app a expresses a

latency SLA, it requires that the average latency da(t)≤dSLA
a .

Formalizing slice bandwidth allocation. We formalize the

optimization problem to compute SLA-compliant schedules.

Since there can be multiple valid allocations that satisfy the

SLAs, we choose the one that minimizes the total bandwidth:

argmin
Ss(t),Bs(t)∀s∈S ∀t

∑
t
∑
s∈S

Bs(t) (1)

s.t. ∑
s∈S

Bs(t)≤B ∀t (2)

xa(t)≥xSLA
a ∀a∈As ∀s∈S ∀t (3)

da(t)≤dSLA
a ∀a∈As ∀s∈S ∀t, (4)

where B is the total bandwidth available at the base station, S is

the set of network slices, and As(t) is the set of apps subscribed

to slice s∈S at time t. Bs(t) denotes the bandwidth allocated to

slice s in scheduling round t. Ss is the MAC schedule for slice s.

At each timestep t, Zipper must select Bs(t) for each slice

s∈ S such that the throughput and latency SLAs for all apps

a ∈ As(t) are satisfied, as captured by the constraints in

Eqn. 3 and Eqn. 4 respectively. Eqn. 2 ensures that the sum

of slice bandwidths does not exceed the bandwidth available

3Alternatively, the slice controller can automatically match the app to a

slice already catering to apps with similar connectivity requirements. We leave

app-to-slice matching to future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 843

at the base station. The objective in Eqn. 1 states that Zipper

must find the sequence of slice schedules and corresponding

bandwidths that minimizes the overall spectral utilization.

This approach differs from previous approaches that com-

pute the minimum bandwidth required by each slice to satisfy

slice-level SLAs, such as average slice throughput. For exam-

ple,Fig. 2 visualizes the results achieved by NVS [41],a widely-

used slice-level service assurance system [7,19,24], for our toy

example with two slices. Notice that NVS is not able to meet

the throughput for App 1, and instead overcompensates for App

2. However, directly extending slice-level service assurance

approaches to satisfy app-level SLAs explodes the state space.

Sometimes, the network could be at capacity, and the formu-

lation in Eqn. 1-Eqn. 4 will not have a valid solution. To make

the problem tractable, we can relax the constrains in Eqn. 3

and Eqn. 4 into two penalty functions that quantify how far—if

at all—an app deviates from its throughput and latency SLAs:

f a
x (t)=

∣

∣min
(

xa(t)−xSLA
a ,0

)

/xSLA
a

∣

∣ (5)

f a
d (t)=

∣

∣min
(

dSLA
a −da(t),0

)

/dSLA
a

∣

∣ (6)

f a
x (t) in Eqn. 5 is nonzero only when the throughput is less than

the SLA and measures the deviation as a fraction of the SLA.

Similarly, f a
d (t) measures the deviation as a fraction of agreed-

upon latency SLA, if that SLA is violated. So, we modify the

objective of Zipper (Eqn. 1) to include a term that minimizes

these penalties. In practice, penalties will remain to close to

0 most of the time, since operators admit/reject incoming apps

by determining whether the RAN has sufficient capacity.

3.2 Challenge: state space complexity

Prior methods [41, 72] monitor aggregate state variables like

average slice throughput [41], average channel quality across

all users, and average latency across all users [72], to deliver ser-

vice assurance at the slice level. The search space for such state

vectors grows exponentially with the number of slices. Fig. 2

shows that considering a slice level state space could yield

poor app performance. While the slice-level method meets

the overall slice throughput SLAs, it violates App 1’s SLA

because App 1 has an inferior channel quality to that of App 2.

We could expand the state space by considering app-level

characteristics, e.g., average measured app throughput,

average measured app latency, channel quality of each user,

etc. We could then extend slice-level service assurance

approaches to meet app-level SLAs, treating each app as an

individual slice for the sake of service assurance. However,

the state space grows exponentially with the number of apps,

rather than with the number of slices. The number of apps

served by each slice in a base station could range from tens

to hundreds, resulting in an intractable state space to deliver

real-time performance. For example, LACO [72] trains an

agent using reinforcement learning to learn a policy that selects

slice bandwidths. If we adapt that architecture to a fine-grained

state space, the training complexity explodes, since the agent

needs to explore a more expansive search space.

3.3 Challenge: determining RAN resource availability

Apps 1, 2

Time Slot

R
B

s

throughput: 1 RB/slot
latency: 5 slots

App 3

Before App 3 ZipperSLA translation

+ App 3 Time Slot

R
B

s

Time Slot

R
B

s

Extra BW!

Figure 3: Translating an app’s SLAs directly to required slice band-

width can ignore schedules with greater spectral efficiency.

Recall that the slice controller’s bandwidth allocations Bs

cannot exceed the total available bandwidth B. As load at

the RAN increases, it becomes more challenging to fulfill all

SLAs under this bandwidth constraint. As a result, operators

typically run admission controllers on top of their slicing

systems, only admitting apps that can receive the requested

SLAs. Admission control policies can depend on a variety of

objectives, such as slice monetization preferences, operational

costs, fairness, energy constraints, etc. Admission control

for network slicing has received significant attention over the

years [9,10,52,62], and is not the focus of this paper. However,

in order to interface the slice controller with a particular policy,

we need a mechanism [52] that answers the following question:

for a pre-determined time period (i.e., contract duration),

can the RAN fulfill the SLAs for an incoming app without

compromising on commitments made to existing apps?

NVS adds a buffer to each slice [41] to absorb errors that

operators make in admitting apps that it cannot support.

However, a constant buffer can underutilize the spectrum.

Prior work [37] injects the incoming app into a separate “best

effort slice” and observes whether it achieves its SLAs to

determine if the RAN has resources in the desired slice to

accommodate this app. However, performance in the “best

effort” slice may not faithfully represent performance in the

target slice. A more analytical approach [29, 40] is to translate

the SLAs for the incoming app into a measure of resource

blocks required to support that app in the desired slice via an

analytical model or a lookup table that maps SLAs to a PRB

requirement. These methods can waste spectrum.

Consider the example in Fig. 3, where a slice in the RAN

initially serves Apps 1 and 2. We show the resource block

schedule for these two apps; notice that the RAN allocates 4

RBs of bandwidth to the slice. Our goal is to determine how

much bandwidth is required to accommodate App 3, who has a

throughput SLA of 1 RB/slot and a latency SLA of 5 slots. Sim-

ply translating the 1 RB/slot throughput SLA for App 3 to RB

overhead, would lead us to allocate an extra RB of bandwidth

to the slice. Zipper, by contrast, accommodates App 3—along

with Apps 1 and 2—without adding any more bandwidth.

SLAs are two-dimensional (i.e., throughput and latency),

and a slice could have an arbitrarily complex PRB scheduler,

whose behavior depends on additional factors, such as the

status of app queues at the base station and changing MCS

in response to the wireless channel. It is therefore challenging

844 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Slice n

…

Slice 1

PHY

Slice 1

MAC

…

Merge

I/Q

File

Sync

Video

Conf

IoT

VR

V2X
app

SLAs

Slice n

slice s bandwidth allocation: B
s

Slice Manager

Bandwidth

Optimizer

Channel

Forecaster

Admission

Controller

SNR
estimates

SNR
est

§5.2

§5.3

§5.4

§5.5
Channel

Forecaster

meas.

SNR

Figure 4: Zipper provisions connectivity by dynamically optimizing network slice bandwidth and resource allocation to meet app-level SLAs.

to map SLAs to a PRB differential via an analytical model.

We need a primitive to determine RAN resource availability

for an incoming app that generalizes to MAC schedulers

and apps with different demand patterns. Recent RAN

slicing systems [15, 24] do not address how to interface their

slice controllers with operators’ admission control policies.

Since the RAN is often the bottleneck link [4, 6], it is often

oversubscribed. Thus, slicing systems are unusable in practice

without a mechanism to estimate resource availability and an

accompanying admission control policy.

4 Design

In this section, we describe how we design Zipper, illustrated

in Fig. 4 to enable app-level service assurance. Zipper consists

of a model predictive control (MPC) framework to manage

the search space complexity (§4.1), uses an efficient algorithm

to compute slice bandwidth allocations within this MPC

formulation (§4.2), and exposes a primitive to help operators

forecast RAN resource availability (§4.3).

Traffic
demand

Wireless
channel

Model
Optimizer

BW
binary

search

predictions

slice BW
actions

MAC
scheduler

measured SNR

System

measured throughput and latency

State
Track history

Figure 5: Zipper uses model predictive control (MPC) to compute

slice bandwidths that comply with all app SLAs. With MPC, Zipper

decouples prediction from control to manage the state space.

4.1 Model predictive control

MPC [26] is a framework to solve sequential decision making

problems over a moving look-ahead horizon. It decouples

a controller, which solves a classical optimization problem,

from a predictor, which explicitly models uncertainty in

the environment. MPC has proven practical in a number of

real-world control problems, including in adaptive bitrate

selection for video streaming [66, 70] and in robotics [64].

Fig. 5 illustrates how Zipper applies MPC to solve the op-

timization problem formulated in Equations 1-4. The state

space consists of (i) the average throughput and average la-

tency experienced by each app over the past Tw slots, (ii) the

average signal-to-noise ratio (SNR) of each user over Tw as

a measure of the channel quality, and (iii) the incoming data

traffic. The action space consists of a bandwidth allocation Bs

for each slice s. Independent forecasters predict how each of

the state space variables evolves over a short term planning

horizon. The controller uses these predictions to determine the

bandwidth schedule Bs(t) for each slice.

MPC allows us to use network models to explicitly predict

the future states over the short term, and thus avoid searching

over different future states within the state space. We describe

predictive models for each of the state space variables ahead.

Forecasting the wireless channel. Zipper supports different

channel predictors that forecast how each app’s wireless

channel (i.e., SNR)4 will evolve over the near term. Forecasting

the wireless channel is a well-researched and fundamentally

challenging problem [38, 44, 47, 49]. We acknowledge this in

our design, and do not aim for a perfect predictor. Instead, we

quantify a desirable performance for our bandwidth allocation

task, and then propose methods that meet that target.

To understand the impact of SNR prediction error on

Zipper’s ability to meet SLAs, we run a simple experiment,5

involving a 40 MHz channel and 10 video conferencing apps

(i.e., 2 Mbps min throughput, 150 ms max latency), split across

2 slices. We randomly assign each user a 30-second SNR trace

gathered on a production 5G network. To understand the effect

of prediction error in the worst case, we introduce a dummy

predictor that simply returns the ground truth SNR value

added to some constant prediction error. Fig. 6a visualizes the

results as CDFs of the throughput and latency penalties (f a
x (t)

and f a
x (t) in Eqn. 5 and Eqn. 6 respectively) for different

prediction errors. As expected, larger prediction errors lead

to higher penalties. However, notice that a small (but not

insignificant) error of 2 dB has a modest impact on penalty.

We also observe that the MAC scheduler uses the SNR

forecast to determine what MCS to assign an app. The 3GPP

standards define 32 MCS values [35], and MAC schedulers use

a lookup table to map measured channel quality to MCS [39].

We find that this table is quantized in 2 dB steps, so a prediction

error of under 2 dB may still yield the correct MCS. The

results from Fig. 6a and this insight about MCS quantization

show why MPC is resilient to modeling error in the context

of Zipper’s scheduling problem.

To forecast each user’s channel, we train a sequence-to-

4For simplicity, we forecast SNR as an aggregate quantity over all subcar-

riers in a given time slot. However, Zipper can support richer predictors and

schedulers [15] predict SNR at a subcarrier granularity.
5We evaluate Zipper more extensively against an Oracle policy in §6.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 845

0 dB 2 dB

C
u
m

.
P

ro
b
a
b
ili

ty

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Tput Penalty (%)

C
u
m

.
P

ro
b
a
b
ili

ty
Constant SNR

prediction error

0 dB 2 dB 5 dB
NR

rror
10 dB 20 dB

(a) Resilience to SNR error.

−10

−5

0

5

10

0 30 60 90 120

Prediction Timestep (ms)

P
re

d
.
E

rr
o

r
(d

B
)

RNN EWMA

(b) SNR prediction error.

Figure 6: Zipper is resilient to modest∼2 dB error in forecasting SNR.

Its MPC framework supports different channel forecasters. While

both have small median errors, the RNN model outperforms EWMA.

sequence Recurrent Neural Network (RNN) [56], which uses

an input sequence of SNR measurements over the last 1 second

to predict a sequence of SNR measurements over the next

150 milliseconds. App. A.1 describes the architecture of this

RNN. We train this model using a dataset of SNR traces [54]

collected over a commercial network at scale. We evaluate

the accuracy of this RNN on a holdout set from the same bank

of traces. Fig. 6b shows the prediction error (relative to the

ground truth) at different points over the 150 ms prediction

horizon. Each boxplot shows a distribution of error over all

traces in our holdout set. We compare the accuracy of our

RNN against a simpler predictor that tracks the SNR with

an exponentially-weighted moving average (EWMA). Both

predictors have a suitable median performance, which falls

within our target of∼2 dB error. However, the RNN has a more

consistently tight distribution. Moreover, as we describe below,

prediction errors at later timesteps are less consequential, since

Zipper recomputes fresh allocations at a finer granularity of 50

ms. Although we use this RNN model in our implementation,

Zipper could use any other predictor—including the EWMA

filter—with comparable error.

Other state space variables. Zipper tracks the average

throughput and latency, xa(t) and da(t) respectively, expe-

rienced by each app in the past Tw time slots. Since Zipper

only tracks historical averages, there is no need for prediction.

We assume that the traffic demand for each app follows the

throughput SLA requested by the app. If the traffic demand

from an app is higher than the agreed upon throughput

SLA, Zipper only ensures that it fulfills the negotiated SLAs.

Tuning slice bandwidths using more detailed traffic demand

predictions is part of future work.

4.2 Tuning slice bandwidths efficiently

Given the state space, defined as each app’s SNR, average

throughput, average latency, and traffic demand, the slice man-

ager must find the most spectrally-efficient slice bandwidth

allocation that satisfies the SLAs, as we formalize in §3.1.

One approach to is to analytically derive a function that maps

SLAs to a valid slice bandwidth. However, this is challenging,

since the expected throughput and latency of any given app

depends not only that app’s channel quality and queue status

at the base station, but also on the characteristics of the other

App 1

R
e

s
o

u
rc

e

B
lo

c
k
s

Time Slots Time Slots

R
e

s
o

u
rc

e

B
lo

c
k
s

3 slots/packet

1 slot/packet

App 2

Add BW

Packets in queue:

Figure 7: Exposing more bandwidth to a slice reduces packet latency.

apps contending for the same radio resources in the slice.

Monotonicity. Our insight is that both app throughput and app

latency are monotonic functions of slice bandwidth. Fig. 7 illus-

trates this monotonicity property for latency with an example.

Consider two apps (green and orange) with different packet

sizes, and a round-robin MAC scheduler. We define latency as

the difference between the times at which (i) the first byte of a

packet arrives at the base station and (ii) the last byte of a packet

is sent over the air. The diagram on the left visualizes a round-

robin schedule for a slice with 4 resource blocks. Notice that

the green app’s packet is spread across multiple slots, and since

the MAC is round-robin, the packet’s latency is at least 3 slots.

By contrast, when the bandwidth is 6 resource blocks (diagram

on the right), the packet latency is just 1 slot. Thus, per-packet

latency is a monotonically-decreasing function of slice band-

width. Similarly, the app throughput increases monotonically

with slice bandwidth. App. A.2 elaborates on this property.

Because app throughput and latency vary monotonically

with slice bandwidth, there exists a minimum bandwidth Bs

for s ∈ S that satisfies all SLAs. Therefore, a solution that

minimizes Eqn. 1 is one that minimizes the individual slice

bandwidths, and Zipper can optimize each slice independently.

Computing bandwidths. Zipper treats slice MAC schedulers

as a blackbox; the search algorithm does not need to know the

scheduling logic. Instead Zipper uses each slice’s scheduler

as a building block to find the smallest bandwidth that satisfies

the SLAs of all apps in the slice. In each time interval t, Zipper

computes Bs(t) using an iterative algorithm that simulates the

MAC scheduler for different candidate bandwidths B̃s. Zipper

queries the MAC scheduler for each B̃s. Zipper supplies the

MAC scheduler with (i) all outstanding packets in each app’s

queue, and (ii) a forecast of each app’s channel quality over

the scheduling horizon (§4.1). Zipper evaluates the resulting

schedule S̃s by computing the penalty scores, f a
x (t) and f a

d (t)
as defined in Eqn. 5 and Eqn. 6, respectively, to determine if

the schedule satisfies the SLAs. Then, amongst the set of valid

schedules (i.e., when f a
x (t) = f a

d (t) = 0), Zipper chooses the

one that requires the least slice bandwidth, i.e., the smallest B̃s.

Zipper navigates the search space of candidate bandwidths

using binary search. It starts with the entire range 0≤ B̃s≤B,

and prunes the search space by half in each iteration. In the

first iteration, Zipper computes a MAC schedule S̃ for the allo-

cation B/2. For instance, if at least one app’s throughput in S̃

is less than the throughput agreed to in the SLA, then Zipper

determines that the slice needs more bandwidth to satisfy the

constraint; so it continues the search in the range (B/2,B]. By

contrast, if all performance metrics comply with the SLA con-

straints, then Zipper determines that the slice could possibly

846 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Admitted

apps

.

.

.

BW regressor

Slice 1

Slice 2

Slice n

BW dist.

Policy
App SLAs

SNR buckets ⊛

❌ ✅
AdmitReject

e.g., admit if p95 < B+ε

Incoming

app

Total

BW dist.

Includes incoming
app + admitted apps

Figure 8: Zipper builds a family of DNNs that forecasts bandwidth

distributions for slices consisting of different MAC schedulers and

apps with different demand patterns.

meet the SLAs with less bandwidth; so it continues the search

in the range [0,B/2). We can apply this binary search optimiza-

tion because app throughput and latency vary monontonically

with slice bandwidth.

Zipper computes schedules in a cascading manner, where,

in each timestep t, Zipper solves the MPC problem for a finite

future horizon of Th. It recomputes its allocation every Te≤Th

in order to incorporate recent snapshots of user channel and

app queue statuses. We use Th = 150 ms and Te = 50 ms6 to

ensure that Zipper is reactive but not myopic. If Bs(t) violates

Eqn. 2 for any slice s, Zipper resolves the conflict to ensure

that the allocated bandwidth does not exceed the capacity.

Resolving conflicts. Since Zipper tunes slice bandwidths in-

dependently, the allocations could conflict, i.e., ∑s∈SBs(t)>B,

which violates Eqn. 2. To resolve conflicts, Zipper deducts—

from each slice—the excess bandwidth in proportion to the

share of bandwidth that each slice was originally allocated.

In practice, Zipper will not trigger this step often because it

gates incoming requests with an admission controller (§4.3).

App. A.3 provides pseudocode for how Zipper computes

slice bandwidth allocations. Note that Zipper only considers

the number of resource blocks in aggregate when allocating

resource blocks to a slice. In future work, we can extend Zipper

to determine the most suitable set of resource blocks given

the channel conditions, using the techniques proposed by Ra-

dioSaber [15]. We can also model methods to increase user

capacity, such as beam steering [11, 28].

4.3 Forecasting RAN resource availability

To estimate if the RAN has resources to support an incoming

app, Zipper answers the following question: for the contract du-

ration, does the RAN have enough PRBs to accommodate the

incoming app and to fulfill SLAs for all other admitted apps?

Predicting bandwidth statistics. Zipper estimates the distri-

bution of bandwidths, i.e., number of PRBs, that each slice will

require over a predetermined contract duration—including the

incoming app. Translating the SLAs of each app in a slice to

radio resource requirements [29, 40] can yield overestimates

of the required bandwidth. Instead, Zipper simulates its slice

manager over thousands of channel traces. Direct simulations

capture how the slice MAC exploits statistical multiplexing

6We found that Zipper was not very sensitive to Th and Te; we selected

Te =50 ms because our SNR predictors are most accurate over this horizon

(§4.1). A shorter horizon allows us to replan with fresh estimates of SNR.

to fulfill the SLAs without adding bandwidth to a slice (§3.3).

However, running thousands of simulations for a reasonable

contract duration (e.g., 5 mins) is expensive, since the slice

manager computes and evaluates many MAC schedules.

All we need from the simulations is the bandwidth statistics—

not the PRB schedules. To approximate the bandwidth

statistics, Zipper develops a family of deep neural networks

(DNNs), instead of running thousands of micro-simulations

at runtime. Fig. 8 illustrates the design of this module. Since

each slice caters to apps with similar network requirements

(i.e., SLAs), we tailor a DNN for the traffic characteristics

of each slice, similar to lookup tables in prior work [29, 40]

that translate SLAs to PRB requirements. Each DNN treats

a slice’s MAC scheduler as a blackbox process and learns the

nonlinear relationship between inputs—app demand patterns,

SLAs, and channel quality—and the required bandwidth.

To create a simple and tractable input embedding for the

DNN, we make a few assumptions. First, we assume that all

apps in a slice have the same SLAs; this is reasonable because,

in practice, network slices often isolate similar kinds of traf-

fic [24]. Moreover, slight variations in SLAs (e.g., 4 Mbps vs.

5 Mbps video conference flows) should have negligible impact

on bandwidth requirements. Second, in order to discretize the

space of possible SNR values, we assign each app to an SNR

bucket from the set {poor, bad, good, great}, where each

bucket corresponds to a range of SNR values (e.g., -5 dB≤ bad

< 2 dB).7 Zipper drops each incoming app into the best effort

slice for a brief period (e.g., 5 seconds), computes its median

SNR, and assigns it an SNR bucket. For existing apps, Zipper

uses SNR measured over the lifetime of each app to determine

the most suitable bucket. Note that the best effort slice is only

for measuring SNR, not for assessing resource availability. For

each slice, Zipper generates a feature embedding consisting

of the number of apps in the slice (including the incoming app,

if applicable), and the number of apps in each SNR bucket.

App. B.1 describes the DNN architecture.

Training DNNs. We generate training data by using Zipper’s

slice manager as a simulator. We start by enumerating all

possible feature embeddings, and run a micro-simulation of

Zipper for each embedding using simulated channel traces

(assuming a Rayleigh channel model) with SNR values

corresponding to the SNR bucket for that embedding. We

prune the space of embeddings using some simple heuristics.

For instance, if we find that a simulation of 55 apps—all with

poor SNRs—requires a maximum bandwidth of 100 MHz,

we discard all embeddings with 56 or more poor apps, since

those configurations will also require at least 100 MHz.

Estimating resource availability. Each DNN returns

slice bandwidths as a probability distribution Ps for slice

s. To compute a distribution of the required spectrum, we

convolve8 the slices’ independent probability distributions:

7Note that we only discretize SNR into bins to estimate resource availability

with the DNNs; at runtime, the slice controller forecasts SNR (§4.1).
8The probability distribution of a sum of independent random variables is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 847

Management
switch

PTP
grandmaster

Datapath
switch

Telco-grade
servers

Azure Stack
Edge Pro

Radio Unit (RU)

(a) Hardware configuration

Core

Azure Private

5G Core

gNBZipper

Admission

Controller

Slice

Manager

Centralized

Unit (Altran)

Distributed Unit

L2 (Altran)

L1 (FlexRAN)

UE ID, S-NSSAI (slice), SNR,

Buffer occupancy, DL/UL throughput

Monitor

Control

Slice

bandwidth

(b) Software stack

Figure 9: We implement Zipper atop a production-class 5G network.

P = P1 ⊛ P2 ⊛ ··· ⊛ Pn. P is the forecasted distribution of

required bandwidth. Operators can choose a suitable percentile

of P (e.g., p95, p99, etc.) based on their tolerance preferences.

For instance, a conservative policy might deem resources

available for the incoming app if the p99 bandwidth is less

than the total available bandwidth B.

5 Implementation

We implemented Zipper atop an end-to-end production-class

5G network built on virtual RAN (vRAN) and Core compo-

nents. Our testbed uses commercial off-the-shelf user devices.

Testbed hardware. As illustrated in Fig. 9a, our production

testbed consists of two 32-core HPE ProLiant DL110 Gen10

Plus Telco-Grade servers with Intel Xeon-Gold 6338N CPUs

and an Azure Stack Edge Pro device. The servers perform all

baseband processing in software, except for LDPC decoding

which is performed by a lookaside accelerator—Intel eASIC

ACC100—to meet the stringent real-time requirements

posed by baseband processing workloads. We use Foxconn

RPQN-7800 5G Open Radio Units (RUs) operating on 100

MHz channels in the n78 band. We obtained FCC STA licenses

to operate the radios for experimental purposes. The radio units

support the popular O-RAN split Option 7.2x [51], designed

to reduce the optical bandwidth required for fronthaul traffic

while keeping the RU simple and inexpensive. The radio has

four antennas and supports up to four spatial streams. The RU

and the Telco servers are synchronized using a Qulsar Qg2

carrier-grade PTP Grandmaster [53]. The testbed additionally

includes a high-speed datapath switch Arista 7050 to carry the

fronthaul traffic, as well as a management switch from Netgear

to facilitate remote management of the hardware devices.

Testbed software. Fig. 9b illustrates the software stack. For

the L1, our testbed runs production-ready Intel FlexRAN

v20.11 [18]. For the L2/L3, we use Altran 5G vRAN software

from Capgemini [2]. A single Telco server hosts both the

Altran and FlexRAN software, while Zipper runs on another

server. We installed Azure Private 5G Core (AP5GC) [48]

on the Azure Stack Edge Pro device to provide 5G core

services. Both Altran vRAN and AP5GC core support

standard-compliant slicing and can provide differentiated

service to commercial devices. We integrated all of these

systems end-to-end to realize a production-class 5G network

using virtualized RAN and Core components.

Zipper can programmatically control the RAN using this

the convolution of their individual distributions [31].

virtualized setup . We implemented a vRAN data collection

system to retrieve SNR of each user and buffer occupancy from

the 5G vRAN software. We monitor the user throughput using

diagnostic information from AP5GC. We utilize the buffer

occupancy and user throughput information to estimate the

latency experienced by each dataflow. We use a custom slice

bandwidth controller from Altran 5G vRAN that changes the

slice bandwidth according to the output from Algorithm 1. The

controller is lightweight, and this API allows us to adjust slice

bandwidth allocations at the granularity of a few milliseconds.

Zipper is compatible with O-RAN specifications [34]. Zip-

per would be hosted in the Near-Real-Time RAN Intelligent

Controller (RIC). In an O-RAN deployment, Zipper would

retrieve SNR, buffer occupancy and throughput from the E2

Monitor interface, and would send slice bandwidth control

signals over the E2 Control interface.

Zipper slice manager. Our implementation of the slice man-

ager (Fig. 4), which includes the MPC framework, bandwidth

allocation algorithm, and resource availability module, is

about 4,000 lines of Go. The slice manager is multi-threaded.

It computes the bandwidth allocations for each slice in parallel.

When Zipper receives a new app request, the slice manager

spawns a new thread to run the admission controller. Zipper

obtains RAN telemetry (i.e., SNR measurements, app buffer

occupancy [43], etc.) from the vRAN via a UDP socket.

Zipper populates its state—maintained over a moving horizon

Tw (§3.1)—with these measurements. We implemented data

buffers to support quick, thread-safe read/write access that

meets the stringent slot deadlines for 5G workloads [1].

6 Evaluation

We evaluate Zipper with typical RAN workloads (§6.1) on our

production-grade testbed (§6.2) and in emulated environments

(§6.3-§6.5). Our evaluation highlights include:

• On our end-to-end testbed, Zipper dynamically tunes slice

bandwidths every millisecond to fulfill app SLAs (§6.2).

• Compared to a slice-level service assurance scheduler,

Zipper reduces tail throughput and latency penalties as a

percentage of app SLAs by 9× (§6.3).

• Zipper can support 150 apps drawn from a typical workload,

and incur nearly no penalty in throughput and latency (§6.3).

• In order to fulfill app SLAs, Zipper utilizes about 30% more

bandwidth than RAN schedulers without SLA constraints,

but 50% less bandwidth than prior slicing systems (§6.3) .

• Zipper’s admission control framework can intelligently

allocate unutilized bandwidth, admitting 15% more apps

for a first-come-first-served policy (§6.4).

• Zipper supports 200 apps and 70 slices in real time (§6.5).

6.1 Evaluation setup

Emulation. We develop a real-time emulation framework to

compare Zipper against baselines under controlled network

environments. We develop a data generator to emulate realistic

demand patterns for different apps, and develop a channel

848 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

App Type Min Tput Max Latency QCI [36] Freq.

Video conf. 2 Mbps 150 ms 40 30%

Voice 200 kbps 100 ms 20 30%

Vehicle-to-X 200 kbps 50 ms 40 10%

Video stream. 2 Mbps 300 ms 60 20%

VR offload 10 Mbps 30 ms 68 5%

File sync 20 Mbps — 80 5%

Table 1: Apps, SLAs, and frequencies selected for experiments.

emulator that exposes apps to real network traces. We describe

both below.

Apps. For our experiments, we choose several representative

applications that cover the gamut of throughput and latency

requirements. Table 1 summarizes the SLAs we select for

these applications, based on the definitions in the 3GPP

specifications [36], and also reports the frequency of each app

type (as a percentage) in our experiments. Since we do not

have access to real-world cellular traces, we mimic a typical

workload according to breakdowns of mobile Internet traffic

published in industry technical reports [23, 60].

For file sync apps, we instrument iPerf [22] to send UDP

traffic at different rates. For video conferencing, video stream-

ing, IoT, and v2x apps, we implement a data generator in Go to

send UDP packets at different sending rates and inter-packet

delays. For VR remote rendering, we gather traces from a real

Hololens app, and replay the packet captures over UDP.

SNR traces. To evaluate Zipper against the baselines under

a controlled setting, we use a publicly available dataset of

SNR traces, collected by running mobile traffic (e.g., Netflix

videos, Amazon browsing, etc.) over a production 5G network

in Ireland [54]. Our testbed experiment with real client devices

(§6.2) evaluates Zipper on a live wireless channel.

Base station configuration. For all of our experiments, we

configure our base station to have a total bandwidth of 100 MHz

and 4×4 MIMO (i.e., 4 layers). For simplicity, we configure

all slices to numerology µ=1 (i.e., 30 kHz subcarrier spacing).

In our experiments, each slice caters to apps of the same type.9

6.2 End-to-end evaluation

We begin by evaluating Zipper end-to-end on our production-

grade 5G vRAN testbed (§5), in order to demonstrate that

Zipper can deliver reliable connectivity by dynamically

adjusting slice bandwidths in real-time, while adapting to

variations in channel. For this experiment, we consider a

scenario where the base station has one slice that serves a

single file sync app. We would like to see that Zipper (i)

allocates minimal slice bandwidth such that it does not always

use all 100 MHz available, and (ii) adapts the bandwidth

allocation for this slice as the measured channel quality varies.

We run a 17 Mbps iPerf flow on a OnePlus mobile phone that

is connected to the 5G base station running Zipper. During

the download, we both walk around the room and stand in a

9If the operator does not know the app type ahead of time, she could match

apps with similar connectivity requirements, by clustering based on SLAs

(e.g., high bandwidth only, or high bandwidth and low latency).

0

20

40

60

100 200 300

Time (s)

S
lic

e
 B

W
 (

M
H

z
)

0

5

10

15

20

100 200 300

T
p

u
t

(M
b

p
s
)

0

20

40

60

S
lic

e
 B

W
 (

M
H

z
)

−5

0

100 200 300

S
N

R
 (

d
B

)

0

5

10

15

20

T
p

u
t

(M
b

p
s
)

stationary

Figure 10: Zipper tunes the bandwidth allocated to a slice serving a

mobile OnePlus phone running 17 Mbps iPerf flow.

fixed location to capture a variety of channel conditions.

Fig. 10 shows a stacked time series chart of the bandwidth

that Zipper allocates to the slice (bottom), the application

throughput (middle), and the SNR of the OnePlus phone (top).

The segment highlighted in yellow corresponds to the segment

of time during which the UE was stationary. Notice that Zip-

per reliably meets the target throughput of 17 Mbps—without

significantly over-delivering. To do this, it adjusts its slice

bandwidth allocation at a millisecond granularity; notice, in

particular during the stationary period, where the measured

SNR is relatively high and stable, the allocated bandwidth is

accordingly lower (i.e., 30 MHz).

6.3 SLA compliance

Setup. In order to evaluate Zipper’s ability to comply with

SLAs, we use our emulation framework (§6.1) to compare

Zipper against other schemes in settings where the wireless

conditions are controlled. Like the testbed, our emulator runs

in real time. We compare Zipper against the following four

baseline algorithms:

• The Single Slice policy schedules all apps together in one

slice, using a proportional fair scheduler [63], which is

widely used by base stations today [4].

• The QoS policy [12, 71], like Single Slice, schedules all

apps in one slice with a proportional fair scheduler, but

additionally prioritizes each app according to its QoS Class

Identifier (QCI). The 3GPP standards specify a unique QCI

priority for each traffic type [36]. Table 1 shows the QCIs

we use for the apps in our experiments. This policy is also

common in production RAN deployments today.

• The NVS policy [41] is a dynamic network slicing algorithm

for WiMAX, which provides slice-level QoS guarantees by

multiplexing slices over time. Each slice requests an aggre-

gate throughput (for all users). The NVS controller tracks

each slice’s throughput. In each time interval (e.g., 10 ms),

it computes—for each slice—a priority, which is defined

as the ratio of requested throughput to average throughput,

and then selects the slice with the highest priority. While

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 849

95th percentile 99th percentile

50 100 150 200 50 100 150 200
0

25

50

75

100

Number of Apps

T
p

u
t

P
e

n
a

lt
y
 (

%
)

Zipper Oracle NVS QoS Single Slice

Figure 11: Tail throughput penalties for varying load. Apps scheduled

by Zipper experience 95th percentile penalties close to 0%.

the NVS paper assumes constant MCS, we implement a

modified version of the algorithm that uses channel forecasts

to dynamically adjust MCS. NVS is a popular benchmark

among recent RAN slicing proposals [15, 19, 24].

• The Oracle policy simply runs Zipper’s bandwidth alloca-

tion algorithm (§4.2), but instead of forecasting wireless

channel, it reads the true channel quality that each user will

experience from the trace of SNR values. This algorithm

allows us to validate our hypothesis that Zipper should be

robust to modest SNR prediction error (§4.1).

Zipper and all baselines have access to the same overall

bandwidth (e.g., 100 MHz channel). These algorithms differ

in how they divide up the bandwidth amongst slices.

We vary the number of apps, ensuring, for all baselines, that

apps connect in the same order and that each has the same SNR

trace. We create 6 slices—one for each traffic type—and run

each experiment for 3 minutes. We measure the throughput and

latency penalties (Eqn. 5 - Eqn. 6) for each app, after all apps

have connected to the RAN (i.e., we exclude the time when

apps join/leave the RAN). To create some background load

at the base station, we assign twenty 20 Mbps iPerf flows to

a “best effort” slice.10 We do not use the resource availability

estimator to admit/reject apps for these experiments.

Metrics of merit. We compare how well the different schemes

satisfy each app’s throughput and latency requirements, since

these two quantities impact the quality-of-experience for

most typical mobile apps [23, 36, 60]. In particular, for each

experiment, we compute the throughput and latency penalties,

defined in Eqn. 5 - Eqn. 6, and report the p95 and p99 penalties

to quantify the tail performance. A lower penalty is better.

Note that we evaluate penalties (as a fraction of the requested

SLAs) instead of evaluating absolute throughputs and latencies.

The penalty metric allows us to directly compare app-level

service assurance across slices serving apps with significantly

different network requirements. Consider a slice serving a 20

Mbps file sync app A and a different slice serving a 2 Mbps

video conferencing session B. A scheme that delivers 19 Mbps

to A and 1 Mbps to B would yield 1 Mbps less than the requested

amount for each app. But 1 Mbps is more consequential to B

(50%) than it is to A (5%). The penalty metric captures this.

Throughput penalties. Fig. 11 shows the results. The Single

Slice scheduler consistently incurs the highest penalty. It

cannot differentiate between traffic types, and its proportional

fair scheduler will attempt to maximize throughput subject

10We assign these flows the lowest QCI priority amongst those in Table 1.

95th percentile 99th percentile

50 100 150 200 50 100 150 200
1

10

100

Number of AppsL
a

te
n

c
y
 P

e
n

a
lt
y
 (

%
) Zipper Oracle NVS QoS Single Slice

Figure 12: Tail latency penalties for varying base station loads. Apps

scheduled by Zipper have low 95th and 99th percentile penalties.

to some fairness constraints. Therefore, it tends to favor

bandwidth intensive apps (e.g., file sync). Notice that, because

Single Slice runs a proportional fair scheduler, it does not

starve any app (throughput penalty is never 100%). The QoS

policy does marginally better than Single Slice. The QCI

priorities only control the relative frequencies at which the

scheduler allocates resource blocks to apps, but if there is a

contention, an app with higher priority may not get its desired

rate. Moreover, the standards pre-define the QCIs [36], and

the scheduling algorithm has no ability to dynamically tune

these priorities to have the desired effect on app throughput.

NVS sees a marked improvement in penalty, compared to

both Single Slice and QoS. However, the throughput penalties

are still high, even at low loads (e.g., p95 penalty for 50

apps is 25%). This is because it optimizes for slice-level

throughput instead of for app-level. Zipper, by contrast,

exhibits comparatively lower penalties at both p95 and p99.

Latency penalties. Fig. 12 shows the latency penalties (on

a log-scale) for the same experiment. The Single Slice policy

delivers the worst latency penalties: it tends to favor bandwidth-

intensive apps, and thus, low bandwidth, latency-critical apps

(e.g., v2x and voice) will suffer. These apps, in particular, expe-

riences latencies as high as 200 ms. QoS achieves around 40%

lower penalties than Single Slice at p95, since the QCI priorities

allow the scheduler to explicitly prioritize the latency-critical

apps with higher QCI by scheduling them more frequently.

This is because NVS multiplexes slices over time, and, in each

timestep, it gives all bandwidth to the slice it chooses. Even if

the switching interval is low, apps can go unscheduled for long

periods of times in configurations with many slices. Zipper,

by contrast, maintains very low latencies up to 150 apps, after

which the base station starts to become oversubscribed.

Notice that Zipper’s performance is comparable to that of

the Oracle. The difference in the p95 penalty is <5% for fewer

than 150 apps, which is consistent with our observations when

modeling the system (§4.1). The gap widens slightly at 200

apps, since the system is more congested, and thus, assigning

a suboptimal MCS would be more consequential.

RAN utilization. Fig. 11 and Fig. 12 show that Zipper reliably

delivers the connectivity requested by each app. However,

fulfilling SLAs for each app rather than for a slice in aggregate

requires more bandwidth. We conduct an experiment to

measure how much spectrum or capacity Zipper wastes at the

expense of allocating resources to meet SLAs. Fig. 13 shows

a 150-second time series snapshot of the aggregate RAN

850 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

All apps (inlcuding best effort)

Apps with SLAs

0 50 100 150

0

50

100

150

200

0

200

400

600

Time (s)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Zipper Oracle NVS QoS Single Slice

Figure 13: Throughput for 75 apps + 20 best effort apps. Zipper meets

the SLAs reliably, and allocates excess capacity to best effort.

95th percentile 99th percentile

6 18 48 72 6 18 48 72
0

25

50

75

100

Number of Slices

T
p

u
t
P

e
n

a
lt
y
 (

%
)

Zipper NVS

(a) Throughput penalty

95th percentile 99th percentile

6 18 48 72 6 18 48 72
0

25

50

75

100

Number of SlicesL
a
te

n
c
y
 P

e
n

a
lt
y
 (

%
) Zipper NVS

(b) Latency penalty

Figure 14: Zipper’s performance is invariant to the number of slices.

throughput achieved by Zipper and the different baselines

for 75 apps (+ 20 best effort apps). On top chart, we show the

throughput amongst the 75 apps that requested SLAs, and on

the bottom chart, we plot the total RAN throughput (including

best effort). The dotted blue line shows the total throughput

requested by the 75 apps.

Zipper, Oracle, and NVS closely track the requested through-

put at the level of slice—providing reliable and consistent

performance despite the wireless channels that each app expe-

riences. Single Slice and QoS fall about 18% below the target

throughput. However, as Fig. 11 shows, this drop translates to

far worse in terms of throughput penalty.

When we include the best effort apps, we find that QoS and

Single Slice indeed achieve the highest total RAN throughput.

NVS does not schedule the best effort apps because there is

no excess bandwidth when all bandwidth is allocated to a

single slice in a given scheduling interval. Zipper strikes a

nice balance between these extremes: in addition to meeting

requested SLAs, Zipper utilizes spectrum about 50% better

than NVS and 30% worse than Single Slice or QoS.

Scaling up slices. The experiments so far considered 6

slices—one for each app type. However, an operator may

choose to have multiple slices for the same app type, for e.g.,

if Zoom and Teams want to isolate their traffic. Therefore, we

would like Zipper to be invariant to the number of slices. We

run an experiment similar to the setup described above; we fix

the number of apps at 100 and vary the number of slices. We

still dedicate each slice to serving a unique app type, and we

randomly assign apps to slices when there are multiple slices

of the same type. Fig. 14a and Fig. 14b show the throughput

and latency penalties, respectively, for Zipper and NVS.

NVS scales poorly with the number of slices. Since NVS

95th percentile 99th percentile

100 125 150 175 200 225 100 125 150 175 200 225
0

25

50

75

100

Number of Apps

T
p

u
t

P
e

n
a

lt
y
 (

%
)

Zipper (Conditional) Zipper (DNN) Zipper

Figure 15: Both the conditional and DNN-based resource estimation

methods achieve bounded (and low) penalties.

does not multiplex slices across frequency, slices get scheduled

less frequently. Both penalties suffer with more slices, even

when the switching interval is short (i.e., 10 ms). By contrast,

Zipper’s performance is invariant to the number of slices, since

it multiplexes slices across frequency and time.

6.4 Forecasting RAN resource availability

Setup. To evaluate this module, we consider a simple first-

come-first-served (FCFS) policy that admits incoming apps

in the order that they arrive, as long as there is enough capacity

to accommodate them without violating SLAs for other apps.

Specifically, from the distribution P (§4.3), we admit an

incoming app to its designated slice if the p95 bandwidth is

within an ε=5 MHz tolerance of the total bandwidth B, and

assigns it to the best effort slice otherwise (i.e., P < B+ ε).

Note that the specific policy does not matter for this evaluation;

we only want the policy to be consistent across different

resource availability modules that we compare.

We compare against a “conditional” resource availability

primitive: it (i) admits the incoming app into a best effort

slice, (ii) measures its throughput and latency penalties for

10 seconds, and (iii) then admits in FCFS order if it incurs

zero penalty or leaves it in the best effort slice otherwise. This

form of probing resource availability conditionally is common

in many admission control proposals [29, 37, 52]. Our goal

is to evaluate if the resource availability forecasts provided

by Zipper’s DNN family yield better RAN utilization than

this “conditional” primitive. Both use Zipper to compute slice

bandwidth schedules in real-time. As in §6.3, we draw apps

from the distribution in Table 1, and select app arrival times

and contract durations at random.

Bounded penalty. A good forecaster of resource availability

should ensure that it can satisfy the SLAs of apps that it has al-

ready admitted before committing to a new app. This amounts

to ensuring that the RAN maintains a bounded and low penalty,

as more apps connect to the system. Fig. 15 shows the 95th

and 99th percentile throughput penalties for different numbers

of apps that try to connect to the RAN; the algorithm named

“Zipper” uses no admission controller. Notice that, by letting

each incoming app experience the network, both methods that

use an admission control policy keep the penalties bounded,

and, more importantly, close to 0% at the 95th percentile.

Admit rate. While the penalties are bounded, does the RAN

have some unutilized capacity that it could have allocated by

admitting more apps? Fig. 16a compares the admit rates for

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 851

0

25

50

75

100

100 125 150 175 200 225

Number of Apps

A
d

m
it
 R

a
te

 (
%

)

Conditional DNN

(a) Admit rate

0

100

200

300

50 100 150 200

Number of Apps

R
A

N
 T

p
u

t
(M

b
p

s
) Conditional DNN

(b) RAN utilization

Figure 16: Zipper’s DNN resource estimator achieves a higher admit

rate and utilization by squeezing in apps with lighter demand.

Zipper NVS

0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Runtime (ms)

C
u

m
.
P

ro
b

a
b

ili
ty

Apps 25 100 175

(a) Number of apps

Zipper NVS

0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Runtime (ms)

C
u

m
.
P

ro
b

a
b

ili
ty

Slices 6 18 72

(b) Number of slices

Figure 17: Runtime of Zipper and NVS. Even though Zipper involves

more computation than NVS, it is still practical for large workloads.

different resource availability modules. As we would expect,

when the base station is not congested (e.g., 100 apps), the

admit rate is high (around 95%) for both the conditional and

DNN-based policies. However, as more apps join the system,

the DNN policy has a higher admit rate—about 15% higher

for 225 apps. We observe similar trends for latency.

The policy that uses the “conditional admit” forecaster re-

jects apps too aggressively because it conditions its decision

on an app’s measured penalty in the best effort slice. At higher

loads, Zipper ends up allocating most—if not all—spectrum to

slices serving apps with SLAs. So Zipper allocates little band-

width to the best effort slice, and the incoming app receives

infrequent air time in its initial 10 second sampling period. Its

penalties are thus high, and the controller has little confidence

that the app can meet its requirements in the target slice.

The DNN’s admit rate is higher at greater load because it

is able to differentiate between different traffic types. For in-

stance, the DNN infers that a voice app could still achieve its

light target throughput and latency because the slice’s MAC

scheduler could accommodate a new app without degrading the

SLAs of the apps already admitted to that slice. By contrast, the

“conditional admit” mechanism has little data make this infer-

ence, since the voice app gets little air time in a best effort slice.

RAN utilization. Aggressive resource availability forecasts

can underutilize the RAN. Fig. 16b compares the total RAN

throughput for both estimators. Notice that the two methods

diverge around 150 apps, after which the DNN can better pack

more “lightweight” apps.

6.5 Microbenchmarks

We profile Zipper’s slice allocation and management overhead

as we stress the system with more apps and with more slices.

For the traffic distribution listed in Table 1, we profile the time

it takes to compute the bandwidth allocations and MAC sched-

ules. We compare Zipper with NVS. Fig. 17 shows the results

as a CDF of runtimes over all scheduling intervals in each 3

minute experiment. The vertical black lines indicate the dead-

lines required to operate in real time. Zipper, though more com-

plex, reliably meets processing deadlines, as the load increases

with more apps or fewer slices (i.e., more apps per slice).

7 Discussion

Network APIs. Provisioning connectivity based on app SLAs

creates new opportunities. For instance, a developer can split

their app into multiple data streams (e.g., audio, video, and

sensory for VR), and define SLAs independently for each one.

Because Zipper internally estimates network capacity to fore-

cast resource availability, an operator using Zipper could create

a network API that exposes metrics like true network capacity

to developers. This helps make the network more transparent.

ML components. The ideal deployment for Zipper should

have a V100 GPU. However, note that Zipper is compatible

with any channel predictor, and Fig. 6 shows that a simple

EWMA predictor works reasonably well. Moreover, the DNNs

in the resource availability estimator are lightweight and do not

have real-time deadlines, unlike channel prediction; if resource

constrained, operators could serve the DNN on a CPU.

Application adaptivity. An important benefit of the paradigm

proposed by Zipper is that application developers no longer

need to stress about making their apps reactive to the network.

By design, Zipper seeks to provision the right amount of

bandwidth so that each app experiences a relatively static

network. As a result, interactive and adaptive apps will no

longer have to adapt to changing network conditions.

8 Conclusion

We developed Zipper, the first 5G RAN slicing system for

application-level service assurance. Zipper formulates the

scheduling problem with MPC and develops an efficient

optimization algorithm to compute SLA-compliant schedules

in real-time. Zipper also introduces a primitive to forecast

RAN resource availability, with which operators can interface

an admission control policy. We implemented Zipper on a

production-grade 5G vRAN testbed, adding critical hooks

to control slice bandwidths in real time. We evaluated Zipper

extensively on realistic workloads, our results showed that

Zipper more reliably fulfills app-level SLAs than do QoS

schedulers and slice-level service assurance systems.

There several opportunities to extend Zipper. First, to accom-

modate highly mobile users, we can co-optimize slicing across

base stations. Second, we believe we can extend the formu-

lation and optimization techniques we developed to other SLA

types, such as energy consumption and bit error rate. Finally,

we hope to explore robust economic models for admission

control that build on Zipper’s resource availability estimator.

Acknowledgments

We thank the reviewers, Mohammad Alizadeh, Hari Balakrish-

nan, Xenofon Foukas, Anuj Kalia, Radhika Mittal, and Deepak

Vasisht for helpful conversations and detailed feedback.

852 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] A. Al-Dulaimi, X. Wang, and C.-L. I. Network Slicing

for 5G Networks, pages 327–370. John Wiley & Sons,

New Jersey, USA, 2018.

[2] Altran. Capgemini altran. Technical report, Capgemini,

2023.

[3] S. Bakri, P. A. Frangoudis, A. Ksentini, and M. Bouaziz.

Data-driven ran slicing mechanisms for 5g and beyond.

IEEE Transactions on Network and Service Management,

18(4):4654–4668, 2021.

[4] A. Balasingam, M. Bansal, R. Misra, K. Nagaraj,

R. Tandra, S. Katti, and A. Schulman. Detecting if lte

is the bottleneck with bursttracker. In The 25th Annual

International Conference on Mobile Computing and

Networking, MobiCom ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[5] M. Bansal, A. Schulman, and S. Katti. Atomix: A

framework for deploying signal processing applications

on wireless infrastructure. In 12th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 15), pages 173–188, Oakland, CA, May 2015.

USENIX Association.

[6] N. Baranasuriya, V. Navda, V. N. Padmanabhan, and

S. Gilbert. Qprobe: Locating the bottleneck in cellular

communication. In Proceedings of the 11th ACM

Conference on Emerging Networking Experiments and

Technologies, CoNEXT ’15, New York, NY, USA, 2015.

Association for Computing Machinery.

[7] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia. Scope:

An open and softwarized prototyping platform for nextg

systems. In Proceedings of the 19th Annual Interna-

tional Conference on Mobile Systems, Applications, and

Services, MobiSys ’21, page 415–426, New York, NY,

USA, 2021. Association for Computing Machinery.

[8] N. Budhdev, R. Joshi, P. G. Kannan, M. C. Chan, and

T. Mitra. Fsa: Fronthaul slicing architecture for 5g using

dataplane programmable switches. In Proceedings of

the 27th Annual International Conference on Mobile

Computing and Networking, MobiCom ’21, page

723–735, New York, NY, USA, 2021. Association for

Computing Machinery.

[9] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-

Pérez. Multi-tenant radio access network slicing:

Statistical multiplexing of spatial loads. IEEE/ACM

Transactions on Networking, 25(5):3044–3058, 2017.

[10] P. Caballero, A. Banchs, G. de Veciana, X. Costa-Pérez,

and A. Azcorra. Network slicing for guaranteed rate

services: Admission control and resource allocation

games. IEEE Transactions on Wireless Communications,

17(10):6419–6432, 2018.

[11] Z. Cao, Q. Ma, A. B. Smolders, Y. Jiao, M. J. Wale, C. W.

Oh, H. Wu, and A. M. J. Koonen. Advanced integration

techniques on broadband millimeter-wave beam steering

for 5g wireless networks and beyond. IEEE Journal of

Quantum Electronics, 52(1):1–20, 2016.

[12] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and

P. Camarda. Downlink packet scheduling in lte cellular

networks: Key design issues and a survey. IEEE com-

munications surveys & tutorials, 15(2):678–700, 2012.

[13] M. Chahbar, G. Diaz, A. Dandoush, C. Cérin, and

K. Ghoumid. A comprehensive survey on the e2e 5g

network slicing model. IEEE Transactions on Network

and Service Management, 18(1):49–62, 2020.

[14] C.-Y. Chang and N. Nikaein. Ran runtime slicing system

for flexible and dynamic service execution environment.

IEEE Access, 6:34018–34042, 2018.

[15] Y. Chen, R. Yao, H. Hassanieh, and R. Mittal. Channel-

aware 5g ran slicing with customizable schedulers. In

20th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 23), 2023.

[16] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning

phrase representations using RNN encoder–decoder

for statistical machine translation. In Proceedings of

the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1724–1734,

Doha, Qatar, Oct. 2014. Association for Computational

Linguistics.

[17] E. Coronado and R. Riggio. Flow-based network slicing:

Mapping the future mobile radio access networks. In

2019 28th International Conference on Computer Com-

munication and Networks (ICCCN), pages 1–9, 2019.

[18] I. Corporation. Flexran reference architecture for

wireless. https://www.intel.com/content/www/

us/en/developer/topic-technology/edge-5g/

tools/flexran.html, 2022.

[19] X. Costa-Pérez, J. Swetina, T. Guo, R. Mahindra, and

S. Rangarajan. Radio access network virtualization for

future mobile carrier networks. IEEE Communications

Magazine, 51(7):27–35, 2013.

[20] X. de Foy. Network slicing – 3gpp use case. Technical

report, Internet Engineering Task Force, 2017.

[21] J. Ding, R. Doost-Mohammady, A. Kalia, and L. Zhong.

Agora: Real-Time Massive MIMO Baseband Processing

in Software, page 232–244. Association for Computing

Machinery, New York, NY, USA, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 853

https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html

[22] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and

K. Prabhu. Iperf. https://iperf.fr/, 2022.

[23] Ericsson. Ericsson mobility report. Technical report,

Ericsson, 2021.

[24] X. Foukas, M. K. Marina, and K. Kontovasilis. Orion:

Ran slicing for a flexible and cost-effective multi-service

mobile network architecture. In Proceedings of the 23rd

Annual International Conference on Mobile Computing

and Networking, MobiCom ’17, page 127–140, New

York, NY, USA, 2017. Association for Computing

Machinery.

[25] X. Foukas, B. Radunovic, M. Balkwill, and Z. Lai.

Taking 5g ran analytics and control to a new level. In

Technical Report, December 2022.

[26] C. E. Garcia, D. M. Prett, and M. Morari. Model

predictive control: Theory and practice—a survey.

Automatica, 25(3):335–348, 1989.

[27] K. C. Garikipati, K. Fawaz, and K. G. Shin. Rt-opex:

Flexible scheduling for cloud-ran processing. In

Proceedings of the 12th International on Conference on

Emerging Networking EXperiments and Technologies,

CoNEXT ’16, page 267–280, New York, NY, USA,

2016. Association for Computing Machinery.

[28] Y. Ghasempour, M. K. Haider, and E. W. Knightly.

Decoupling beam steering and user selection for

mu-mimo 60-ghz wlans. IEEE/ACM Transactions on

Networking, 26(5):2390–2403, 2018.

[29] T. Guo and A. Suárez. Enabling 5g ran slicing with

edf slice scheduling. IEEE Transactions on Vehicular

Technology, 68(3):2865–2877, 2019.

[30] T. Guo and A. Suárez. Enabling 5g ran slicing with

edf slice scheduling. IEEE Transactions on Vehicular

Technology, 68(3):2865–2877, 2019.

[31] R. V. Hogg and A. T. Craig. Introduction to mathematical

statistics.(5"" edition). Englewood Hills, New Jersey,

1995.

[32] Y. Huang, S. Li, Y. T. Hou, and W. Lou. Gpf: A

gpu-based design to achieve 100 µs scheduling for 5g

nr. In Proceedings of the 24th Annual International

Conference on Mobile Computing and Networking,

MobiCom ’18, page 207–222, New York, NY, USA,

2018. Association for Computing Machinery.

[33] M. Hüsken and P. Stagge. Recurrent neural networks for

time series classification. Neurocomputing, 50:223–235,

2003.

[34] C.-L. I and S. Katti. O-ran: Towards an open and smart

ran. Technical report, Open RAN Alliance, 2018.

[35] E. T. S. Institute. Physical layer procedures for data.

ETSI 3rd Generation Partnership Project (3GPP), 06

2018.

[36] E. T. S. Institute. System Architecture for the 5G System.

ETSI 3rd Generation Partnership Project (3GPP), 06

2018.

[37] M. Jiang, M. Condoluci, and T. Mahmoodi. Network

slicing management & prioritization in 5g mobile

systems. In European Wireless 2016; 22th European

Wireless Conference, pages 1–6, 2016.

[38] W. Jiang and H. D. Schotten. Deep learning for

fading channel prediction. IEEE Open Journal of the

Communications Society, 1:320–332, 2020.

[39] M. T. Kawser, N. I. B. Hamid, M. N. Hasan, M. S. Alam,

and M. M. Rahman. Downlink snr to cqi mapping for

different multipleantenna techniques in lte. International

journal of information and electronics engineering,

2(5):757, 2012.

[40] B. Khodapanah, A. Awada, I. Viering, D. Oehmann,

M. Simsek, and G. P. Fettweis. Fulfillment of service

level agreements via slice-aware radio resource man-

agement in 5g networks. In 2018 IEEE 87th Vehicular

Technology Conference (VTC Spring), pages 1–6, 2018.

[41] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan.

Nvs: A substrate for virtualizing wireless resources

in cellular networks. IEEE/ACM Transactions on

Networking, 20(5):1333–1346, 2012.

[42] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li. Lte

radio analytics made easy and accessible. SIGCOMM

Comput. Commun. Rev., 44(4):211–222, aug 2014.

[43] H. Lee, S. Noghabi, B. Noble, M. Furlong, and L. Cox.

Bumblebee: Application-aware adaptation for edge-

cloud orchestration. In Symposium on Edge Computing.

ACM/IEEE, December 2022.

[44] J. Lee, S. Lee, J. Lee, S. D. Sathyanarayana, H. Lim,

J. Lee, X. Zhu, S. Ramakrishnan, D. Grunwald, K. Lee,

and S. Ha. Perceive: Deep learning-based cellular uplink

prediction using real-time scheduling patterns. In Pro-

ceedings of the 18th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’20, page

377–390, New York, NY, USA, 2020. Association for

Computing Machinery.

[45] J. Li, W. Shi, P. Yang, Q. Ye, X. S. Shen, X. Li, and

J. Rao. A hierarchical soft ran slicing framework for

differentiated service provisioning. IEEE Wireless

Communications, 27(6):90–97, 2020.

854 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://iperf.fr/

[46] X. Li, C. Guo, L. Gupta, and R. Jain. Efficient and

secure 5g core network slice provisioning based on vikor

approach. IEEE Access, 7:150517–150529, 2019.

[47] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li. Channel state

information prediction for 5g wireless communications:

A deep learning approach. IEEE Transactions on

Network Science and Engineering, 7(1):227–236, 2018.

[48] Microsoft. Azure private 5g core. Technical report,

Microsoft, 2023.

[49] L. S. Muppirisetty, T. Svensson, and H. Wymeersch.

Spatial wireless channel prediction under location uncer-

tainty. IEEE Transactions on Wireless Communications,

15(2):1031–1044, 2015.

[50] Nvidia. Nvidia aerial sdk. https://developer.

nvidia.com/aerial-sdk, 2022.

[51] O-RAN. O-ran specifications. Technical report, O-RAN

Alliance, 2023.

[52] M. O. Ojijo and O. E. Falowo. A survey on slice

admission control strategies and optimization schemes

in 5g network. IEEE Access, 8:14977–14990, 2020.

[53] Qulsar. Qulsar qg2. https://qulsar.com/Products/

Systems/Qg_2.html, 2022.

[54] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan.

Beyond throughput, the next generation: A 5g dataset

with channel and context metrics. In Proceedings of the

11th ACM Multimedia Systems Conference, MMSys ’20,

page 303–308, New York, NY, USA, 2020. Association

for Computing Machinery.

[55] D. A. Ravi, V. K. Shah, C. Li, Y. T. Hou, and J. H. Reed.

Ran slicing in multi-mvno environment under dynamic

channel conditions. IEEE Internet of Things Journal,

9(6):4748–4757, 2022.

[56] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.

Learning representations by back-propagating errors.

nature, 323(6088):533–536, 1986.

[57] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti. On

radio access network slicing from a radio resource man-

agement perspective. IEEE Wireless Communications,

24(5):166–174, 2017.

[58] V. Sciancalepore, K. Samdanis, X. P. Costa, D. Bega,

M. Gramaglia, and A. Banchs. Mobile traffic forecasting

for maximizing 5g network slicing resource utilization.

In 2017 IEEE Conference on Computer Communications,

INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017,

pages 1–9, Atlanta, GA, 2017. IEEE.

[59] N. Shahriar, S. Taeb, S. R. Chowdhury, M. Zulfiqar,

M. Tornatore, R. Boutaba, J. Mitra, and M. Hemmati.

Reliable slicing of 5g transport networks with band-

width squeezing and multi-path provisioning. IEEE

Transactions on Network and Service Management,

17(3):1418–1431, 2020.

[60] C. Systems. Cisco annual internet report (2018 - 2023).

Technical report, Cisco Systems, 2020.

[61] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M.

Voelker. Sora: High-performance software radio using

general-purpose multi-core processors. Commun. ACM,

54(1):99–107, jan 2011.

[62] S. Troia, A. F. R. Vanegas, L. M. M. Zorello, and G. Maier.

Admission control and virtual network embedding in

5g networks: A deep reinforcement-learning approach.

IEEE Access, 10:15860–15875, 2022.

[63] D. Tse and P. Viswanath. Fundamentals of Wireless Com-

munication. Cambridge University Press, Cambridge,

UK, 2005.

[64] P. Wieber. Trajectory free linear model predictive control

for stable walking in the presence of strong perturbations.

In 2006 6th IEEE-RAS International Conference on

Humanoid Robots, Genova, Italy, December 4-6, 2006,

pages 137–142, Genova, Italy, 2006. IEEE.

[65] J. Wu, Z. Zhang, Y. Hong, and Y. Wen. Cloud radio

access network (c-ran): a primer. IEEE network,

29(1):35–41, 2015.

[66] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong,

K. Zhang, P. Levis, and K. Winstein. Learning in situ:

a randomized experiment in video streaming. In 17th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 20), pages 495–511, Santa Clara,

CA, feb 2020. USENIX Association.

[67] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang,

and Y. Zhang. Bigstation: Enabling scalable real-time

signal processingin large mu-mimo systems. SIGCOMM

Comput. Commun. Rev., 43(4):399–410, aug 2013.

[68] Q. Ye, J. Li, K. Qu, W. Zhuang, X. S. Shen, and X. Li.

End-to-end quality of service in 5g networks: Examining

the effectiveness of a network slicing framework. IEEE

Vehicular Technology Magazine, 13(2):65–74, 2018.

[69] W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative

study of CNN and RNN for natural language processing.

CoRR, abs/1702.01923, 2017.

[70] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-

theoretic approach for dynamic adaptive video streaming

over http. In Proceedings of the 2015 ACM Conference

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 855

https://developer.nvidia.com/aerial-sdk
https://developer.nvidia.com/aerial-sdk
https://qulsar.com/Products/Systems/Qg_2.html
https://qulsar.com/Products/Systems/Qg_2.html

on Special Interest Group on Data Communication,

SIGCOMM ’15, page 325–338, New York, NY, USA,

2015. Association for Computing Machinery.

[71] Y. Zaki, T. Weerawardane, C. Görg, and A. Timm-Giel.

Multi-qos-aware fair scheduling for LTE. In Proceedings

of the 73rd IEEE Vehicular Technology Conference,

VTC Spring 2011, 15-18 May 2011, Budapest, Hungary,

pages 1–5, Budapest, Hungary, 2011. IEEE.

[72] L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra, H. D.

Schotten, and X. Costa-Pérez. Laco: A latency-driven

network slicing orchestration in beyond-5g networks.

IEEE Transactions on Wireless Communications,

20(1):667–682, 2021.

856 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Allocating Slice Bandwidth in Zipper

A.1 Forecasting the wireless channel with an RNN

G
R

U

-1000 ms 150 ms

Output

SNR

Input SNR

G
R

U

G
R

U

G
R

U

G
R

U

…

…

Decoder Cell

Encoder Cell

State

current time

Predict next 150 ms
using measurements

from past 1 second.

Figure 18: Architecture of RNN model to forecast wireless channel.

To forecast each user’s channel, we train a sequence-to-

sequence Recurrent Neural Network (RNN) [56], which uses

an input sequence of SNR measurements over the last 1 second

to predict a sequence of SNR measurements over the next

150 milliseconds. Each RNN cell is a Gated Recurrent Unit

(GRU) [16], a lightweight mechanism that learns both short-

term and long-term trends in a signal. GRUs are popular in

temporal prediction tasks, like time-series prediction [33] and

natural language models [69]. Zipper’s RNN model includes

two types of GRU cells—encoder and decoder—allowing the

model to develop two distinct skills: (i) to build a model of the

current state by looking at past values and (ii) to understand the

current state to predict future values. Our implementation uses

50 hidden neurons in each layer of the encoder and decoder.

Fig. 18 illustrates the architecture of this RNN.

RNNs are emerging a popular method to forecast timeseries,

including wireless channel [38, 44, 47, 49]. We develop and

train a model, but note that Zipper can support any predictor

of wireless channel. §4.1 characterizes the requirements for

suitable predictor.

A.2 Monotonicity of throughput and latency

An app’s instantaneous RAN throughput depends on (i)

the number of resource blocks it is allocated in each slot

and (ii) the MCS scheme used to modulate data onto those

resource blocks [4, 42]. If a scheduler assigns an app more

resource blocks (i.e., bandwidth) in a slot, then the app will

experience a higher throughput. Therefore, app throughput

is a monotonically-increasing function of slice bandwidth.

§4.2 explains how latency is a monotonically-decreasing

function of slice bandwidth. The intuition is that adding more

bandwidth to a slice gives the scheduler more space to fit

packets for an app and therefore reduce its latency.

A.3 Algorithm

Algorithm 1 specifies (in pseudocode) how Zipper computes

slice bandwidth allocations. SearchBandwidth() is a

recursive function that evaluates candidate bandwidths,

pruning the search space with binary search, using the property

that app throughput and latency vary monotonically with slice

bandwidth.

Algorithm 1 Allocating slice bandwidth in Zipper

1: procedure ZIPPER

2: for each scheduling round t do

3: for slice s∈S do

4: Bs← FINDBANDWIDTH(s, B)

5: Resolve conflict if ∑s∈SBs >B

6: Update app xa(t) and da(t) and run MAC/PHY

7: function FINDBANDWIDTHSLICE(s, B)

8: Grab snapshot of app queues, throughput, and latency from s

9: Forecast SNR for apps in s

10: return SEARCHBANDWIDTH(s, 0, B, NULL)

11: function SEARCHBANDWIDTH(s, Bmin, Bmax, best)

12: B̃s←(Bmin+Bmax)/2 ▷ Find midpoint bandwidth.

13: schedule← RUNMAC(s, B̃s)

14: throughput← ISTHROUGHPUTVALID(schedule)

15: latency← ISLATENCYVALID(schedule)

16: if throughput ∧ latency then

17: best = B̃s ▷ Save best bandwidth.

18: decrease = true

19: if B̃s≤Bmin or B̃s≥Bmax then

20: return best

21: if decrease then

22: return SEARCHBANDWIDTH(s, Bmin, B̃s, best)

23: else

24: return SEARCHBANDWIDTH(s, B̃s, Bmax, best)

B Estimating resource availability in Zipper

B.1 DNN architecture

Zipper builds a family of DNNs to estimate resource avail-

ability. Each DNN caters to different slice types. The input

embedding consists of (i) the number of apps in the slice (in-

cluding the incoming app, if applicable) and (ii) the number of

apps in each SNR bucket. There are four possible SNR buckets.

Each DNN is a fully-connected network with 5 hidden

layers, ranging from 512 to 10 neurons. The final layer has

7 output values for different percentiles of the probability

distribution, i.e., p10, p25, p50, p75, p90, p95, p99.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 857

	Introduction
	Related Work
	Problem Setup and Challenges
	Problem formulation
	Challenge: state space complexity
	Challenge: determining RAN resource availability

	Design
	Model predictive control
	Tuning slice bandwidths efficiently
	Forecasting RAN resource availability

	Implementation
	Evaluation
	Evaluation setup
	End-to-end evaluation
	SLA compliance
	Forecasting RAN resource availability
	Microbenchmarks

	Discussion
	Conclusion
	Allocating Slice Bandwidth in Zipper
	Forecasting the wireless channel with an RNN
	Monotonicity of throughput and latency
	Algorithm

	Estimating resource availability in Zipper
	DNN architecture

