
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Alea-BFT: Practical Asynchronous
Byzantine Fault Tolerance

Diogo S. Antunes, Afonso N. Oliveira, André Breda, Matheus Guilherme Franco,
Henrique Moniz, and Rodrigo Rodrigues, Instituto Superior Técnico (ULisboa) and INESC-ID

https://www.usenix.org/conference/nsdi24/presentation/antunes

Alea-BFT: Practical Asynchronous Byzantine Fault Tolerance

Diogo S. Antunes, Afonso N. Oliveira, André Breda,
Matheus Guilherme Franco, Henrique Moniz, Rodrigo Rodrigues∗

Instituto Superior Técnico (ULisboa) and INESC-ID

Abstract
Traditional Byzantine Fault Tolerance (BFT) state machine

replication protocols assume a partial synchrony model, lead-
ing to a design where a leader replica drives the protocol and
is replaced after a timeout. Recently, we witnessed a surge of
asynchronous BFT protocols, which use randomization to re-
move the need for bounds on message delivery times, making
them more resilient to adverse network conditions. However,
existing research proposals still fall short of gaining practi-
cal adoption, plausibly because they are not able to combine
good performance with a simple design that can be readily
understood and adopted. In this paper, we present Alea-BFT,
a simple and highly efficient asynchronous BFT protocol,
which is gaining practical adoption, namely in Ethereum dis-
tributed validators. Alea-BFT brings the key design insight
from classical protocols of concentrating part of the work on
a single designated replica and incorporates this principle in
a simple two-stage pipelined design, with an efficient broad-
cast led by the designated replica, followed by an inexpensive
binary agreement. The evaluation of our research prototype
implementation and two real-world integrations in cryptocur-
rency ecosystems shows excellent performance, improving
on the fastest protocol (Dumbo-NG) in terms of latency and
displaying good performance under faults.

1 Introduction
The history of Byzantine fault tolerant (BFT) replication

has gone through different stages throughout the years, from
the initial exploration of the topic in the 1980s [34] to the
start of a series of practical protocols that achieve good perfor-
mance in the late 1990s [16], and more recently the real-world
adoption of this class of protocols in the context of cryptocur-
rencies and blockchains [55].

BFT protocols must carefully navigate the constraints of
the FLP impossibility result [23]. This result states that no
deterministic algorithm can guarantee consensus (or, equiva-
lently, agreement on the outcome of a client request within

∗A. Oliveira is now with Three Sigma. M. Franco is now with ssv.network.

a replicated state machine) in a fully asynchronous system
where even a single process might experience a crash failure.
For many decades, the almost universally accepted way to
circumvent this hurdle was by assuming a partial synchrony
model, where the network is assumed to be initially asyn-
chronous but, after an unknown point in time, delivers and
processes messages within a certain time bound [21]. This
model leads to a class of protocol designs where a leader
can drive the execution of the protocol. In this case, after a
timeout indicating that the protocol is not making progress,
all replicas must cooperate in picking a new leader.

Recently, researchers picked up a different line of research
that had been somewhat dormant for many years: asyn-
chronous BFT protocols [9]. These protocols are safe and live
irrespectively of any timing assumptions being met, but at the
cost of probabilistic guarantees, i.e., they are provided with
very high probability. Removing these timing assumptions im-
proves protocol resilience against replica and network delays,
which may be due to reasons ranging from network problems
to malicious activity [17, 50]. The recent surge of interest in
asynchronous BFT came after the publication of a protocol
called HoneyBadgerBFT (HBBFT) [40]. Since its publica-
tion, several other protocols appeared [20,25–27,29,35,36,54],
making tremendous progress in the properties of these proto-
cols, namely their performance and asymptotic complexity.

However, while these proposals succeeded in showing that
asynchronous BFT algorithms can perform well, they have
yet to gain practical adoption in production systems. In our
view, this can largely be due to the fact that existing protocols
fall short of striking a virtuous combination of good perfor-
mance and simple protocol design. The academic research
community often overlooks the latter, but it can be a decisive
factor in practical adoption. An illustrative example of this
point, from the partially synchronous arena, is the work of
Istanbul BFT [41] (also known as QBFT [7]). This protocol is
widely adopted by the blockchain community [6], to a large
extent due to it being simple to understand and implement,
and despite it being published more than two decades after
PBFT [16] and its many successors.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 313

In this paper, we present Alea-BFT, the first protocol for
asynchronous BFT state machine replication that brings to-
gether top-notch performance – in terms of throughput, la-
tency, and asymptotic complexity – with a simple and elegant
design and practical adoption in real-world systems.

The main insight in Alea-BFT is that it selectively brings a
key design feature from classical partially synchronous proto-
cols, namely having a per-request designated leader replica
that drives the protocol execution for that request. To avoid
resorting to timeouts for leader replacement, the choice of
leader can constantly rotate among all replicas, as previously
done in the crash [39] and Byzantine [53] models. Then, by
splitting the request execution into two phases and placing on
this replica the responsibility of initiating the broadcast phase
to disseminate client requests, Alea-BFT avoids redundant
instances of expensive building blocks present in existing
asynchronous protocols and also avoids the use of threshold
cryptography to encrypt proposals replicated across processes.
However, this also introduces challenges, namely that there is
no guarantee that the broadcast by the leader will reach a suffi-
cient number of replicas in time for the subsequent agreement
phase. We address this challenge by including an agreement
phase, pipelined with the broadcast phase, whose goal is to
allow replicas to agree on whether it is safe to execute the
client request. The execution can proceed if sufficient replicas
received the request to reconstruct it. Otherwise, the request is
locally stored in one of the queues of pending requests. This
leads to a design featuring a novel combination of existing
building blocks, namely using VCBC as a broadcast primitive
and ABA as the driver for agreement, which are judiciously
joined together to provide a simple and performant protocol.

We report on three implementations of Alea-BFT: a re-
search prototype and two real-world implementations, one
of them in the context of the SSV Ethereum distributed val-
idator (the key technology behind staking pools), which is
currently being considered to replace QBFT as its main con-
sensus protocol in the near future [51], and another in the
context of an experimental consensus layer for the subnets of
Filecoin [45]. More recently, a second Ethereum distributed
validator incorporated Alea-BFT in its protocol roadmap [32].

Our experimental evaluation of these three prototypes
shows that Alea-BFT has excellent performance, namely with
comparable throughput and better latency than the fastest
available asynchronous BFT from the recent literature [24].
This combination of excellent performance, protocol elegance,
and real-world adoption makes Alea-BFT a practical solution
for asynchronous BFT.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 describes the system
model and building blocks. Section 4 presents the design of
Alea-BFT, and we optimize it in Section 5. Section 6 analyses
its asymptotic complexity. Section 7 sketches a correctness
proof. Section 8 describes our various implementations, which
are evaluated in Section 9. We conclude in Section 10.

2 Related Work
The Byzantine consensus problem was formulated by Lam-

port et al. [34], and, over time, accumulated a large body of
research in the area [4,16,30,31,38,48]. BFT recently gained
adoption in cryptocurrencies and blockchains, with several
new protocols for those deployments [41, 55].

From these, the protocols that implement a form of con-
sensus – namely state machine replication protocols [49] –
face the FLP impossibility of consensus in asynchronous
systems [23]. To circumvent this result, most BFT systems
rely on timing assumptions such as partial synchrony [21]
for liveness. This is the case, for instance, of systems such
as PBFT [16] and also more recent proposals such as Hot-
Stuff [55], Kauri [44] or ISS [52]. Partially synchronous pro-
tocols can, however, be sensitive to conditions like a primary
that deliberately slows down the system [17] or situations
where replicas are correct but the network is unreliable [50].

As an alternative to assuming partial synchrony, random-
ized protocols circumvent FLP by guaranteeing the liveness
property with high probability. The design for this class of
protocols runs the main algorithm through multiple rounds
until its nondeterministic nature allows the probability of not
having liveness to be irrelevant. These protocols can then op-
erate over a fully asynchronous model, eliminating the need
for timing assumptions.

Existing asynchronous BFT protocols do not simultane-
ously achieve the goals of simplicity and performance, which
are key for practicality. In particular, the initial asynchronous
BFT protocols [10, 11, 14, 42, 47] are very elegant (some-
times described in less than 10 lines of pseudocode [11])
but have high communication costs and expected termina-
tion time. More recently, several new randomized protocols
appeared. At the core of this new line of proposals is an
asynchronous binary agreement (ABA) primitive, in which
processes decide on the value of a single bit. These ABA pro-
tocols are then used as building blocks for atomic broadcast
and state machine replication solutions. After a small set of
initial proposals, namely HoneyBadgerBFT (HBBFT) [40],
BEAT [20], EPIC [35], and Dumbo [27], a large number of
proposals emerged over the last few years [25, 26, 29, 36, 54].
Given the relatively large literature, we only describe in de-
tail two of these proposals, namely the pioneering work of
HBBFT [40] and a recent proposal with excellent performance
named Dumbo-NG [24].

HBBFT [40] is based on the observation that atomic broad-
cast can be built on top of an asynchronous common subset
(ACS) framework by combining it with a threshold encryp-
tion scheme. In ACS, every party proposes an input value
and outputs a common vector containing the inputs of at
least N − f distinct parties. HBBFT constructs ACS from
the composition of two phases: reliable broadcast (RBC) and
asynchronous binary agreement (ABA). During the broadcast
phase, every replica starts an RBC instance to disseminate its
proposal to all other replicas. Then, in the agreement phase,

314 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

N parallel ABA instances are invoked to decide on an N-bit
vector, where the i-th value indicates whether or not to include
the proposal from replica Pi in the final ACS output. Here,
threshold encryption prevents an adversary from selectively
censoring requests by selecting which proposals to include in
the ACS output vector.

To our knowledge, the best performing and state-of-the-
art proposal in this area (outperforming its competitors by
several-fold) is Dumbo-NG [24]. This protocol decouples a
continuously running broadcast phase from a sequence of
multi-valued Byzantine agreement (MVBA) instances. The
broadcast phase uses a custom protocol that resembles VCBC
(see Section 3), whereas the MVBA phase reuses an exist-
ing protocol, whose validity predicate is fine-tuned to check
for valid threshold signatures and other protocol-specific con-
ditions. The presence of an MVBA protocol introduces an
O(n3) message complexity, which contrasts with Alea-BFT’s
use of a round-robin ABA, with only O(n2) complexity.

Generally, we can categorize previous proposals as either
suffering from high communication costs (pre-HBBFT proto-
cols) or having a more complex design that hinders practical
adoption (new generation, starting from HBBFT). In contrast,
Alea-BFT brings together a simple and elegant design with
excellent performance and is now being adopted in real-world
systems, namely Ethereum distributed validators. This might
be in part due to the simplicity of the protocol and its compo-
nents – for instance, while Dumbo-NG uses an MVBA, which
is complex in both the provided guarantees and its implemen-
tation, Alea-BFT leverages a much simpler ABA primitive,
resulting in an overall protocol that is easier to understand and
implement. Furthermore, Alea-BFT improves on most prior
asynchronous protocols through its near quadratic message
complexity. Note that while quadratic protocols have been
theoretically proposed [5], we do not know of any protocol
with such characteristics that was implemented.

3 Basics
In this section, we present the system model and precisely

define the basic blocks upon which Alea-BFT is built.

3.1 System model
We consider a distributed system composed of N pro-

cesses, also called replicas, uniquely identified from the set
S = {P0, ...,PN−1} and an arbitrary number of clients.

We assume a Byzantine failure model where up to f =
⌊N−1

3 ⌋ replica processes can fail arbitrarily during the exe-
cution of the protocol. The remaining processes follow the
protocol specification and are termed correct. Alea-BFT is
adaptively secure against an adversary that dynamically de-
termines the replicas to compromise. That said, it reuses two
classes of protocols described later in this section, which
can have either statically secure or adaptively secure instantia-
tions. As such, choosing a statically secure subprotocol would
downgrade the solution to be statically secure.

The system is asynchronous, with the message delivery
schedule under adversarial control, and without bounds on
communication delays or processing times. Processes are
fully connected by channels, providing guarantees that mes-
sages are not modified in transit and are eventually delivered.
In practice, this requires message retransmission and point-to-
point authentication, but by considering this network model,
we can omit these from the protocol description.

Lastly, the adversary is assumed to be computationally
bound and thus unable to subvert cryptographic primitives.

3.2 Specification
We specify Alea-BFT as an atomic broadcast protocol,

which is a common abstraction for implementing state ma-
chine replication. Intuitively, this allows a process (e.g., a
proxy replica) to broadcast a message (e.g., a client request1

to be executed on the state machine) to all processes, ensur-
ing that all processes deliver all messages in the same order
(executing all client requests in the same order and therefore
transitioning through the same sequence of states). Formally,
atomic broadcast is defined as follows (with the standard as-
sumption that messages include a per-sender id and sequence
number to make them unique) [28]:
• Validity. If a correct process broadcasts a message m, then

some correct process eventually delivers m.
• Agreement. If any correct process delivers a message m,

then every correct process delivers m.
• Integrity. A message m appears at most once in the delivery

sequence of any correct process.
• Total order. If two correct processes deliver messages m

and m′, then both deliver m and m′ in the same order.

3.3 Building blocks
Alea-BFT is designed in a modular way by reusing several

subprotocols to carry out certain tasks. In this modular archi-
tecture, upper-level protocols provide inputs and receive out-
puts from subprotocols at the lower layers. Next, we present
the precise specification of these underlying primitives.
3.3.1 Verifiable Consistent Broadcast Protocol

Verifiable consistent broadcast (VCBC) is a broadcast vari-
ant that was first proposed by Cachin et al. [14]. It can only
guarantee that all correct replica processes deliver the broad-
cast value if the sender is correct; however, it always ensures
that no two correct processes deliver conflicting messages.
Additionally, it allows any party Pi that has delivered mes-
sage m to inform another party Pj about the outcome of the
broadcast execution, allowing it to deliver m immediately and
terminate the corresponding VCBC instance. More formally,
a VCBC protocol ensures the following properties [14]:
• Validity: If a correct sender broadcasts m, then all correct

parties eventually deliver m.
• Consistency: If a correct party delivers m and another cor-

rect party delivers m′, then m = m′.
1Client requests are also referred to in the literature as state machine

commands. Throughout the paper, we will use only the term request.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 315

• Integrity: Every correct party delivers at most one mes-
sage. Additionally, if the sender is correct, then it previously
broadcast the message.

• Verifiability: If a correct party delivers a message m, then
it can produce a single protocol message M that it may send
to other parties such that any correct party that receives M
can safely deliver m.

• Succinctness: The size of the proof σ carried by M is inde-
pendent of the length of m.

In Alea-BFT, we use a VCBC implementation consisting
of extending an echo broadcast protocol [14] with thresh-
old signatures to generate the proof σ. In short, the protocol
consists of the distinguished sender process sending m to
all processes and collecting a Byzantine quorum of ⌈ n+ f+1

2 ⌉
signature shares in the replies, allowing the sender to com-
bine these shares and convey the signature to all processes in
the final message step. Using threshold signatures keeps the
message size constant, ensuring succinctness. The message
complexity of the VCBC protocol we use is O(N) and its
communication complexity is O(N(|m|+λ)), assuming the
size of a threshold signature and share is at most λ bits.
3.3.2 Asynchronous Binary Agreement

An asynchronous binary agreement (ABA) protocol allows
correct processes to agree on the value of a single bit. Each
process Pi proposes a binary value bi ∈ {0,1} and decides
a common value b from the set of proposals by correct pro-
cesses. Formally, a binary agreement protocol can be defined
by the following properties:
• Agreement: If any correct process decides b and another

correct process decides b′, then b = b′.
• Termination: Every correct process eventually decides.
• Validity: If all correct processes propose b, then any correct

process that decides must decide b.
Given the FLP theorem [23], no deterministic algorithm can
satisfy all the previous properties in the asynchronous model
of Alea-BFT. As such, we use a randomized solution with the
following termination property:
• Termination: The probability that a correct process is un-

decided after r rounds approaches 0 as r approaches ∞.
This way, even though the number of rounds required to reach
agreement is unbounded, the probability that the protocol
does not terminate converges to zero.

We instantiate this primitive via the Cobalt ABA [37] pro-
tocol, a modified version of the proposal by Mostéfaoui et
al. [43]. The protocol relies on a common source of ran-
domness, i.e., a “common coin”, realized from a threshold
signature scheme by signing a unique bit string corresponding
to the name of the coin and combining the signature shares to
generate a random seed [15]. The protocol proceeds in rounds,
each consisting of the following all-to-all message communi-
cation steps: INIT, conveying the most recent proposal (0 or 1)
of each process, followed by AUX and CONF, trying to confirm
the existence of strong support (i.e., a Byzantine quorum) in
the previous step for a value. At the end of these exchanges,

processes either decide a value (if that support was gathered)
and convey it through a FINISH message or otherwise move
to the next round, changing their proposal to the value of the
common coin whenever both final outcomes are considered
possible. This protocol provides optimal resilience, O(N2)
expected message complexity, O(λN2) expected communica-
tion complexity and terminates in O(1) expected time.

4 Alea-BFT
This section presents Alea-BFT, starting with a broad

overview, followed by a detailed description and pseudocode.

4.1 Overview
One of the central insights of Alea-BFT is to have a single

replica propose a value per consensus instance, similar to what
happens in leader-based protocols in the partially synchronous
model, and all others agree on whether to deliver it or not.
Departing from a design where all replicas try to insert each
client request in the total order enables us to remove an all-
to-all communication phase and only have a single ABA
execution per client request (or batch of requests). This insight
then leads to the following initial design.
Strawman Proposal. The first design consists of adapting
the ACS construction of HBBFT but, instead of having all
replicas simultaneously propose values, a single replica is
selected as the proposer for each consensus round. The role of
the proposer is to choose a value (or batch of values) from its
buffer of pending requests to serve as a proposal and broad-
cast it to all replicas, using a broadcast primitive that ensures
that all replicas receive the same value – if they output a value
at all – a property ensured by consistent broadcast [13]. Cor-
rect replicas would then proceed to execute a single ABA
to determine whether to deliver the proposed value for that
round (if enough replicas have received it to ensure it persists
despite faults or asynchrony) or not deliver anything. Addi-
tionally, the proposer is deterministically rotated upon every
ABA execution to address the scenario where the proposer is
faulty without introducing a fail-over sub-protocol, similar to
what happens in other protocols for the partially synchronous
model (both with crash [39] and Byzantine [53] faults) that
incorporate leader rotation into the normal operation, such
that it is constantly changing.

This strawman protocol, however, raises an immediate prob-
lem. In previous protocols based on an ACS framework, repli-
cas are guaranteed to receive proposals from at least N− f
correct replicas. Therefore, they can wait until this threshold is
met before deciding which values to input for the subsequent
agreement stage. In contrast, in our strawman protocol, only
a single replica takes the role of the proposer at any given
time, so there is no way to determine whether the current
proposer is faulty or not, thus making it difficult to decide
which value to input into the ABA without resorting to some
timeout, which contradicts the asynchronous model.
Final design. The impossibility of waiting for some threshold
to be met before deciding the value to input to the ABA stage

316 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Overview of Alea-BFT. Requests go through a
single broadcast primitive (VCBC), are inserted in a priority
queue at each replica, determining the final ABA input.

leads us to the insight of not waiting at all and instead allowing
undelivered proposals to exist, which are then carried over
across rounds. In other words, every time a particular replica
is reelected as the proposer, the corresponding ABA execution
will decide over its queue of pending proposals instead of a
single newly proposed value (or batch of values). This way,
replicas can submit their input to start the ABA for a new
round as soon as they conclude the previous round, since even
if the decision is 0 (i.e., not deliver any proposal in the round),
the same proposal will be eventually revisited when the same
replica becomes the leader and a larger threshold of replicas
become aware of the proposal, guaranteeing convergence to
an ABA decision of 1 over time. The ABA execution also
serves as a synchronization mechanism between replicas since
no replica can progress to a round until it concludes all ABA
instances for previous rounds.

In Alea-BFT, we leverage this idea to decompose the mono-
lithic architecture of previous ACS-based protocols, in which
a binary agreement instance actively waits for the correspond-
ing broadcast to terminate, into a two-stage pipeline, where
the results of the first phase (broadcast component) are queued
to be eventually processed, either by the current or by a subse-
quent execution of the second phase (agreement component).
Very importantly for performance, these two phases are exe-
cuted in parallel, allowing for efficient pipelining.

Figure 1 depicts the resulting overall protocol flow. It
starts with the broadcast component of the Alea-BFT pipeline,
where replicas receive client requests, (optionally) batch them
by storing these in a pending buffer of size B, and, when the
buffer is full, disseminate its contents via a VCBC primitive
tagged with an incremental sequence number s. The output of
VCBC at each replica is stored in a buffer and only removed
upon a decision of 1 in the subsequent phase. The broadcast
stage produces an instance of an ordered queue of undelivered
proposals at each replica. These instances are then used as
input to the next component of the pipeline. Note that every
replica maintains N queues of undelivered proposals, one for
each replica in the system, and these grow and shrink over
time depending on how efficiently the agreement component
can process them.

The next stage is the agreement component, which itera-
tively selects one of the queues and decides whether to deliver
the oldest proposal. To this end, replicas participate in a single
ABA execution, voting 1 if their queue contains this proposal
or 0 otherwise. If the decision is 1, then a sufficient threshold
of correct replicas are aware of the proposal and may safely
deliver it, as explained next. Otherwise, if a decision is 0, the
agreement component simply moves on to the next queue,
repeating the same process.

As mentioned, since the broadcast’s VCBC primitive may
terminate at different times in different processes, we need
to address the scenario where a correct process outputs an
ABA decision of 1, but does not yet know the corresponding
proposal. In this scenario, such a correct process requests the
missing proposal from the other processes that voted 1. This
recovery mechanism is guaranteed to work for the following
reasons. Since ABA decided 1, at least one correct process
voted for 1. Therefore, this process has the required VCBC
proof (as guaranteed by VCBC’s verifiability property) and
can forward it to the requesting process.

4.2 Detailed description
Processes in Alea-BFT maintain two state variables shared

between the two components of the pipeline: variable Si, con-
sisting of the set of all messages delivered by the protocol,
which is initialized as empty upon a call to the START pro-
cedure, and updated during the execution of the agreement
component; and variable queuesi, comprising an array of
N priority queues, each corresponding to a distinct replica
Px,∀x ∈ {0, ...,N−1}. Algorithm 1 is responsible for initial-
izing the shared state variables and starting the pipeline com-
ponents upon a call to the START procedure. In the remainder
of this section, we begin by specifying the data structure of
the priority queues and then describe the two components of
the pipeline in turn.

Algorithm 1 Alea-BFT - Initialization (at Pi)

1: constants:
2: N
3: f

4: state variables:
5: Si← /0

6: queuesi← /0

7: procedure START
8: queuesi[x]← new pQueue() ,∀x ∈ {0, ...,N−1}
9: async BC-START()

10: async AC-START()

4.2.1 Priority queues
A priority queue is a custom data structure for storing el-

ements sorted according to their priority values. We refer to
each position in a priority queue as a slot, uniquely identi-
fied by a priority value associated with it, where the lower-
numbered priority values represent the elements that must be

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 317

processed first. Only a single element can be inserted in a
given slot, even after being removed, as the slot is permanently
labelled as used and cannot store another element. A special
slot called the head slot always points to the slot with the
lowest-numbered priority whose value has not been removed
yet. The pointer to the head slot progresses incrementally,
conditioned by the removal of elements from the queue. A
priority queue exposes the following attributes:
• id: The unique identifier of the queue (static).
• head: The priority value associated with the head slot of

the queue (dynamic).
Additionally, a priority queue provides an interface for access-
ing and modifying its contents as described below:
• Enqueue (v,s): Add an element v with a given priority

value s to the queue (ignored if the corresponding slot is
not empty).

• Dequeue (v): Removes all instances of the specified ele-
ment v from the queue if it is present.

• Peek ()→{v,⊥}: Retrieve, without removing, the element
v in the head slot of the queue or ⊥ if the slot is still empty
(because no Enqueue for that slot has been invoked yet).

As we will see, Alea-BFT leverages the properties of this
structure to mediate the communication between the broad-
cast and agreement components of the protocol pipeline. In
particular, each of the N priority queues that each replica
maintains keeps track of the undelivered proposals originating
from the other replicas, ordered by the priority value assigned
to those proposals.
4.2.2 Broadcast Component

The broadcast component is responsible for establishing
an initial local order over the client updates received and
propagating that order to other replicas. Every replica process
maintains two local state variables, a buffer of pending client
requests bu fi, and an integer value priorityi, indicating the
next sequence number it should assign to a proposal. The
main logic of this component, illustrated in Algorithm 2, is
split between two upon rules:
Upon rule 1 (lines 9 to 15): The first rule is triggered at
process Pi upon receiving a client message m to be broadcast
in total order. It is responsible for waiting until a batch of B
requests has been accumulated, assigning it a local sequence
number, and VCBC-broadcasting it to all replicas. In more
detail, process Pi proceeds as follows:
• If the set of delivered messages Si does not contain the

client message m, append it to the buffer bu fi, or ignore it
otherwise (lines 10 to 11).

• If the size of bu fi reached a threshold B, input bu fi to a
VCBC instance tagged with ID (i, priorityi), indicating that
Pi assigned the local priority value priorityi to a proposal
consisting of the current buffer contents (lines 12 to 13).

• Increment priorityi, so that it can be assigned to the next
proposal from Pi, and clear the buffer (lines 14 to 15).

Upon rule 2 (lines 16 to 20): The second rule is triggered
at process Pi upon the delivery of a proposal m for a given

VCBC instance tagged with ID (j, priority j), where j corre-
sponds to the identifier of the replica Pj that proposed m, and
priority j to the sequence number assigned to it by Pj. Process
Pi proceeds as follows:
• Insert the delivered proposal m into the slot priority j of

the priority queue Q j, mapping to Pj (lines 17 to 18). This
corresponds to Pi updating its view on the state of Pj’s
pending requests.

• If the set Si contains m, indicating that it had already been
delivered, then process Pi immediately removes it from
Q j to prevent a duplicate delivery that would violate the
integrity property (lines 19 to 20).

Algorithm 2 Alea-BFT - Broadcast Component (at Pi)

1: constants:
2: B

3: state variables:
4: bu fi
5: priorityi

6: procedure BC-START
7: bu fi← /0

8: priorityi← 0

9: upon receiving a message m, from a client do
10: if m /∈ Si then
11: bu fi← bu fi∪{m}
12: if |bu fi|= B then
13: input bu fi to VCBC (i, priorityi)
14: bu fi← /0

15: priorityi← priorityi +1

16: upon outputting m for VCBC (j, priority j) do
17: Q j← queuesi[j]
18: Q j.Enqueue(priority j,m)
19: if m ∈ Si then
20: Q j.Dequeue(m)

4.2.3 Agreement Component
The agreement component presented in Algorithm 3 es-

tablishes a total order among client requests. Requests are
ordered through a succession of agreement rounds that iterate
through the various priority queues and decide whether to
insert the head of that queue in the total order or skip it. Pro-
cesses maintain a single state variable ri, serving as a unique
identifier for the current agreement round. The execution of
the agreement component starts with a call to the AC-START
procedure (line 3), which initializes the local variable ri to 0
and begins executing the agreement loop.
Agreement loop (lines 5 to 16): For each iteration ri of the
agreement loop, the queue of proposals pertaining to a certain
replica is selected. This replica is a designated round leader,
chosen through a deterministic function of the round number
F (e.g., by rotating through all replicas). Let Pa denote the
current round leader, and Qa the corresponding priority queue
at each replica ri. Process Pi proceeds as follows:

318 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Run an ABA instance with id (ri) to determine whether
the value in the head slot of Qa should be delivered in this
round. Process Pi, inputs 1 to ABA if its local Qa contained
value in the head slot, or 0 otherwise (lines 6 to 9).

• If the ABA execution decided for 0, indicating that no pro-
posal should be delivered for the current round ri, simply
proceed to the next loop iteration, otherwise:

– If process Pi input 0 to ABA, send a FILL-GAP mes-
sage to all processes that voted for 1. This step is
required because, at this point in time, Pi is unaware
of the value to deliver for ri and, therefore, must re-
quest it from another process. (lines 12 to 13).

– Block execution until the head slot of Qa contains a
value to be delivered via a call to the AC-DELIVER
procedure (line 14). The value of the head slot can be
updated by the delivery of a pending VCBC instance,
either through “normal” execution or as a result of the
reception of a FILLER message.

In addition to the main agreement loop, the agreement compo-
nent also defines two upon rules associated with the recovery
sub-protocol to handle the reception of valid FILL-GAP and
FILLER messages:
Upon rule 1 (lines 17 to 21): The first rule is triggered
by any correct process Pi upon the reception of a valid
⟨FILL-GAP,q,s⟩ message from Pj, where q identifies a prior-
ity queue Qq, and s specifies the current head slot of Qq in Pj.
Process Pi then proceeds as follows:
• Check if its local queue pertaining to Pq is more advanced

than the one of Pj, by comparing the head pointer of its
Qq against s (line 19). If it is lower, Pi cannot satisfy the
FILL-GAP request and thus ignores it. Otherwise:
– Compute and store in entries a verifiable message M for all
VCBC instances originating from Pq tagged with a priority
comprised between the value s, requested by Pj, and the
current head slot of Qq in Pi (line 20).
– Send a FILLER message to Pj containing all the VCBC ver-
ifiable messages M, computed in the previous step (line 21).

Upon rule 2 (lines 22 to 24): The second rule is trig-
gered by any correct process Pi upon receiving a valid
⟨FILLER,entries⟩ message. This message is received as a
response to a FILL-GAP request. It contains the required in-
formation necessary for Pi to progress in the execution of
the protocol by completing pending VCBC instances after
blocking in line 14. Process Pi proceeds as follows:
• Deliver all M messages in entries to the corresponding

VCBC instances. Note that the verifiability property of
VCBC ensures that it immediately terminates upon the
reception of M, therefore triggering the second upon rule
of the broadcast component.

Finally, the AC-DELIVER procedure (line 25), called dur-
ing the execution of the agreement loop, is responsible for
delivering the contents of value, a batch of totally ordered
messages m, to the application layer (line 31). Additionally,

this procedure also removes value from all priority queues
and appends its contents to the set of delivered requests S.
Note that if batching is naively used, this scheme would likely
lead to some redundant work being done by the replicas, as
large batches differing only in a few requests could not be
removed from the priority queues (in line 27), and therefore
redundant operations would go through agreement and only
be removed before attempting to execute them (line 29). To
avoid this, we steer the protocol towards all replicas having
the same batches by having the client optimistically submit
requests to a single replica. If, after a timeout, the client does
not receive a response, then it resubmits to all replicas. Fur-
thermore, a real-world implementation would place an upper
bound on the number of broadcast but not delivered requests,
which implies that requests are not batched as soon as they
are received but instead stay in a pool until the protocol pro-
gresses. Because of this, deduplication can be made before
the batch is created, avoiding the redundant work problem.

Algorithm 3 Alea-BFT - Agreement Component (at Pi)

1: state variables:
2: ri

3: procedure AC-START
4: ri← 0
5: while true do
6: Q← queuesi[F(ri)]
7: value← Q.Peek()
8: proposal← value ̸=⊥ ? 1 : 0
9: input proposal to ABA (ri)

10: wait until ABA (ri) delivers b then
11: if b = 1 then
12: if Q.Peek() =⊥ then
13: broadcast ⟨FILL-GAP,Q.id,Q.head⟩
14: wait until (value← Q.Peek()) ̸=⊥ then
15: AC-DELIVER(value)
16: ri← ri +1

17: upon receiving a valid ⟨FILL-GAP,q,s⟩ message from Pj do
18: Q← queuesi[q]
19: if Q.head ≥ s then
20: entries←VCBC(queue,s′).M ∀s′ ∈ [s,Q.head]
21: send ⟨FILLER,entries⟩ to Pj

22: upon delivering a valid ⟨FILLER,entries⟩ message do
23: for each message M ∈ entries do
24: deliver M to the corresponding VCBC

25: procedure AC-DELIVER(value)
26: for each Q ∈ queuesi do
27: Q.Dequeue(value)
28: for each m ∈ value do
29: if m /∈ Si then
30: Si← Si∪{m}
31: output m

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 319

5 Optimizations
As we implemented and tested Alea-BFT, we developed

the following optimizations to improve its performance.
Input unanimity. When a replica observes all N replicas pro-
viding as input the same value v to an ABA instance, then
it is guaranteed that the ABA will decide v. To leverage this
observation, we added an early termination path to the ABA
protocol. This is achieved by modifying the INIT message
(which is only sent once at the start of the protocol) to convey
the input of each replica. Then, when a replica receives N
modified INIT messages with the same value v, it immedi-
ately delivers v and broadcasts FINISH (if not broadcast yet).
Crucially, it continues executing the ABA protocol normally
until it receives 2 f + 1 FINISH messages, as only then it is
guaranteed that all correct replicas can eventually terminate.
Pipelining prediction. To maximize the chances of a success-
ful outcome of the ABA stage, replicas keep statistics about
the time to complete previous VCBC and ABA executions
and use that information to fine-tune the pipeline and adapt it
to the network conditions. In particular, replicas delay nega-
tive votes for an ABA when a VCBC for the slot being voted
is still in progress but is expected to end soon (according to
the current estimate), with the expectation that the time to
complete the broadcast is smaller than the cost of a negative
ABA result. Additionally, replicas anticipate batch formation
(and consequently the start of VCBC) when deemed useful
to minimize the chance of a negative ABA result. This is
achieved by attempting to time the start of the broadcast, such
that it ends right before the corresponding ABA.
Leader prediction. Latency can be improved if the client
sends the request to a replica that is about to become a leader:
if that happens, that replica will quickly include it in the next
batch to be processed and delivered. In situations with low
load and where a single client issues a sequence of requests,
we found that using a round-robin approach is very effective
because the rate of requests followed the leader rotation. Al-
ternatively, clients can receive periodic hints from the replicas
about the rotation schedule or rely on the replica they contact
to redirect the request to a faster replica.

6 Analysis
This section analyzes the asymptotic efficiency of the Alea-

BFT protocol according to time, message, and communication
complexity metrics. The results of this analysis are summa-
rized in Table 1.

To analyze Alea-BFT we observe that message exchanges
occur in three places for each proposal payload to be deliv-
ered. First, during the execution of the broadcast component,
a replica initiates a VCBC instance to disseminate the locally
ordered proposal. Second, all replicas participate in succes-
sive ABA executions to decide whether or not to deliver the
proposal in a particular slot. Here, we denote by σ the average
number of ABA instances executed over a given slot to reach
a positive decision. Finally, a fetch request is triggered by

replicas that did not VCBC-deliver the proposal before the
corresponding ABA decided 1.

6.1 Time Complexity
Time complexity is defined as the expected number of

communication steps from a client request to its output. In
the case of Alea-BFT, the first and third steps terminate in
constant time O(1). In contrast, the total number of rounds
required for the agreement component to decide depends on
the value of σ, therefore giving an expected time complexity
of Alea-BFT of O(σ).

6.2 Message Complexity
We measure message complexity as the expected number

of messages generated by correct replicas to execute a sin-
gle client request. In Alea-BFT, the VCBC instance from
the broadcast phase generates O(N) messages; then, every
ABA instance exchanges O(N2) messages in expectation;
and finally, the third recovery phase incurs an overhead of
O(N) messages per replica that triggers this fallback proto-
col. Hence, the expected message complexity of Alea-BFT is
O(σN2), due to the σ ABA instances that are executed per pri-
ority queue slot before delivery, which is close to the quadratic
lower bound on message complexity shown by Dolev and
Reischuk [19].

6.3 Communication Complexity
Communication complexity consists of the expected total

bit-length of messages generated by correct replicas during
the protocol execution. Let |m| correspond to the average
proposal size and λ the size of a threshold signature share.
The execution of VCBC incurs a communication complexity
of O(N(|m|+λ)). Each ABA instance requires correct repli-
cas to exchange O(λN2) bits in expectation, and finally, each
replica that triggers the recovery phase adds communication
cost of O(N(|m|+ λ)) bits. This results in an expected to-
tal communication complexity of O(N2(|m|+σλ)) due to σ

ABA executions and up to N recovery rounds being triggered.

Table 1: Complexity of Alea-BFT decomposed by stages.

Stage Message Communication Time
Broadcast O(N) O(N(|m|+λ)) O(1)
Agreement O(σN2) O(σλN2) O(σ)

Recovery O(N2) O(N2(|m|+λ)) O(1)
Total O(σN2) O(N2(|m|+σλ)) O(σ)

6.4 Estimating σ

As previously mentioned, Alea-BFT does not guarantee
a constant-time execution, which could negatively affect the
protocol latency. In particular, this is because multiple zero-
deciding ABA instances could be executed over the same
priority queue slot until its contents are considered totally
ordered. However, we argue that, despite being theoretically

320 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

unbounded, the value of σ (the number of ABA instances re-
quired for a decision) is, in practice, close to the optimal value
of 1. This is justified by the observation that, in a round-robin
leader assignment, each queue is revisited every N rounds,
meaning that N−1 other ABA instances were executed by the
time a given queue is revisited. Considering ABA’s validity
property, which states that the decided value must have been
proposed by a correct process, the termination of a VCBC
instance by N− f correct replicas guarantees that the next
ABA execution pertaining to it will decide for 1. Therefore,
for the value of σ to increase by a single unit, correct replicas
would, on average, have to complete N sequential ABA execu-
tions for every single VCBC instance. In our experiments, we
validated that the value of σ was very close to 1 in practice.

7 Correctness
Next, we sketch the correctness of the protocol, and we

provide a complete proof in a separate arXiv e-print [8]. The
complete proof follows the structured proof format by Lam-
port [33] for increased preciseness.
Safety. The two safety properties that need to be proven are
integrity (each message m appears at most once in the deliv-
ery sequence of correct process i) and total order (any two
messages m and m′ are delivered in the same order by any
pair of correct processes i and j). Integrity is derived from
the fact that once a message is delivered, it is added to the set
of delivered messages, dequeued from all queues and never
enqueued again. The total order property follows from the
fact that delivering two different messages at different replicas
in the same slot would lead to a violation of the consistency
property of VCBC.
Liveness. The liveness properties build mostly on the liveness
guarantees of the protocols used as building blocks. Given
these guarantees, it suffices to follow the protocol steps to
prove that we eventually satisfy the preconditions for the
building block protocols to produce the necessary outputs to
decide a value, namely that the messages that were broadcast
reach a sufficient number of correct processes.
Censorship resilience. Prior asynchronous BFT protocols
include mechanisms to enforce that Byzantine replicas cannot
significantly delay the delivery of any particular message
(i.e., a fairness property). This is required, in particular, for
protocols that use an asynchronous common subset (ACS)
to agree on a subset of the various proposals from different
replicas to deliver, since a Byzantine replica can bias the
choice of proposals to be included in the output of ACS. In
Alea-BFT, however, censorship resilience is easily achieved
by construction, given that any replica can initiate a VCBC for
a client request. Thus, clients can broadcast their requests to
f +1 or more replicas (possibly after a wait, to optimistically
check if sending to a single replica suffices). This guarantees
that at least one of these replicas is non-faulty and will drive
the request execution.

8 Implementations
We implemented Alea-BFT in three open-source proto-

types: an initial research implementation, and then two real-
world integrations, namely with the SSV Ethereum distributed
validator (where it is being considered to replace QBFT as its
main protocol in the near future [51]) and with an experimen-
tal consensus layer for subnets in the Filecoin network [1].
Research prototype. Our first prototype implementation
of Alea-BFT, which is available as open source [2], com-
prises 20,000 lines of Java code. The source code is orga-
nized in a modular manner, with the main logic of Alea-BFT
leveraging different subprotocols (namely broadcast and bi-
nary agreement) as building blocks. Reliable point-to-point
links were implemented using TCP streams, similar to prior
work [24, 27, 40]. Additionally, we implemented HBBFT us-
ing the same codebase as a starting point to use it as one of
the comparison baselines.
Ethereum distributed validator. Decentralized Validator
Technology (DVT) is a technology to improve the security,
robustness, and openness of the Ethereum network [12, 22].
Using distributed validators, several non-trusted parties coop-
erate to logically act as a single validator, and this way each
participant is able to overcome the need to commit 32 ETH
(over USD 3,700 as of this writing) to enter the network. To
act as a single logical entity, once a distributed validator is
called to conduct a validation task (called a duty in Ethereum),
the various parties that form the validator run a BFT consen-
sus protocol to decide on the input to the duty (which can
be, for instance, a block or a pointer to the head of the chain,
depending on the type of duty) and the respective outcome.

We have been collaborating with ssv.network for over one
year [51] to implement Alea-BFT in the SSV codebase, with
the goal of offering stronger resilience in the presence of ad-
verse network conditions or Byzantine behavior. Their current
plan is to incorporate Alea-BFT in their production codebase
in the near future. The repository for this implementation is
available as open source [3].

The main integration challenge came from the fact that
consensus is used as a standalone instance, instead of a repli-
cated state machine that executes a command sequence, which
would be more aligned with the abstraction offered by Alea-
BFT. Therefore, we adapted Alea-BFT with the following
design features and optimizations to fit this specific context.
Adapting Alea-BFT to one-shot consensus. In a distributed
validator, even though the duty is the same across the pro-
cesses that comprise the validator, because it is known a few
epochs in advance, the input to that duty needs to be agreed
upon because each process may retrieve it from a different
source (called a beacon client in Ethereum, with several possi-
ble providers). To reach consensus on that input, each process
will attempt to send its input using Alea-BFT’s atomic broad-
cast protocol, and the first to be delivered by the protocol is the
output of consensus. Note that only one instance of VCBC per
process is needed to implement this one-shot consensus, thus

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 321

simplifying the implementation. A possible concern is that the
validity condition for this consensus implementation allows
for a single divergent opinion to be the final output. However,
this is safe because the inputs are coming from sources that
are outside of the distributed validator system. Therefore their
correctness is beyond the scope of the distributed validator.
(In addition, some basic validation checks can also be con-
ducted.) Additionally, for fairness, the round-robin rotation of
protocol leaders in different consensus instances is based on
a pseudorandom sequence, allowing the advantageous roles
to even out over time.
Early consensus termination. As an optimization, if a replica
receives a VCBC proof for the same value for every partici-
pant, it knows in advance that the corresponding value is the
only possible output of consensus and can return it immedi-
ately. However, it continues to run the consensus protocol
in case other replicas do not receive the same view. This is
particularly useful in distributed validators because replicas
have a high chance of proposing the same value. This is be-
cause, for most validations, different inputs only occur when
different replicas have a divergent view of the current state of
the blockchain, which is rare. Note that this optimization dif-
fers from the first optimization described in Section 5, which
refers to ABA instead of VCBC instances.

The current implementation consists of 5,000 lines of Go
code, integrated as a subset of the large codebase of SSV.
Consensus layer for Filecoin subnets. We also imple-
mented Alea-BFT as part of Mir/Trantor [45, 46], an experi-
mental framework for distributed protocols, which is meant
to become a new consensus layer for the subnets of File-
coin [18, 45]. This framework already supports the ISS-
PBFT [52] protocol, and an upcoming implementation of
a new protocol, apart from Alea-BFT. We implemented Alea-
BFT in 4,000 lines of Go code and are currently merging it
into the main repository [45]. It is nonetheless already freely
available as open source [1]. The subprotocols used by Alea-
BFT – ABA and VCBC – are implemented as independent
modules, allowing their reuse by other protocols to be imple-
mented within the same framework. In addition, we added
support for threshold cryptography and BLS signatures within
the framework, to be available to other protocols.

We improved the performance of this implementation
through the parallel execution of agreement rounds. In
Alea-BFT, the system can only order one batch of requests
per agreement round, capping the system throughput to
BatchSize×ABARate. To overcome this limit, we allow mul-
tiple agreement rounds to make progress in parallel, but they
buffer the delivery until it is guaranteed that the instances are
delivered in order. However, we have to be careful so that
this parallelization does not overload the network, while also
remaining effective. To this end, we limit parallelization to the
next N agreement rounds and restrict ABA execution as fol-
lows. Before all the preceding agreement rounds deliver, ABA
instances are only allowed to make progress using the una-

nimity optimization and otherwise need to wait for their turn.
Under this restriction, the eager execution of ABA instances
only broadcasts up to two messages (INIT and FINISH), thus
limiting its network impact.

9 Evaluation

We evaluated the three implementations of Alea-BFT under
several scenarios. The following questions guide our evalua-
tion. (1) How does the performance of Alea-BFT compare to
other asynchronous BFT protocols across different configu-
rations? (2) How robust is Alea-BFT to faults? (3) How do
the real-world implementations of Alea-BFT compare to the
previous protocols that they employed?

9.1 Experimental environment

Baselines. The research prototype of Alea-BFT was evalu-
ated against two baselines. First, we compared it to our own
implementation of HBBFT [40], the first protocol in the new
generation of asynchronous BFT, and where, to obtain an
apples-to-apples comparison, we started from the same code-
base as Alea-BFT and tried to optimize the implementation
of HBBFT to the fullest extent. Second, we compared to
Dumbo-NG [24], which is the state-of-the-art asynchronous
BFT protocol with outstanding performance (several-fold bet-
ter than the direct competitors, according to their results [24]),
and, in this case, we deploy their unmodified codebase. For
the two real-world implementations, we used the protocols
that those systems originally supported as baselines.

Setup. We deployed Alea-BFT in a cluster where the replica
and client instances ran on machines equipped with AMD
EPYC 7272 12-Core Processors. In addition, Docker was
used to limit each replica’s CPU usage to 4 cores and the Java
VM was capped at 10GB of memory. These machines were
connected to the same local network with 1Gb connections.
To evaluate the effects of deploying Alea-BFT in a wide-area
network, we emulate varying additional inter-replica latency
using netem. Some deployment characteristics for the real-
world prototypes differed whenever noted.

Clients submit requests in an open loop, and we vary the
inter-request interval and the number of clients to increase
the load. The payload size of the requests and responses is
256 bytes, aligned with the size of Bitcoin transactions (as
noted and employed in previous work [40]). Each experiment
runs for 2 minutes, and we repeat experiments 5 times and
report the average. When measuring latency for Dumbo-NG,
its implementation always loads the system, and therefore we
would have to modify their codebase to measure the latency
of an isolated request. As such, the latency measurements
for Dumbo-NG represent the performance at an intermediate
load generated by the implementation, where the system is
not quiescent but also not as overloaded as during throughput
measurements for the other protocols.

322 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

9.2 Performance under different parameters
We start by using our research prototype to measure the

latency and throughput of Alea-BFT and the two baselines
under different configurations and deployments, namely vary-
ing the batch size, the replication factor, and the inter-replica
latency. When the sensitivity to one of these parameters is
being evaluated, the remaining ones are fixed to a batch size
of 1024, n =4 replicas (i.e., f = 1), and LAN (minimal inter-
node latency), respectively.

Figures 2a and 2b show the peak throughput and latency
while varying the batch size. In this particular setting, the
latency at the peak throughput is reported instead of the base
latency (measuring an isolated request without any system
load). This is because the latter would require issuing only
one or a few requests, much less than the batch size. Thus, the
measured latency would correspond to either slowly filling
up the batch or triggering a batch timeout. The results show
that Alea-BFT is competitive with the state of the art (Dumbo-
NG) and that both are a significant improvement over their
predecessor (HBBFT). While Alea-BFT cannot match the
peak throughput of Dumbo-NG, they are both in the same
order of magnitude (hundreds of thousands of txs/s), versus
≈15k txs/s for HBBFT. When considering latency, Alea-BFT
outperforms Dumbo-NG across all tested batch sizes. We
attribute these differences in throughput and latency to the
choice of agreement primitive. In particular, Dumbo-NG uses
MVBA, which allows for better throughput by accepting sev-
eral batches at once, but the simpler ABA primitive of Alea-
BFT enables a better latency under a comparable load. Note
that the fact that Alea-BFT’s throughput peaks earlier than
Dumbo-NG’s in this setting is mainly an implementation ar-
tifact – our codebase has an external open loop client that
further saturates the network, unlike Dumbo-NG’s.

Next, we use netem to evaluate the performance under
different network conditions (LAN vs. WAN). Figures 2c
and 2d show the peak throughput and latency when varying
inter-replica latency. The results show that Alea-BFT has
the lowest latency of all protocols while achieving a peak
throughput in the tens of thousands of requests per second
when the inter-node latency is under 25ms. HBBFT witnesses
a similar degradation in latency to Alea-BFT because the
critical path for a normal-case request execution is the same
for both protocols, except for a single protocol step, which
explains the slightly higher latency of HBBFT.

Finally, we scale out the experiments by increasing the
number of replicas participating in the consensus. For these
experiments, we use 13, 25, 37 and 49 replicas, and, in this
case, we use netem to simulate a WAN environment, with a
75ms inter-replica latency, corresponding to an RTT of 150ms
(approximating a cloud deployment). Furthermore, since the
available setup forced some replicas to be co-located on the
same machine, to ensure a realistic and uniform bandwidth
availability, each instance’s bandwidth was capped at 50Mb/s
using a token bucket filter.

(a) Peak throughput vs batch size (b) Latency at peak throughput
vs batch size

(c) Peak Throughput vs inter-
replica latency

(d) Base latency vs inter-replica
latency

(e) Peak throughput vs system
size

(f) Base latency vs system size

(g) Throughput during crash fault

Figure 2: Prototype implementation evaluation
In this case, we were not able to configure the Dumbo-

NG code to use the same replica group sizes as the ones
we employed for the other two systems, which explains why
there are only two curves. Our results show that Alea-BFT
not only has superior throughput but also achieves very good
latency in unloaded scenarios, due to the clients being able
to predict the current leader and send requests to the replica
that will drive the decision the fastest. On the other hand, in
unloaded scenarios, HoneyBadger’s clients need to contact
2 f +1 replicas to ensure progress, meaning that, for a single
request to go through, 2 f +1 ABAs need to be executed.

9.3 Performance under faults
We compared the performance of Alea-BFT and the base-

lines in a scenario where one of the replicas crashes 50
seconds into the trace. We inject a crash fault instead of a
protocol-specific Byzantine fault, for a direct comparison be-
tween protocols. The results in Figure 2g show that Alea-
BFT and HBBFT suffer more with the crash of f replicas
because they share the unanimity optimization described in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 323

Section 5 (which cannot be used when a replica is unrespon-
sive), but Dumbo-NG also takes a significant hit (around 30%
of throughput) due to bandwidth wasted on the faulty replica.

We also evaluate the performance under faults for the other
implementations and present the results in the next section.

9.4 Real-world implementations
Ethereum distributed validator. We start this part of the
evaluation with the implementation of Alea-BFT in the SSV
distributed validator of Ethereum. In this case, the experimen-
tal methodology is constrained by the way that SSV operates,
namely that the system progresses in a sequence of slots of
fixed duration (12 seconds in Ethereum), and during each slot,
each validator is assigned a set of duties (tasks such as block
proposal and attestation). Thus, to measure the base latency,
we set the number of duties per slot to 1 and measure the time
to complete it, whereas throughput is measured by increasing
the number of duties per slot until this metric peaks. Since
the performance is not network-bound and the number of
nodes is low, we did not use the bandwidth cap. We used a
group of 4 replicas, with no added inter-replica latency, and
batching is not applicable in this setting. We tested variants of
Alea-BFT that use different message authentication methods
and compared these to the existing QBFT-based codebase. In
particular, we start with a direct comparison to QBFT (which,
in the SSV codebase, uses BLS digital signatures without ag-
gregation), and then add BLS aggregation to Alea-BFT. (This
change could also be applied to QBFT, but this was avoided to
keep the baseline as the existing codebase.) Then, we replace
signatures with HMACs, which is possible in Alea-BFT but
would not be directly applicable to QBFT, because of mes-
sages conveyed to all processes during round changes. In the
case of HMACs, BLS is only used to verify the final VCBC
signature and compute ABA’s shared coin.

Figure 3 shows the performance of the SSV validator using
different protocols. In these plots, the latency and throughput
in the most basic setting can be determined by the leftmost
point of Figures 3a and 3b. These results show that Alea-BFT
with BLS aggregation and with HMACs has similar peak
throughput and better latency than the previous codebase that
uses QBFT. This highlights how designing Alea-BFT to have
a small number of protocol steps, combined with the possi-
bility of using HMACs that comes from not having the view
change mechanism from partially synchronous protocols can
lead to competitive performance in this setting. We attribute
the slightly better throughput of QBFT to the leader-driven
protocol allowing for exchanging a smaller number of mes-
sages. However, we see the overhead of Alea-BFT as a modest
price to pay for not making partial synchrony assumptions.

The effects of varying the inter-replica latency is shown in
the remainder of Figures 3a and 3b. The key takeaway is that,
for all tested conditions, Alea-BFT closely follows QBFT in
terms of base latency and peak throughput and, with the best
choice of cryptographic primitives in place, Alea-BFT can

(a) Peak throughput vs inter-
replica latency

(b) Base latency vs inter-replica
latency

(c) Peak throughput vs system
size

(d) Base latency vs system
size

(e) Throughput during crash fault

Figure 3: Distributed validator deployment evaluation

even achieve lower latency values. Figure 3b also depicts the
change of relative importance of cryptographic primitives as
inter-replica latency varies – in a LAN environment, as the
network delay is small relative to the cost of cryptography,
the several variants have a very noticeable relative difference
among them. However, as the inter-replica delay increases,
this difference decreases in proportion.

Next, we measured performance as the group size increases
(Figures 3c and 3d). Currently, in SSV, a validator can only
employ 4, 7, 10, or 13 operators, as defined in its smart con-
tract. In this experiment, as in the previous one, Alea-BFT’s
latency and throughput follow QBFT’s, achieving lower la-
tency and higher throughput values when using HMAC for
point-to-point authentication and BLS digital signatures.

Finally, Figure 3e shows the results of an experiment where
we crash one of the processes, chosen at random, at the be-
ginning of the 11th slot in the run, then restart it in the 21st
slot, and we plot the number of duties that are executed per
slot throughout the trace. The results show that Alea-BFT is
more resilient to this fault because of the principles behind
its design: the fault will affect 1/4 of the VCBC instances,
but these rounds will quickly be skipped and replaced with
productive work led by the other replicas. In contrast, QBFT
waits for a timeout and a leader change protocol to complete,
which slows down the entire system for that duration.

324 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Consensus layer for Filecoin subnets. In the last part of
this section, we evaluate Alea-BFT’s integration into an ex-
perimental consensus layer [45, 46] for Filecoin subnets [18]
against the existing implementation of ISS-PBFT [52] in the
same codebase. ISS-PBFT uses the same parameters as in its
original evaluation [52].

Base latency experiments use two co-located closed-loop
clients per replica, ensuring incoming request queues are
never empty. This was required because the implementation
of ISS-PBFT stalls when there are no requests to propose.
However, it has the downside of generating some load that
may negatively affect latency. We only present results for
replica 0 in the ISS-PBFT latency measurements due to an
implementation issue that inflates latencies in other replicas,
which would unfairly harm the baseline’s performance. Peak
throughput is measured in a configuration of 8∗B closed-loop
clients co-located with each replica, where B is the batch size,
which we empirically determined to maximize the throughput.

We begin by evaluating Alea-BFT’s performance against
ISS-PBFT when varying the inter-node latency. Figures 4a
and 4b show that Alea-BFT closely follows the performance
ISS-PBFT in wide-area settings, in terms of peak throughput
and base latency. Furthermore, while Alea-BFT is initially
limited to ≈40k requests/s and ≈50ms base latency, it be-
comes on par with ISS-PBFT when the limiting factor shifts
from threshold cryptography to network latency.

Additionally, we evaluated Alea-BFT’s ability to scale
against ISS-PBFT, which is relevant given that scalability is a
key design goal in ISS. Figures 4c and 4d show peak through-
put and base latency measurements for Alea-BFT and ISS-
PBFT for a variety of system sizes. Regarding peak through-
put (Figure 4c), Alea-BFT’s throughput degrades gracefully
as the system size increases, fully saturating the (bandwidth-
capped) network. In contrast, ISS-PBFT degrades abruptly
and stops processing requests altogether after a few seconds
for N = 49. However, we believe this is an artifact of this im-
plementation of ISS-PBFT, which reacts poorly under strained
network conditions and is not intrinsic to the ISS-PBFT pro-
tocol. Regarding latency (Figure 4d), both protocols maintain
near-constant base latency under system sizes up to N = 22,
after which it begins to increase. In this case, ISS-PBFT has a
lower latency than Alea-BFT because its multi-leader design
allows requests to be processed as soon as they reach the
PBFT primary replica, whereas in Alea-BFT we have to wait
for the designated replica’s turn to run its agreement round.

Finally, we studied the impact of crash faults on both Alea-
BFT and ISS-PBFT. Figure 4e shows an execution trace of
one Alea-BFT and one ISS-PBFT execution with the default
settings, where a single replica crashes after 150s (and stays
crashed). To aid evaluation, a dotted line was added to both
curves, showing a moving average of the system’s through-
put across all repetitions. In this trace, we first observe a
15-second stall of ISS-PBFT after the crash, waiting for a
timeout for the detection of the crashed replica, whereas Alea-

(a) Peak throughput vs inter-
replica latency

(b) Base latency vs inter-replica
latency

(c) Peak throughput vs system
size

(d) Base latency vs system size

(e) Throughput during crash fault

Figure 4: Mir/Trantor deployment evaluation
BFT can continue uninterrupted (albeit at reduced through-
put) thanks to its leaderless design. After this timeout expires,
ISS excludes the crashed replica from the set of leaders and
continues with a relatively small (≈20%) performance hit.
However, Alea-BFT is penalized on two fronts – it both loses
a replica proposing requests (like ISS) and the ABA unanim-
ity optimization – leading to a reduction in throughput when
compared to the system with all replicas functional.

10 Conclusion
In this paper, we presented Alea-BFT, a practical asyn-

chronous BFT protocol with a design that combines simplic-
ity with performance. Our experimental evaluation shows that
Alea-BFT performs better than the top-performing Dumbo-
NG in latency, offers comparable throughput, and is resilient
to faults. Importantly, Alea-BFT is being adopted in the real
world, namely by Ethereum distributed validators.

Acknowledgments
We thank the anonymous reviewers and our shepherd,

Zhaoguo Wang, for their helpful feedback. This work was sup-
ported by Fundação para a Ciência e a Tecnologia, projects
UIDB/50021/2020 and PTDC/CCI-INF/6762/2020, and by
the European Union’s Horizon 2020 research and innovation
programme, under grant agreement No 952226, project BIG.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 325

References
[1] Mir codebase with Alea-BFT. https://github.c

om/abread/mir/tree/43a82f13b3f5353a80bdfe2f
e2613daed0fbf710.

[2] Prototype implemenation of Alea-BFT. https://gith
ub.com/diogoantunes25/Alea-BFT.

[3] ssv codebase with Alea-BFT. https://github.com
/MatheusFranco99/ssv.

[4] Michael Abd-El-Malek, Gregory R Ganger, Garth R
Goodson, Michael K Reiter, and Jay J Wylie. Fault-
scalable byzantine fault-tolerant services. ACM SIGOPS
Operating Systems Review, 39(5):59–74, 2005.

[5] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegel-
man. Asymptotically optimal validated asynchronous
byzantine agreement. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
PODC ’19, page 337–346, 2019.

[6] Enterprise Ethereum Alliance. EEA publishes QBFT
blockchain consensus protocol. https://entethalli
ance.org/23-01-qbft-spec-version-1-releas
ed/.

[7] Ethereum Enterprise Alliance. QBFT blockchain con-
sensus protocol specification v1. https://entethal
liance.org/specs/qbft/v1/.

[8] Diogo S. Antunes, Afonso Oliveira, André Breda,
Matheus Guilherme Franco, Henrique Moniz, and Ro-
drigo Rodrigues. Alea-bft: Practical asynchronous
byzantine fault tolerance. arXiv:2202.02071 [cs.DC] ht
tps://arxiv.org/abs/2202.02071, 2022.

[9] James Aspnes. Randomized protocols for asynchronous
consensus. Distributed Computing, 16(2):165–175,
2003.

[10] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asyn-
chronous secure computations with optimal resilience.
In Proceedings of the thirteenth annual ACM sympo-
sium on Principles of distributed computing, PODC ’94,
pages 183–192, 1994.

[11] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Inf. Comput., 75(2):130–143, nov 1987.

[12] Vitalik Buterin. Post by @VitalikButerin on
X. https://twitter.com/VitalikButerin/statu
s/1588669782471368704.

[13] Christian Cachin, Rachid Guerraoui, and Luís E. T. Ro-
drigues. Introduction to Reliable and Secure Distributed
Programming (2nd ed.). Springer, 2011.

[14] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Advances in Cryptology — CRYPTO
2001, pages 524–541. Springer, 2001.

[15] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Jour-
nal of Cryptology, 18(3):219–246, 2005.

[16] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Proceedings of the Third USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 1999, pages 173–186, 1999.

[17] Allen Clement, Edmund L. Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making byzan-
tine fault tolerant systems tolerate byzantine faults. In
Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI
2009, pages 153–168, 2009.

[18] Alfonso De la Rocha, Lefteris Kokoris-Kogias, Jorge M
Soares, and Marko Vukolić. Hierarchical consensus: A
horizontal scaling framework for blockchains. In 2022
IEEE 42nd International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 45–
52, 2022.

[19] Danny Dolev and Rüdiger Reischuk. Bounds on infor-
mation exchange for byzantine agreement. Journal of
the ACM (JACM), 32(1):191–204, 1985.

[20] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2028–2041, 2018.

[21] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, apr 1988.

[22] ethereum.org. Distributed validator technology. https:
//ethereum.org/en/staking/dvt/.

[23] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[24] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Dumbo-NG: Fast asyn-
chronous bft consensus with throughput-oblivious la-
tency. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’22, page 1187–1201, 2022.

326 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/abread/mir/tree/43a82f13b3f5353a80bdfe2fe2613daed0fbf710
https://github.com/abread/mir/tree/43a82f13b3f5353a80bdfe2fe2613daed0fbf710
https://github.com/abread/mir/tree/43a82f13b3f5353a80bdfe2fe2613daed0fbf710
https://github.com/diogoantunes25/Alea-BFT
https://github.com/diogoantunes25/Alea-BFT
https://github.com/MatheusFranco99/ssv
https://github.com/MatheusFranco99/ssv
https://entethalliance.org/23-01-qbft-spec-version-1-released/
https://entethalliance.org/23-01-qbft-spec-version-1-released/
https://entethalliance.org/23-01-qbft-spec-version-1-released/
https://entethalliance.org/specs/qbft/v1/
https://entethalliance.org/specs/qbft/v1/
https://arxiv.org/abs/2202.02071
https://arxiv.org/abs/2202.02071
https://twitter.com/VitalikButerin/status/1588669782471368704
https://twitter.com/VitalikButerin/status/1588669782471368704
https://ethereum.org/en/staking/dvt/
https://ethereum.org/en/staking/dvt/

[25] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Son-
nino, Alexander Spiegelman, and Zhuolun Xiang.
Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. In Financial Cryptogra-
phy and Data Security - 26th International Conference,
FC 2022, volume 13411 of Lecture Notes in Computer
Science, pages 296–315. Springer, 2022.

[26] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang,
Jing Xu, and Zhenfeng Zhang. Speeding dumbo: Push-
ing asynchronous BFT closer to practice. In 29th Annual
Network and Distributed System Security Symposium,
NDSS 2022, 2022.

[27] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 803–818, 2020.

[28] Vassos Hadzilacos and Sam Toueg. A modular approach
to fault-tolerant broadcasts and related problems. Tech-
nical report, Cornell University, 1994.

[29] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and
Alexander Spiegelman. All you need is DAG. In Pro-
ceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC’21, page 165–175, 2021.

[30] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith.
The securering protocols for securing group commu-
nication. In Proceedings of the Thirty-First Hawaii
International Conference on System Sciences, volume 3,
pages 317–326 vol.3, 1998.

[31] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
byzantine fault tolerance. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems
principles, SOSP 2007, pages 45–58, 2007.

[32] Oisín Kyne. The distributed validator protocol roadmap.
Obol Network Blog. https://blog.obol.tech/r
oadmap-the-distributed-validator-protocol/,
2024.

[33] Leslie Lamport. How to write a 21st century proof.
Journal of Fixed Point Theory and Applications, 11:43–
63, 2012.

[34] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, July 1982.

[35] Chao Liu, Sisi Duan, and Haibin Zhang. Epic: Efficient
asynchronous bft with adaptive security. In 2020 50th
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN 2020), pages 437–451.
IEEE, 2020.

[36] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo
transformer: Asynchronous consensus as fast as the
pipelined BFT. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2022, pages 2159–2173, 2022.

[37] Ethan MacBrough. Cobalt: Bft governance in open
networks. arXiv preprint arXiv:1802.07240, 2018.

[38] Dahlia Malkhi and Michael Reiter. Byzantine quorum
systems. Distrib. Comput., 11(4):203–213, oct 1998.

[39] Yanhua Mao, Flavio Paiva Junqueira, and Keith
Marzullo. Mencius: Building efficient replicated state
machine for wans. In Proc. 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2008, pages 369–384, 2008.

[40] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page
31–42, 2016.

[41] Henrique Moniz. The istanbul bft consensus algorithm.
arXiv preprint arXiv:2002.03613, 2020.

[42] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia,
and Paulo Verissimo. Ritas: Services for randomized
intrusion tolerance. IEEE transactions on dependable
and secure computing, 8(1):122–136, 2008.

[43] Achour Mostefaoui, Hamouma Moumen, and Michel
Raynal. Signature-free asynchronous byzantine consen-
sus with t< n/3 and o (n2) messages. In Proceedings of
the 2014 ACM symposium on Principles of distributed
computing, PODC ’14, pages 2–9, 2014.

[44] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable bft consensus with pipelined tree-based
dissemination and aggregation. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 35–48, 2021.

[45] Matej Pavlovic. Mir – the distributed protocol imple-
mentation framework. https://github.com/conse
nsus-shipyard/mir/blob/e100175138a4fd8947b
6757452334698ee518967/README.md.

[46] Matej Pavlovic. Trantor: Modular state machine
replication. https://github.com/consensus-ship
yard/trantor-doc/blob/47dfc316a6d81604e1c
567b823358f53fdfde4b4/main.pdf, 2023.

[47] Michael O Rabin. Randomized byzantine generals. In
24th Annual Symposium on Foundations of Computer
Science (sfcs 1983), pages 403–409. IEEE, 1983.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 327

https://blog.obol.tech/roadmap-the-distributed-validator-protocol/
https://blog.obol.tech/roadmap-the-distributed-validator-protocol/
https://github.com/consensus-shipyard/mir/blob/e100175138a4fd8947b6757452334698ee518967/README.md
https://github.com/consensus-shipyard/mir/blob/e100175138a4fd8947b6757452334698ee518967/README.md
https://github.com/consensus-shipyard/mir/blob/e100175138a4fd8947b6757452334698ee518967/README.md
https://github.com/consensus-shipyard/trantor-doc/blob/47dfc316a6d81604e1c567b823358f53fdfde4b4/main.pdf
https://github.com/consensus-shipyard/trantor-doc/blob/47dfc316a6d81604e1c567b823358f53fdfde4b4/main.pdf
https://github.com/consensus-shipyard/trantor-doc/blob/47dfc316a6d81604e1c567b823358f53fdfde4b4/main.pdf

[48] Michael K Reiter. The rampart toolkit for building high-
integrity services. In Theory and practice in distributed
systems, pages 99–110. Springer, 1995.

[49] Fred B Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[50] Atul Singh, Tathagata Das, Petros Maniatis, Peter Dr-
uschel, and Timothy Roscoe. Bft protocols under fire.
In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’08,
pages 189–204, 2008.

[51] ssv.network. SSV into the future: Asyncrounous BFT
protocols. https://ssv.network/blog/technolog
y/ssv-into-the-future-asyncrounous-bft-pr
otocols/.

[52] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko
Vukolić. State machine replication scalability made
simple. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, pages
17–33. ACM, 2022.

[53] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? byzantine fault tolerance with a
spinning primary. In 2009 28th IEEE International
Symposium on Reliable Distributed Systems, pages
135–144, 2009.

[54] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. DispersedLedger: High-
throughput byzantine consensus on variable bandwidth
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2022, pages
493–512, 2022.

[55] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC’19, pages 347–356,
2019.

328 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://ssv.network/blog/technology/ssv-into-the-future-asyncrounous-bft-protocols/
https://ssv.network/blog/technology/ssv-into-the-future-asyncrounous-bft-protocols/
https://ssv.network/blog/technology/ssv-into-the-future-asyncrounous-bft-protocols/

	Introduction
	Related Work
	Basics
	System model
	Specification
	Building blocks
	Verifiable Consistent Broadcast Protocol
	Asynchronous Binary Agreement

	Alea-BFT
	Overview
	Detailed description
	Priority queues
	Broadcast Component
	Agreement Component

	Optimizations
	Analysis
	Time Complexity
	Message Complexity
	Communication Complexity
	Estimating

	Correctness
	Implementations
	Evaluation
	Experimental environment
	Performance under different parameters
	Performance under faults
	Real-world implementations

	Conclusion

