
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Harmony: A Congestion-free Datacenter
Architecture

Saksham Agarwal, Qizhe Cai, Rachit Agarwal,
and David Shmoys, Cornell University; Amin Vahdat, Google

https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham

Harmony: A Congestion-free Datacenter Architecture

Saksham Agarwal
Cornell University

Qizhe Cai
Cornell University

Rachit Agarwal
Cornell University

David Shmoys
Cornell University

Amin Vahdat
Google

Abstract
Datacenter networks today provide best-effort delivery—
messages may experience unpredictable queueing, delays, and
drops due to switch buffer overflows within the network. Such
weak guarantees reduce the set of assumptions that system
designers can rely upon from the network, thus introducing
inefficiency and complexity in host hardware and software.

We present Harmony, a datacenter network architecture
that provides “congestion-free” message delivery guarantees—
each message, once transmitted by the sender, experiences
bounded queueing at each switch in the network. Thus, by
design, Harmony ensures that network delays are bounded in
failure-free scenarios, and that congestion-related drops are
eliminated. We establish, both theoretically and empirically,
that Harmony provides these powerful properties with near-
zero overheads compared to best-effort delivery networks: it
incurs a tiny additive latency overhead that diminishes with
message sizes, and achieves near-optimal network utilization.

1 Introduction

Datacenter networks today provide best-effort delivery—it
is hard, or even impossible, to bound queueing and delays
experienced by messages at switches; even worse, messages
may be dropped due to switch buffer overflows, and may need
to be retransmitted multiple times before they are delivered
to their destination. As a result, messages experience unpre-
dictable and variable network delays and congestion-related
drops. Such unpredictability and variability reduces the set
of assumptions that system designers can rely upon from the
network. Thus, to operate correctly on such best-effort de-
livery networks, host hardware and software must embrace
inefficiency and complexity.

We present Harmony, a distributed packet-switched
datacenter network architecture that provides powerful
“congestion-free” message delivery guarantees: each message,
once transmitted by the sender, is guaranteed to experience a
small bounded amount of queueing at each switch along the
path(s) it traverses. Thus, by design, Harmony ensures that

network delays are bounded in failure-free scenarios, and that
congestion-related drops are eliminated. The bounded net-
work delay and zero switch buffer overflow guarantees also
allow Harmony to handle inevitable failures efficiently: since
delayed and/or undelivered messages are limited to hardware
failures, Harmony enables extremely fast failure reaction.

Harmony enables these powerful properties by placing its
intellectual roots in the classical Resource ReSerVation proto-
col (RSVP) [71]. We demonstrate that naïvely using RSVP
on datacenter networks enables bounded queueing at each
switch; however, throughput can be significantly lower than
the optimal. Intuitively, the core reason for the suboptimal
throughput is that the RSVP-based design maintains the in-
variant that each switch observes zero queueing at all times;
enforcing zero queueing leads to non-trivial throughput over-
heads in distributed designs. Harmony combines the idea of
virtual channels [23, 60] with RSVP to orchestrate network
resources among competing messages while maintaining the
invariant that each switch observes bounded, albeit potentially
non-zero, queueing. We establish theoretically that allowing
a small amount of queueing at the switches enables Harmony
to provide bounded queueing and network delay guarantees
while achieving near-optimal throughput.

We evaluate an end-to-end implementation of Harmony
over a testbed, and over simulations across a variety of set-
tings that mix-and-match multiple workloads, traffic pat-
terns, network topologies, network oversubscription, and net-
work loads with and without background (best-effort) traf-
fic. Our evaluation reveals several interesting phenomenon.
First, we find that Harmony achieves network delay and
throughput very close to centralized zero-queue network
designs [55], while providing the benefits of a completely
distributed architecture. Second, rather surprisingly, we find
that Harmony’s tail latency and throughput is comparable or
even better than state-of-the-art distributed datacenter proto-
cols [19, 27, 32, 33, 44, 51] that provide best-effort delivery.
Finally, we find that Harmony performance near-perfectly
matches our theoretical bounds.

Harmony demonstrates that it is possible to rearchitect dat-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 329

102

103

104

Transmission Delay
Propagation Delay
Switching Delay
Max Per-hop Queueing Delay

10 100 400 800 1600
Link Bandwidth (Gbps)

0

10

20

M
icr
os
ec
on

ds

101 103 105 107

Message Size (Bytes)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

10G

100G

400G

800G

1600G

IMC10
Websearch
Facebook KV Store
Facebook Hadoop
Google Search
Google Aggregate

0.5 1 2 4 8 16 32
Switch Capacity (Tbps)

0

50

100

150

200

250

Bu
ffe

r S
ize

 /
 S
wi

tc
h
Ca

pa
cit

y
 (M

icr
os

ec
on

ds
)

Maverick

Trident2 Tomahawk

Tomahawk2

Tomakawk3

Tomahawk4

Figure 1: Motivation for congestion-free datacenter architectures. (left) modern high-bandwidth datacenter networks have tiny unloaded
RTTs, and worst-case per-hop queueing delays can be orders-of-magnitude higher than unloaded RTTs; (center) a large fraction of messages
are smaller than a single BDP for high-bandwidth networks, rendering modern best-effort delivery protocols inefficient; (right) switch buffer
sizes are growing slower than switch capacities, resulting in increasingly more packet drops for best-effort delivery protocols. Discussion in §2.

acenter networks to provide much stronger guarantees than
today’s best-effort delivery networks, while maintaining near-
optimal performance. There are two important caveats, how-
ever. First, our point is not that every application will ben-
efit from Harmony—achieving these guarantees requires a
tiny additive latency overhead (that diminishes with message
sizes) at low and moderate loads; since not all applications
may want to tradeoff such an overhead for strong guarantees
from the network, datacenter networks should simultaneously
support both Harmony and best-effort delivery, allowing ap-
plications to choose between the two depending on desir-
able goals. Second, the current implementation of Harmony
requires support from the network: the two highest priority
levels, a small amount of per-port soft state, support for embed-
ding path identifiers in packet headers, routing based on path
identifiers in packet headers, and support for packet modifica-
tions. While modern (programmable) switch hardware readily
support these functionalities, it remains an interesting ques-
tion whether Harmony guarantees can be achieved without
network support. Finally, Harmony provides network-layer
guarantees: bounded queueing, delays, and zero switch buffer
overflows within the network; additional work is needed at
each layer of systems stack to reap Harmony benefits in terms
of improved host software and hardware. While it may take
longer than the lifetime of a single project to realize systems
that efficiently exploit all the benefits of Harmony, we believe
the potential benefits make it a worthwhile exploration.

2 Congestion-free Datacenters: Motivation

Our exploration of congestion-free datacenter network archi-
tectures is motivated by three datacenter hardware trends1.

Modern datacenter networks have tiny unloaded2 round

1We use Maverick (48-port 10G with 12MB buffers), Trident-2 (32-port
40G with 16MB buffers), Tomahawk (32-port 100G with 22MB buffers),
Tomahawk-2 (64-port 100G with 42MB buffers), Tomahawk-3 (32-port
400G with 64MB buffers) and Tomahawk-4 (64-port 400G with 113MB
buffers) switches [4].

2Defined as the maximum, across all sender-receiver pairs, time taken
for a single MTU-sized packet to go from the sender to the receiver, and a
40-byte control packet to go from the receiver to the sender in the absence of
any other packet in the network. This is a property of the network hardware.

trip times (RTTs); queueing delays and buffer overflow
are the root cause of unpredictability. Network hardware
has improved over the past few years: multi-hundred gigabit
links are already being deployed and Terabit Ethernet de-
ployments are anticipated soon. Thus, datacenter networks
will soon, if not already, support single-digit microsecond
unloaded RTTs between hosts—as shown in Figure 1(left),
transmission delays are reduced to a bare minimum, and un-
loaded RTTs are now sum of tiny propagation delays and
switching delays. Furthermore, emergence and deployment of
high-performance host network stacks [21, 38, 46], hardware-
offloaded network stacks [2, 26, 58], host congestion control
mechanisms [7, 31], and µs-scale host schedulers [21, 37, 53]
have reduced host processing variability to a bare minimum.
On the other hand, as shown in Figure 1(left), the worst-case
queueing delay experienced by a packet is, and will continue
to remain, much larger than unloaded RTTs. Put together,
these trends result in queueing delays and buffer overflows as
the root cause of network unpredictability.

Large bandwidth-delay products (BDPs) in modern dat-
acenter networks make congestion control ineffective.
Network RTTs limited by propagation and switching de-
lays means that network BDP now increases linearly with
link bandwidth. Such rapid increase in BDP means that
most messages in the network now fit within a few BDPs.
Figure 1(center) demonstrates this for several production
workloads [8, 13, 18, 61, 65]: for 100 and 400Gbps links,
more than 54% and 64% of the messages in the websearch
workload are less than 1BDP; for the IMC10 workload, the
corresponding numbers are 82% and 89%; a recent study
from Google presents similar numbers for RPCs within
Google [11]. Modern best-effort delivery datacenter trans-
port protocols [19, 27, 32, 41, 44, 51, 72] advocate to blast
the first BDP worth of packets into the network during the
first RTT; blasting the first BDP worth of data fundamentally
means that even optimal congestion response, one that de-
tects congestion and responds perfectly in one network round
trip, will not have time to converge to the “right” rates for an
overwhelmingly large fraction of the messages resulting in
larger amounts of data in flight, and larger unpredictability in
queueing and network delays.

330 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Larger BDPs and relatively stagnant switch buffer sizes
make packet drops more likely for best-effort delivery net-
works. Rapid increase in BDP and switch capacities coupled
with relatively stagnant switch buffer sizes (Figure 1(right))
also suggest that increasing link bandwidths will make it eas-
ier to overwhelm switch buffers. As a result, best-effort deliv-
ery networks will experience an increasingly larger fraction of
packets dropped within the network, resulting in even higher
network unpredictability and reduced network throughput.

3 Harmony
This section presents Harmony, a distributed packet-switched
datacenter architecture that guarantees bounded queueing at
each switch in the network, while achieving near-optimal
network throughput. We describe the Harmony protocol in
§3.1, provide low-level details on Harmony design in §3.2,
and establish theoretical properties of Harmony in §3.3.

3.1 Harmony Protocol
Harmony ensures bounded queueing at each switch by plac-
ing its intellectual roots in the classical Resource ReSerVation
protocol (RSVP) [70,71], and integrating it with another clas-
sical idea: virtual channels [23, 60].

We outline the Harmony protocol below, followed by an
intuitive description of how it guarantees bounded queueing
while achieving near-optimal throughput. Harmony protocol
uses the following two constructs: host slots and virtual links.

Host slots. Each sender and receiver maintains K slots, each
allowing a message to be sent and received using bandwidth
B/K, where B is the access link bandwidth. Importantly, each
slot can be allocated to at most one message; however, a
message may be allocated more than one slot (that is, a sender-
receiver pair may simultaneously use as many as K slots to
send and receive a message).

Virtual links. Each physical link in the network is logically
decomposed into virtual links, each of bandwidth B/K. Each
virtual link can be allocated to at most one message, allowing
the message to be transmitted using bandwidth B/K; however,
a message may be allocated more than one virtual link.

Harmony protocol. The Harmony protocol is extremely
simple, and works as follows:

• Each sender, immediately upon a message arrival, sends a
request control packet to the receiver.

• Each receiver keeps track of its free slots. Upon receiving
a request, if the receiver has one or more free slots, it
assigns one of the slots to the message, updates the number
of free slots, and sends a rsvp to the corresponding sender.
If the receiver has no free slots, it adds the request to a list
of pending_requests and starts a timer (using its local
clock) for the request. Whenever a slot becomes free, the
receiver picks the request with the largest timer value,

assigns the slot to the message, updates its number of free
slots, and sends a rsvp to the sender for this request.

• Whenever the timer for a request reaches δadmission
time, the receiver removes the request from the
pending_requests list and sends a reject to the sender
indicating that the receiver is unable to admit the message
due to high load at the receiver.

• Each switch maintains, for each of its links, the number
of free virtual links. Upon receiving a rsvp, the switch
uniform randomly chooses a free outgoing virtual link along
one of the shortest paths to the sender, embeds its identifier
into the rsvp header, updates the number of free virtual
links for the port, and forwards the rsvp on to that link. If
no free virtual link is available, the switch transforms the
rsvp into a reject packet, and sends it towards both the
sender and the receiver using information in rsvp headers.
reject traverses the same set of switches that forwarded
rsvp so that corresponding links can be freed. Importantly,
only shortest paths are used to ensure deadlock freedom.

• Each sender also keeps track of its free slots. Upon receiving
a rsvp, if the sender has one or more free slots, it assigns
one of the slots to the message, updates the number of free
slots, and starts transmitting the message at a slot bandwidth.
Once the message is finished, the sender sends a complete
and marks the corresponding slot as free. Upon receiving
a rsvp, if no free slots are available, the sender sends a
reject to the receiver. All data and control packets are
source routed using switch identifiers in the rsvp header.

• Each switch, upon receiving the reject or complete,
marks the corresponding virtual link as free (using identi-
fiers in the header), and forwards it to the next hop;

• Each receiver, upon receiving reject or complete, marks
one of its slots as free; for complete, the receiver also
sends a complete to the sender indicating completion of
message transmission.

• Each sender, upon receiving a reject or complete, marks
such for the message.

We describe additional design details for Harmony, including
fast failure reaction, handling background (best-effort) deliv-
ery traffic, prioritization mechanisms for isolating messages
from control packets and best-effort delivery traffic, optimiza-
tions like multi-slot allocation to individual messages, etc.,
in the next subsection. Below, we provide an intuitive de-
scription on how Harmony guarantees bounded queue at each
switch and how it uses multiple virtual links and host slots to
achieve near-optimal throughput. Figure 2 shows an example.

Intuitively understanding the invariants maintained by Har-
mony. Harmony maintains two invariants. First, for each out-
going link at each switch, the sum of arrival rates of all mes-
sages to be transmitted on the outgoing link is no more than
the link bandwidth; and second, at all times, a small bounded

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 331

1 2 3 4 5 6
: 1-> 4 : 2-> 5

Left Core Right Core

: 3-> 6

1 2 3 4 5 6
: 1-> 4 : 1-> 6

: 3-> 6

Left Core Right Core

2 3 4 5 61
: 1-> 4 : 1-> 6: 2-> 5

: 3-> 6

Left Core Right Core

Figure 2: Understanding benefits of virtual links and host slots. (left) without multiple virtual links, network may be underutilized due
to switches making uncoordinated decisions; and (center) without multiple host slots, network may be underutilized due to hosts making
uncoordinated decisions; (right) using multiple virtual links and host slots, Harmony alleviates network underutilization. Discussion in §3.1.

number of messages use any link in the network. The first
invariant ensures zero persistent queueing since the rate at
which messages (destined to a particular outgoing link) arrive
is at most the link bandwidth. However, while each message
uses a different virtual link, multiple messages may now share
a physical link; thus, data from multiple messages may arrive
at the switch (via different virtual links) at the same time
resulting in transient queueing. The second invariant ensures
that transient queueing is bounded since a physical link is
shared by at most as many messages as the number of virtual
links (in §3.3, we will bound worst-case queueing in terms of
link bandwidth, number of virtual links and maximum number
of switches along any network path). Put together, these two
invariants are sufficient for Harmony to guarantee bounded
queueing at each switch in the network.

Intuitively understanding the necessity of virtual links. Virtual
links in Harmony design are not merely a heuristic—they
are key to Harmony achieving near-optimal throughput. In-
tuitively, in the above design, switches make decisions on
forwarding rsvp based on purely local information, with-
out any view of the state of links at neighboring switches.
Switches making such uncoordinated decisions could lead
to requests being rejected even if there is a path available
in the network. For instance, consider the example shown
in Figure 2(left): here, green message is using a reserved
path 1 → 4; when receiver 5 sends a rsvp toward 2, its leaf
switch uniform randomly chooses the left spine switch and
forwards the rsvp. Since there is no unreserved outgoing link
from the left spine switch to 2, the rsvp will be rejected. Had
the leaf chosen the right spine switch, it would have success-
fully reached sender 2, improving network throughput. As
shown in Figure 2(right), virtual links help alleviate unnec-
essary rsvp rejections by enabling fine-grained sharing of
network resources. Intuitively, since an rsvp message can be
forwarded along any of the virtual links, and there are more
virtual links than physical links, the probability of an rsvp
being unnecessarily rejected reduces significantly.

Intuitively understanding the necessity of host slots. Host slots,
on the other hand, help alleviate network underutilization due
to hosts making uncoordinated decisions. Specifically, since
receivers do not have information about the network and/or

sender state, an incorrect choice on messages to send rsvp
for can lead to suboptimality: for the last rsvp sent by the
receiver, it may receive a reject if there is no available
path to the sender. This, in turn, will result in suboptimal
throughput. An example is shown in Figure 2(center): here,
receiver 6 has two outstanding requests, one from sender 1
(red) and one from sender 3 (violet). The receiver, however,
can choose only one message to send rsvp to; if the receiver
sends a request for 1, it will receive a reject since there
is no unreserved path between 1 and 6. However, ideally the
receiver should have selected 3 for request since there is an
unreserved path between 3 and 6. As shown in Figure 2(right),
with multiple host slots, receivers can now send rsvp for
multiple messages again increasing the network throughput.

Intuitively understanding the benefits of δadmission. Harmony
design allows requests to wait for time δadmission at the receiver
before they can be rejected. This parameter enables Harmony
to handle bursty traffic and/or incasts—with higher δadmission
values, Harmony will be able to admit larger amounts of bursty
traffic and/or larger incasts. Network operator can choose
the right δadmission to accommodate the desired bursty traffic
and/or incast within Harmony.

3.2 Harmony Design Details
We now provide additional details on Harmony design.

Handling control packets. Harmony design uses a number
of control packets—{request, rsvp, reject, complete}.
These control packets utilize non-zero bandwidth, and could
potentially interfere with message transmission at switches.
To minimize impact of control packets on message transmis-
sions, Harmony uses priorities, a standard technique for traffic
isolation in modern datacenters [19, 27, 64]. Specifically, all
messages are transmitted using the highest priority, all rsvp
and complete messages are also transmitted using the high-
est priority, and all other control packets are transmitted using
the second highest priority. In [5], we provide details on how
this prioritization mechanism maintains Harmony queueing
and delay bounds; intuitively, rsvp and complete packets
transmitted using the highest priority does not impact mes-
sage queueing much: these are tiny packets, and each link
forwards a small number of rsvp and complete packets

332 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(in the worst-case, as many as the number of virtual links).
Furthermore, since Harmony bounds the switch buffer oc-
cupancy due to data packets at all times, and since control
packets are small, Harmony can absorb large number of low-
priority control packets within switch buffers—for instance,
16− 32MB buffer space in switches today can hold up to
∼400,000−800,000 concurrent 40-byte control packets per
switch; even with Harmony’s worst-case queueing bound for
data packets, we can still sustain ∼300,000−700,000 con-
current control packets per switch. To ensure that low-priority
control packets are not starved by data packets, Harmony also
reserves a small amount of bandwidth at each host and switch
for control packet transmission.

Exploiting bounded network delays in failure-free scenarios
for fast reaction to failures and rejects. Harmony eliminates
congestion-related drops in failure-free scenarios. However,
inevitable hardware failures can still lead to data and control
packet drops. Harmony uses the key insight that all data pack-
ets in Harmony traversing a bounded-queue path means that
receivers know exactly when to expect data packets corre-
sponding to a rsvp message in a failure-free scenario; sim-
ilarly, senders know exactly when to expect complete or
rsvp message in a failure-free scenario. Indeed, absence of
any of these events must imply a hardware failure or a reject.
Harmony exploits such a predictability in failure-free scenar-
ios to trigger fast retransmission mechanism—as soon as a
sender or a receiver infers a failure or a reject has happened,
they trigger fast retransmission (receiver sending a failure
control packet to the sender, and/or sender retransmitting data
using a new request or using best-effort delivery interface,
as described below).

Exploiting bounded network delays in failure-free scenarios
for efficient multi-slot allocation to individual messages. To
ensure high utilization in practice, Harmony assigns multi-
ple host slots and virtual links to a single message when a
receiver has less than K active messages. A message that
has been allocated at least one slot is marked as an active
message. Whenever receiver has a free slot and no pending
requests, an active message is allocated additional slots; to
ensure that additional slot allocation does not block future
requests, additional slots are allocated for one BDP worth
of data only. Harmony receivers always send one rsvp per
slot, independent of which message the rsvp is for. When
a new rsvp message is received by the sender for an active
message, an additional virtual path of bandwidth B/K has
been reserved and the sender can now send the message us-
ing an additional slot (increasing the transmission rate for
this message by B/K). This ensures correctness, while also
maximizing network throughput in practice [5].

Exploiting bounded network delays in failure-free scenarios
for efficiently handling best-effort delivery traffic. Harmony
can be integrated with any existing datacenter transport mech-
anism to handle best-effort traffic. The only constraint is that

bounded-queue traffic and control packets must be isolated
from best-effort traffic; Harmony thus uses the third priority
level for best-effort traffic. Thus, the only impact best-effort
traffic has on Harmony’s timely delivery or bounded queueing
properties is that latency can increase by as many packet trans-
mission times as the number of switches in the path—each
switch can incur one extra packet transmission time due to
non-preemptive nature of today’s switches (Harmony packet
will be transmitted immediately after ongoing transmission
of best-effort traffic packet).

We present additional details on Harmony design such
as handling drops of control packets under failures, utilizing
predictable network delays to optimize Harmony performance
via pipelining rsvp packets, handling packet reordering, etc.,
in the technical report [5].

3.3 Harmony Theoretical Properties
We now establish theoretical properties of Harmony under a
model similar to previous studies [19, 22, 45, 47, 55, 62].

Network model. For our theoretical analysis, we assume full-
bisection bandwidth datacenter networks; this assumption is
purely for ease of theoretical analysis—Harmony guarantees
bounded queueing even for oversubscribed networks [5]. We
model the network as a N ×N crossbar switch, with N inputs
(sender hosts) and N outputs (receiver hosts). Each input has
a buffer of infinite capacity, and is partitioned into N virtual
output queues (VOQ); each output also has a buffer of infinite
size. The virtual output queue VOQi j holds packets arriving
at input i and are destined for output j. It is well-known that,
under the above assumptions, datacenter network transfers
can be modeled as a bipartite matching problem [9,19,27,55].

We assume that time is slotted. Packets are transferred from
input buffers to output buffers in scheduling cycles. Each
scheduling cycle consists of a matching phase and a data
transfer phase. In the matching phase, an algorithm computes
a matching between inputs and outputs in a manner that no
input may be matched to more than one output, and no output
is matched to more than one input. For each input i and output
j matched to each other, one MTU-sized packet is removed
from VOQi j and one MTU-sized packet is put into the output
buffer of j during the data transfer phase (assuming VOQi j
is non-empty). The network is said to have a speedup of s if,
during each time slot, there are s scheduling cycles.

Let the average rate of packet arrival at VOQi j be λi j. The
input traffic is said to be admissible if ∑i λi j < 1 and ∑ j λi j <
1, that is, the load at each input and output is less than 1.

Fundamental limits. It is known that full-bisection band-
width networks can achieve 100% throughput for any admis-
sible input traffic as long as the underlying protocol computes
a so-called maximum matching [22]. However, computing
a maximum matching typically requires complex implemen-
tations; thus, existing switch fabrics and network protocols
typically compute a so-called maximal matching [19, 27, 55].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 333

A classical result establishes that any maximal matching based
protocol requires a network with a speed up of 2 to achieve
100% throughput [22, 45] for all admissible input traffic.

Theoretical analysis for Harmony. We now provide bounds
on queueing, network delays and throughput for Harmony.

Theorem 3.1 Let #H be the number of switches along the
longest path (across all sender-receiver pairs), K be the num-
ber of virtual links per physical link, B be the minimum band-
width across physical links, and p be the maximum packet
size. Then, maximum queueing observed by any packet at any
switch in Harmony is bounded by

QHarmony ≤ #H · (K −1) · p

Moreover, the total queueing delay (across all switches) in-
curred by any packet in Harmony is bounded by:

δqueueing ≤
#H · (#H+1) · (K−1)

2
· p

B
(1)

We provide the full proof in [5]. Intuitively, given that we have
K virtual links sharing the physical link, we would expect a
queue bound of (K −1) · p; however, our proof demonstrates
that, in the worst-case, packet transmissions across multiple
switches can (mis)align in a manner that the worst-case queue-
ing bound worsens with more switches along the path. The
bound on queueing delay follows by aggregating the precise
amount of queueing delay at each switch along the path. These
bounds hold independent of the underlying network topology
(since they are parameterized by number of switches along
the path and K).

Let S⋆ be the minimum buffer size across all switches, let
#ℓ be the number of ports at the switch, and let K⋆ = S⋆/(#H ·
p ·#ℓ). Then, the first part of the theorem shows that for K ≤
K⋆, Harmony will ensure that queueing at each switch never
grows beyond the switch buffer size, and that congestion-
related drops are eliminated. For modern datacenter hardware,
K⋆ turns out to be large enough for all practical purposes.
For instance, for a datacenter organized around a FatTree
topology using 100Gbps Tomahawk switches (32 ports and
22MB switch buffer size) and with 1.5KB packet sizes, we get
K⋆ ≈ 91. For a FatTree topology with 400Gbps Tomahawk-4
switches (64 ports and 113MB buffers), we get K⋆ = 235.

Theorem 3.1 not only guarantees that congestion-related
drops are eliminated for K ≤ K⋆, but also bounds the queue-
ing delay seen by any packet: for the above two topologies
and for K = 8, we get that δqueueing = 12.6µs and δqueueing =
3.15µs, respectively. Thus, Harmony guarantees tiny worst-
case queueing delays. The bound on queueing delays can be
trivially used to bound the delay between the sender starting
to transmit a message m (upon receiving an rsvp) until it re-
ceives the complete for the message [5]. Extending Harmony
design to guarantee end-to-end delays (that is, including pro-
cessing delays at the sender and at the receiver, and queueing
delays at the sender) is an intriguing open question (§6).

Harmony uses a distributed protocol for allocating host
slots and virtual links to senders and receivers, with hosts and
switches making decisions based on purely local information.
It, thus, becomes an interesting question to characterize the
quality of successful allocations—requests for which the re-
ceiver sends a rsvp that is not rejected within the network.
The following theorem characterizes the slot and virtual link
allocation efficiency of Harmony for a full-bisection band-
width leaf-spine topology with respect to an ideal centralized
algorithm that performs K maximal matching for allocating
host slots, and perfectly allocates virtual links to matched
slots (see [5] for a basic extension of [55] that realizes such
an ideal centralized algorithm). Let Θ⋆ denote the number of
successful slot allocations by such an ideal algorithm.

Theorem 3.2 Let K be the number of virtual links per physi-
cal link and C be the number of core switches in the topology.
Then, the expected number of successful slot allocations by
Harmony, randomized over choice of rsvp forwarding deci-
sions, is:

E[ΘHarmony] = f (K,C) ·Θ⋆, where, (2)

f (K,C) =
∑

KC
i=0 min(i,K)

(KC
i

)(1
C

)i (
1− 1

C

)(KC−i)

K
We provide a full proof in Harmony technical report [5]. At a
high-level, our proof for Theorem 3.2 uses an argument sim-
ilar to the classical balls-and-bins problem [59] to establish
the slot allocation efficiency in Harmony. This result, simi-
lar to most prior analytical results [19, 55], assumes two-tier
full-bisection bandwidth leaf-spine network topology; it is an
intriguing open question to generalize our bounds to FatTree,
expander-based and oversubscribed network topologies. Nev-
ertheless, this result provides us several insights on the behav-
ior of Harmony. First, for the special case of K = 1 (which is
roughly equivalent to RSVP adapted to datacenter networks),
the above expression leads to E[ΘHarmony|K=1] = (1−1/e)Θ⋆,
where e ≈ 2.72 is base of the natural logarithm. That is, for
K = 1, the slot allocation efficiency is merely ∼63% of the
optimal. Second, Figure 4 confirms the intuition discussed
earlier: increasing the number of virtual links and host slots
(increasing K) results in significantly improved efficiency of
Harmony, converging to the optimal Θ⋆. Harmony evalua-
tion in §5.1 demonstrates that, in practice, Harmony achieves
significantly better performance even for small values of K.

4 Harmony Implementation
We have done prototype implementation of Harmony using
readily available programmable switches and DPDK-based
hosts. This section provides some of the most interesting
implementation details. We provide more details in [5].

The Harmony interface. Harmony currently implements
a RPC interface [38, 66]: messages are submitted to a sub-
mission queue and the message delivery status is updated in

334 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ingress Ports Parser Ingress Pipeline Traffic Manager

DlinkCounter[]

UplinkQ[]

Egress Pipeline Egress Ports

Stage I Stage II

Classify Packets
Into

request/
rsvp/ reject/

complete/ data

Find Direction:

Find whether to
forward rsvp on an

uplink or a
downlink

Find Egress Port:

 Pop an entry from
UplinkQ

Or
Decrement

DlinkCounter[]

Stage III

Append Switch
ID

Append switch ID
if the switch is

Agg/Core

Convert to reject

1. Exchange src and
dst addresses

2. Set Egress port to
Ingress Port

3. Set pkt type to
reject

Stage IV

Found a free
egress port?

Yes

No

Figure 3: Harmony can be realized using programmable switches supporting PSA architecture. More description on §4.

1 2 4 8 16 32 64 128
K

0.5

0.6

0.7

0.8

0.9

1.0

[ΘHarmony]
Θ *

Figure 4: Harmony’s performance in terms of successful host slot
allocations—E[ΘHarmony]—converges to that of an ideal centralized
maximal matching based algorithm with increasing values of K. We
use a 64-port leaf-spine full-bisection bandwidth topology with 32
core switches in this figure.

the completion queue (using a complete or failure flag).
The only difference between Harmony and standard RPC in-
terfaces is that the completion queue in Harmony has one
additional flag: reject, which indicates that Harmony is un-
able to guarantee bounded queueing for that message (e.g.,
due to failures, high receiver load, high network load, etc.). If
the flag is either reject or failure, the message can be re-
submitted using the Harmony interface, or using the standard
best-effort delivery interface.

Harmony host implementation. Harmony maintains the in-
variant of bounded queueing at switches thus alleviating the
need for congestion control on the fast path at hosts; as a
result, Harmony can be easily integrated with existing high-
performance userspace or in-kernel network stacks [21,38,46],
as well as existing accelerator based network stacks [2,26,58].
To implement Harmony-specific functionality, much of our
host implementation uses modules from existing network
stacks. For example, generating and responding to rsvp mes-
sages is similar to the grant mechanism in receiver-driven
transport protocols [19, 27, 32, 33, 51]. As another example,
Harmony design requires senders to transmit messages at a
rate that is dependent on the number of slots allocated to that
message; such a rate limit functionality at the sender is al-
ready implemented in almost all network stacks. Overall, our
Harmony host implementation uses ∼3107 lines of code.

Harmony switch implementation. Harmony switch imple-
mentation uses programmable switches [3]. The data plane

of these switches employs Portable Switch Architecture [3],
and is composed of a parser, an ingress and an egress pipeline
and a traffic manager (Figure 3). Upon a packet arrival on an
ingress port, Harmony parser extracts the header, identifies
the packet type (rsvp, reject, complete, or data packet),
and forwards the packet to the ingress pipeline. The ingress
pipeline decides the egress port to forward the packet to,
embeds switch identifiers within the packet header (using
techniques from path tracing mechanisms on programmable
switches [67, 68]), and then passes the packet to the traffic
manager (which then forwards the packet to the desired egress
port). Harmony’s implementation of the ingress pipeline
uses two data structures: A FIFO UplinkQ, and a counter
DlinkCounter. UplinkQ maintains the available virtual
links which can be reserved by rsvp packets while traversing
uplink (toward the spine, or the core switch). DlinkCounter
maintains the number of reserved virtual links at the downlink
path (away from the core switches). In addition, Harmony
switches maintain a small constant amount of state to avoid
blocking of virtual links during control packet drops [5].

5 Harmony Evaluation

We now evaluate Harmony performance over a small-scale
testbed (§5.1), and over large-scale packet-level simulations
(§5.2). We start by describing our evaluation setup.

Network Topologies. We use a testbed with 8 servers orga-
nized along a two-tier topology with 10Gbps links (as shown
in Figure 5a). For our simulations, we use the same default
setup as in [9, 19, 27, 44]: the standard 144-node leaf-spine
topology with 9 top-of-rack (ToR) switches, each connected
to 16 hosts with 100Gbps access link bandwidth. The propa-
gation and switching delay are 200ns and 450ns, respectively.
We use switch buffer capacity of 32MB. The unloaded RTTs
and bandwidth-delay product values for this topology are
4.6µs and 56KB, respectively. We also use oversubscribed
and FatTree topologies. For the former, we vary the oversub-
scription (1:1 to 2:1 and to 4:1) in our leaf-spine topology by
correspondingly reducing the leaf-spine link bandwidths; we
reduce the load based on oversubscription factor to ensure that
the traffic remains admissible. Our three-tier FatTree topol-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 335

1
10Gbps

10Gbps

2 3 4 5 6 7 8

(a) Testbed Topology

1 2 4 8 16 32 64 128
Slowdown

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

d

(b) Feasible region

0.4 0.5 0.6
Input Load

5

10

15

Sl
ow

do
wn

 S
pr
ea

d Implementation Simulation

(c) Slowdown Spreads

8KB 32KB 128KB 512KB
RPC Sizes

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

d

Max Slowdown = 10
Max Slowdown = 20
Max Slowdown = 30
Max Slowdown = 40

(d) Varying RPC Sizes

Figure 5: Evaluation of Harmony implementation on a small-scale testbed. (a) The testbed used in this evaluation; (b) Harmony’s feasibility
region in terms of achievable delays and maximum sustainable loads (the green dotted line represents Harmony’s delay bound for this topology);
(c) Harmony evaluation over the testbed almost perfectly matches the theoretical bounds, as well as simulation results in Harmony’s packet-level
simulator; (d) for a fixed delay bound, Harmony sustains larger loads with larger RPC sizes (as expected). Discussion in §5.1.

ogy contains 1024 hosts, 64 core switches, 128 aggregation
switches, 128 ToRs and 100Gbps access link bandwidth. We
use the same propagation delay, switching delay and switch
buffer size as above. The unloaded RTT and bandwidth-delay
product for this topology are 7.6µs and 93KB, respectively.

Evaluated schemes. Existing distributed datacenter trans-
port protocols are not designed to achieve congestion-free
communication; thus, comparison with Harmony would be
unfair to any choice of protocols. Nevertheless, we eval-
uate Harmony performance against state-of-the-art sender-
driven (HPCC [44]) and receiver-driven (dcPIM [19]) dat-
acenter transport protocols. We use the default parameters
from HPCC and dcPIM papers. We also extend the central-
ized Fastpass scheduling algorithm to support message-level
scheduling3 to provide an ideal baseline for Harmony. Unless
specified otherwise, we use the following values for Harmony
parameters: K = 8 and δadmission =∼63µs (a factor 5 of Har-
mony worst-case queueing delay bound); we also perform
sensitivity analysis against these two Harmony parameters.

Workloads and traffic patterns. We used 128KB RPCs (as
in [49, 72]) as our default workload since it allows us to pro-
vide in-depth insights due to each message having the same
latency bound, but also present results for RPC sizes varying
from 0.5KB to 512KB. For evaluation of Harmony with back-
ground (best-effort) traffic, we use a mix of RPCs (for traffic
desiring congestion-free guarantees), and the standard web-
search datacenter workload [9, 19, 27, 44] (for the best-effort
traffic). We use the standard methodology of generating mes-
sage arrival times using Poisson arrival process [8,9,19,27,44]
and use an all-to-all traffic pattern by default. To avoid degen-
erate scenarios, we ensure that the generated load for each
sender and each receiver is less than 1 for every δadmission
duration of time.

Evaluation metrics. Harmony guarantees bounded queueing

3The original Fastpass algorithm performs per-packet scheduling; this
provides delay guarantees for each individual packet, but not for each mes-
sage as in Harmony. We make two extensions: (a) to enable message-level
delay guarantees, we ensure that all packets for a message are scheduled
in consecutive timeslots; and (b) to enable a fair comparison in terms of
maximum sustainable load, we allow a message request to wait for δadmission
time before it is rejected.

at each switch in the network, thus ensuring bounded queue-
ing delays for each message. However, Harmony does not
bound processing delays at the sender and at the receiver, and
queueing delays at the sender. Nevertheless, in our evaluation,
we use Harmony queueing delay bound as the overall end-to-
end bound. We use two metrics—maximum sustainable load
(defined as the input load for which no message is rejected)
and latency. For latency, we use the standard slowdown met-
ric, defined as the ratio of the message completion time under
loaded and unloaded scenarios; we present slowdown spread—
{minimum, mean, 99%-ile, 99.9%-ile, and maximum}—using
lower whisker, lower box edge, mid-line in the box, upper box
edge, and upper whisker, respectively.

5.1 Harmony Testbed Evaluation
We start with evaluation of Harmony implementation over
a small-scale testbed. Our testbed results are primarily to
demonstrate the feasibility of Harmony—it is an extremely
simplified setup with no contending applications, dedicated
cores to ensure minimal host processing delays, no host con-
gestion, etc.; more work is needed to evaluate end-to-end
performance of Harmony over large-scale deployments.

Our first result, shown as the shaded region in Figure 5b,
shows that Harmony enables a unique trade-off space between
the delay bound and maximum sustainable load. Specifically,
the two parameters in Harmony—K and δadmission—allow it
to tradeoff the delay bound for higher maximum sustainable
loads. Here, we vary K and δadmission, and plot the pareto curve
on the observed worst-case delay and sustainable loads. This
tradeoff essentially follows the intuition discussed earlier—
with a larger bound on target message delay (via increasing
K and δadmission), Harmony sustains higher loads. Figure 5d
shows this tradeoff for varying RPC sizes: we observe that
Harmony can sustain as high as 0.9 load for 128KB RPCs,
and 0.65 load for 8KB RPCs.

We also use our testbed to verify the simulator fidelity; in
particular, we incorporate the measured testbed parameters
(link propagation, switching and average PCIe delays) into
our simulator and show the corresponding results alongside
the testbed results in Figure 5c. The testbed latency results
near-perfectly match our simulator (which, in turn, matches
the analytical bounds in Theorem 3.1 and Theorem 3.2).

336 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4 8 16 32 64 128
Slowdown

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ax

 S
us

ta
in

ab
le

 L
oa

d

Fastpass Harmony

25 50 100 200 400 800 1600
Message Completion Time (μs)

(a) Feasible region

0.4 0.5 0.6
Input Load

2

4

8

16

32

Sl
ow

do
wn

 S
pr
ea

d

Fastpass
Harmony

Harmony Latency Bound

(b) Slowdown spreads

0.4 0.5 0.6
Input Load

0.25
0.5

1
2
4
8

16

Sl
ow

do
wn

 S
pr

ea
d

Fastpass Network Delay
Fastpass Host Delay

Harmony Network Delay
Harmony Host Delay

(c) Harmony latency breakdown

Figure 6: Evaluation of Harmony and Fastpass using large-scale simulations. Harmony achieves feasibility region surprisingly similar to
Fastpass—for any given latency bound, it can sustain loads as high as Fastpass (and vice versa). Discussion in §5.2.

5.2 Harmony Large-Scale Simulation

We now evaluate Harmony over simulations, both in absence
(Figure 6) and in presence (Figure 7) of best-effort delivery
traffic. For the former, we compare Harmony with Fastpass;
for the latter, we compare Harmony with HPCC and dcPIM.

[Figure 6, no best-effort delivery traffic]. Figure 6a shows
maximum sustainable loads for varying target delay bound (or,
slowdown) for both Harmony and Fastpass; each point in the
feasibility region of Figure 6a is achieved using a combination
of K and δadmission.

We observe that, despite using a purely distributed design,
Harmony’s feasibility region closely matches that of Fastpass.
This result may be surprising. Digging deeper, we found that
this result is due to Fastpass and Harmony making signifi-
cantly different tradeoffs. Fastpass enforces zero queueing
at each switch by transmitting each message on a dedicated
pre-reserved path—the arrival rate for each message thus per-
fectly matches the outgoing bandwidth available for that mes-
sage at each switch. However, this invariant—enforcing zero
queueing at each network switch—incurs high overheads for a
distributed protocol like Harmony. Instead, the key insight in
Harmony design is that it is feasible to achieve bounded (but
not necessarily zero) queueing at each switch using a com-
pletely distributed design, while maintaining high throughput.
Figure 6c provides more insights on how Harmony achieves
performance so close to an ideal centralized architecture even
with non-zero queueing at switches. Essentially, by enabling
bounded queueing (rather than zero queueing) within the net-
work, Harmony significantly reduces the amount of time a
message spends waiting at the sender before it can be sched-
uled and can start transmitting packets; this reduced host-side
delay easily compensates for the increased queueing delay in
the network when compared to Fastpass. Overall, this turns
out to be a good tradeoff—Harmony, despite its distributed
nature, achieves delays and maximum sustainable loads com-
parable to an ideal centralized datacenter architecture.

Harmony does make a different tradeoff compared to Fast-
pass: as shown in Figure 6b, it achieves ∼2× higher mean
and ∼1.3× higher P99 latencies, while enjoying the benefits
of a distributed datacenter architecture.

[Figure 7, Harmony performance with best-effort traffic].
We now discuss Harmony performance for scenarios where

congestion-free traffic (using 128KB RPCs) coexists with
best-effort delivery traffic (generated using websearch work-
load). We vary the load of congestion-free traffic from 0.3 to
0.5, and respectively vary the load of co-existing best-effort
delivery traffic from 0.3 to 0.1, such that the total offered load
is 0.6 and hence remains sustainable for all protocols.

Figure 7 shows a surprising result: when compared to ex-
isting state-of-the-art sender-based and receiver-based best-
effort delivery protocols, Harmony sustains similar or higher
loads for best-effort traffic (with varying congestion-free traf-
fic load, as shown in top row), achieves significantly better tail
latencies for congestion-free traffic, and significantly better
mean and tail latencies for best-effort traffic! Upon digging
deeper into this surprising result, we found the following two
interesting phenomena.

First, as discussed earlier, Harmony ensures that the rate at
which congestion-free traffic arrives at any switch perfectly
matches the bandwidth available to forward this traffic; as a
result, congestion-free traffic incurs a small amount of queue-
ing at each switch. The result is that, despite lower priority,
best-effort delivery traffic experiences minimal contention
with congestion-free traffic in Harmony. For other protocols,
however, these two traffic create queueing for each other re-
sulting in lower sustainable loads and higher latencies. The
problem exacerbates at higher loads.

Second, for HPCC, we observed that RPC traffic creates
congestion in the network core despite a full-bisection band-
width topology. This is because the transmission time for a
128KB RPC on a 100Gbps link is ∼10.2µs, which is ∼2.2×
the unloaded network RTT. Thus, even a small amount of
queueing can result in congestion control being ineffective—
by the time congestion signal arrives, the network condition
has changed. For dcPIM, we found that 128KB RPCs were
larger than a single BDP and thus required matching before
they can start transmitting; this leads to larger mean and tail
latencies. Harmony avoids both of these problems—it ensures
congestion-free network for the RPC traffic, and minimizes
queueing experienced by best-effort delivery traffic.

[Figure 8, Sensitivity analysis for Harmony]. Figure 8
demonstrates that Harmony performance is robust across all
evaluated scenarios—as long as the load is sustainable, Har-
mony achieves low tail slowdown and bounded worst-case
message delays. We discuss three important observations.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 337

0.1 0.2 0.3 0.4 0.5 0.6
Congestion-free Traffic Load

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l S
us

ta
in

ab
le

 L
oa

d
HPCC

Best-Effort Traffic Throughput
Congestion-free Traffic Throughput

(a) Sustainable loads using HPCC

0.1 0.2 0.3 0.4 0.5 0.6
Congestion-free Traffic Load

0.0

0.2

0.4

0.6

0.8

1.0

To
ta
l S
us
ta
in
ab
le
 L
oa
d

dcPIM

Best-Effort Traffic Throughput
Congestion-free Traffic Throughput

(b) Sustainable loads using dcPIM

0.1 0.2 0.3 0.4 0.5 0.6
Congestion-free Traffic Load

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l S
us

ta
in

ab
le

 L
oa

d

Harmony

Best-Effort Traffic Throughput
Congestion-free Traffic Throughput

(c) Sustainable loads using Harmony

0.3 0.4 0.5
Congestion-free Traffic Load

1
2
4
8

16
32
64

128

Sl
ow

do
wn

 S
pr

ea
d

HPCC
dcPIM

Harmony
Harmony Latency Bound

(d) Slowdown spread
(Congestion-free traffic)

0.3 0.4 0.5
Congestion-free Traffic Load

2

4

6

8

M
ea

n
Sl
ow

do
wn

(e) Mean slowdowns
(Best-effort delivery traffic)

0.3 0.4 0.5
Congestion-free Traffic Load

0

10

20

30

p9
9
Sl
ow

do
wn

HPCC
dcPIM
Harmony

(f) 99p slowdowns
(Best-effort delivery traffic)

Figure 7: Evaluation of Harmony with background (best-effort delivery) traffic. Figures in the top row show maximum sustainable loads
for traffic desiring best-effort delivery (lighter color) and traffic desiring congestion-free guarantees (darker color) for HPCC, dcPIM and
Harmony. Bottom row shows the slowdown spread for congestion-free traffic (left), mean latency for best-effort traffic (center) and tail latency
for best-effort traffic (right).

First, as expected, Harmony sustains low load for small-
sized RPCs; for instance, Figure 8a shows that when RPC
size is 4KB (that is, each RPC is ∼14× smaller than the
network BDP), Harmony requires a target delay that is 20×
larger than the unloaded RTT to sustain 0.5 load. For such
small RPCs, modern best-effort delivery datacenter transport
protocols will simply send all the packets within the first
RTT, rendering congestion control essentially irrelevant. As
a result, depending on the network load, network topology,
oversubscription ratios, load balancing mechanisms and/or
traffic patterns, queueing delays may or may not dominate
network delays; thus, Harmony may or may not be the best
choice for such small transfers. Recent studies from datacen-
ter networks suggest that RPCs are much larger in practice
(e.g., a recent study from production datacenters demonstrates
that median RPC size is greater than 40KB [11]; similar ob-
servations have been made in prior studies [49, 72]); for such
real-world scenarios, Harmony guarantees small worst-case
delays while sustaining high loads.

Second, Harmony maintains its performance for oversub-
scribed topologies. This is not surprising—as discussed in
§3.3, for all sustainable loads, Harmony delay bounds hold
even for oversubscribed topologies. This is because each
message is still transmitted over a dedicated set of virtual
links. Moreover, the worst-case queueing delay bounds re-
main near-identical with increasing oversubscription because
(i) the maximum possible per-hop queueing decreases; and,
(ii) the per-packet transmission delay increases, by roughly
the same amount (the delay bound now uses the minimum
link bandwidth in the topology). These two factors essentially
balance out resulting in near-identical delay bound. Finally,
since load is now defined with respect to the minimum link
bandwidth in the topology, Harmony is also able to sustain

similar loads as in full-bisection bandwidth topologies.
We present results for sensitivity analysis of Harmony

performance over the two Harmony parameters—K and
δadmission—in [5]. To briefly summarize, the results confirm
the intuition from our theoretical analysis: with increase in
K, Harmony delay bounds are higher but maximum sustain-
able load is also higher. Increase in δadmission has the same
effect; however, δadmission has lower impact than K in terms
of the magnitude of change in delay bounds and maximum
sustainable load. Moreover, since these parameters can be set
independently, any operating point in the feasibility region
for Harmony (shown in Figure 6) can be achieved.

6 Harmony benefits

Harmony enables bounded queueing and network delays, and
eliminates congestion-related drops for each message. This
leads to some immediate benefits. For instance, Harmony
has the potential to enable efficient RDMA over converged
Ethernet deployments. Specifically, most current RDMA de-
ployments use Priority Flow Control (PFC), a mechanism
to enable lossless network fabrics (no buffer overflows and
packet drops within the network fabric) [1, 44, 49, 72]. While
PFC enables lossless network fabrics, it suffers from sev-
eral undesirable problems: head-of-line blocking, inevitable
deadlocks, congestion spreading, reduced network utilization
and increased tail latencies [34–36, 44, 50, 72]. Harmony, by
design, eliminates congestion-related drops thus enabling loss-
less networks without the need for PFC.

However, to truly realize Harmony benefits, Harmony must
be extended to provide end-to-end delay guarantees. Specif-
ically, we need extensions in Harmony to bound host-side
processing delays (e.g., due to slow software [20]), and to

338 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

512B 1KB 4KB 8KB 32KB 128KB 512KB
RPC Sizes

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

d

Max Slowdown = 10
Max Slowdown = 20
Max Slowdown = 30
Max Slowdown = 40

(a) Varying RPC sizes

0.4 0.5 0.6
Input Load

4

8

12

16

20

Sl
ow

do
wn

 S
pr
ea

d

Full Bisection 2:1 Oversub 4:1 Oversub

(b) Varying Oversubscription

0.4 0.5 0.6
Input Load

4

8

12

16

20

Sl
ow

do
wn

 S
pr
ea

d

2-Tier (Leaf Spine) 3-Tier (Fat-tree)

(c) Varying Topology Types

Figure 8: Sensitivity of Harmony performance with (a) varying RPC sizes (b) varying oversubscription ratio in network topologies; and
(c) varying scale of topologies (two-tier versus three-tier). Discussion in §5.2.

eliminate packet queueing and delays at the host (e.g., due to
host congestion [7,31]). To bound host-side processing delays,
we observe that Harmony maintains the invariant of bounded
queueing at switches thus allowing to move congestion con-
trol out of the fast path; as a result, Harmony can be easily
integrated with existing high-performance userspace network
stacks [38, 46], in-kernel network stacks [21], and accelerator
based network stacks [2, 26, 58]. These stacks often use dedi-
cated cores and/or specialized hardware for packet processing,
reducing host processing overheads to a tiny fraction of the
network RTT. To eliminate queueing and packet drops at the
host due to host congestion, Harmony can be easily integrated
with recent mechanisms for host congestion control [7]. Fi-
nally, to extend Harmony’s bounded delay guarantees all the
way to the application layer, Harmony can be integrated with
µs-scale network, CPU and storage schedulers [21,37,53]. We
leave these extensions to the future; however, we demonstrate
several applications that may benefit from such extensions.

To demonstrate potential application-layer benefits of Har-
mony, we use the DPDK-based prototype implementation
of Harmony from §4, and use three dedicated cores—one
for pacing data, one for control packet processing, and one
for implementing the remainder of the logic—to minimize
host processing delays. We integrate this implementation with
several applications, while ensuring that network layer pro-
cessing is isolated and host does not observe congestion. In
extremely rare scenarios where Harmony incurs worst-case
network-layer delays as well as host processing delays, appli-
cations may get a reject message—this does not violate any
correctness guarantees, and simply requires applications to
retry; nevertheless, to account for these delays, we simply add
1µs to Harmony’s end-to-end delay bound. This prototype
implementation thus offers bounded message delays between
sender-side and receiver-side Harmony interfaces. We inte-
grate it with three applications, that we discuss next.

CPU-efficient storage stacks. Disaggregated storage has be-
come common in today’s datacenters. As a result, modern
storage stacks have been integrated with network transports
(e.g., NVMe-over-Fabrics) in order to facilitate access to re-
mote storage devices. Today’s storage stacks rely on one of
the two designs: polling-based or interrupt-based mechanisms.
Polling-based designs provide extremely good latency when

applications are run in isolation, but suffer when applications
share CPU resources. Interrupt-based designs work better in
the shared scenario, however have suboptimal CPU-efficiency
due to frequent context-switches. Harmony’s predictable de-
lay guarantees enable a new point in the design space of
CPU-efficient storage stacks: improved CPU efficiency with-
out sacrificing tail latency. Specifically, storage stack running
atop Harmony can use predictable network delays in Har-
mony to avoid both interrupts or polling—applications can be
scheduled more precisely using the delay bound. In [5], we
demonstrate the feasibility using the Harmony prototype: we
find that Harmony enables new operating points in terms of
tail latency and system throughput.

Efficient host packet processing pipelines. Recent work [20,
28] has demonstrated that CPU-efficiency of host packet pro-
cessing pipelines can degrade significantly when multiple ap-
plications/connections running on a single CPU core contend
for cache capacity, leading to higher cache misses. Recent
work on Reframer [28] tries to reduce these misses by de-
liberately buffering packets, and waiting for a fixed amount
of time for a batch worth of packets to arrive per applica-
tion, before allowing them to be processed by the CPU. The
choice of timeout value presents an inherent tradeoff: a larger
timeout value results in better CPU-efficiency due to more
packets getting batched at the cost of higher latency, while a
smaller timeout value results in lower latency but worse CPU-
efficiency. Determining the ideal timeout value is difficult
in best-effort networks due to unpredictable network delays.
Harmony’s predictable network delay guarantees enable over-
coming the above tradeoff: in absence of failures, receivers
receive data at a fixed bandwidth, allowing to set a timeout
to reap the maximum benefits of Reframer. Evaluation of
our prototype, integrated with Reframer, achieves 2× higher
throughput than the original Reframer [5].

Efficient failure detectors. Detecting host failures is a funda-
mental problem in distributed systems. Designing a failure
detector that is reliable (i.e. provides small false positive prob-
ability) and fast (provides failure notification within a small
delay) is a hard problem, especially in best-effort networks
where network delays are unpredictable [43]. Harmony, us-
ing its bounded delay guarantees, has the potential to allow

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 339

achieving both these goals simultaneously. In [5], we present
a prototype failure detection built on top of Harmony. The fail-
ure detector probes the target host by issuing a request and
waiting for an rsvp. Given Harmony’s predictable delay guar-
antees, the failure detector knows exactly when to expect the
corresponding rsvp message. The absence of such a message
implies there was a failure, either at the host or in network
hardware. We show analytically that, for modern datacenter
networks, the probability of the probe encountering a network
failure is relatively small (and decreases with the number of
tries) due to large path diversity; based on this, we are able
to demonstrate the feasibility of designing low-latency host
failure detectors that also have low false positive rates.

7 Related Work

Our exploration of congestion-free datacenter architecture is
related to three key areas of research.

Pre-datacenter network designs (RSVP, virtual circuit
switching, ATM networks, etc.). There have been sev-
eral attempts to designing Internet architectures with pre-
dictable performance, e.g., using Resource ReSerVation pro-
tocol (RSVP) [70, 71], virtual circuit switching [12, 40, 56],
and hop-by-hop flow control in ATM networks [17, 54], to
name a few. Realizing predictable performance on the In-
ternet faced several challenges: large RTTs, the lack of a
single administrative entity precluding support from hosts
and routers, and potential deadlocks due to policy-driven rout-
ing [17, 54]. These challenges proved to be insurmountable
in the Internet context; however, the equation is quite dif-
ferent for modern datacenter networks: they support small
RTTs, operate within a single administrative domain allowing
us to leverage both host and switch support, and are already
exploring programmable switches and custom-designed net-
work interface cards (NICs) with more powerful interfaces
than commodity hardware. Our work builds upon decades
of work on predictable Internet architectures, but advances
them significantly: combining the idea of virtual channels
with RSVP to avoid throughput loss in datacenter networks
and presenting analytical bounds on bounded queueing in the
datacenter context.

Circuit-switched networks. Circuit-switched datacenter net-
work architectures [10, 25, 42, 48, 57, 63], by establishing an
end-to-end dedicated path prior to data transmission, enable
bounded queueing at each switch in the network. Our goals
are aligned with those in circuit-switched networks; unsur-
prisingly, some of our ideas resemble the techniques used in
circuit-switched networks, e.g., wavelength-switching [14,16,
52] and packet-based optical switching [24, 30]. However,
there are two—fundamental—differences. First, our work
demonstrates that it is possible to achieve powerful guaran-
tees using distributed packet-switched networks, the primary
deployment scenario in today’s datacenter networks; recent

results [10] demonstrate that it is impossible to simultane-
ously achieve low latency and high network utilization for all
workloads using distributed circuit-switched networks. Sec-
ond, unlike circuit-switched networks that assume host and
network hardware clocks to be perfectly synchronized (that
is known to be hard at the datacenter scale [69]), our design
does not make any assumptions on clock synchronization.

Predictable and low-latency datacenter network designs.
Most of the existing datacenter network designs focus on
best-effort delivery [6, 8, 9, 19, 27, 29, 32, 33, 44, 51]. There
are two exceptions. The first exception is the recent work on
lossless network designs [1, 44, 72]; while these techniques
ensure that packets are never dropped due to buffer overflow,
by design, they can suffer from packet stalls—packets can be
queued in switch buffers for an unpredictable amount of time
due to PFC pause frames [1, 44]. Thus, they do not guarantee
bounded network delays. Harmony enables lossless networks
by design (in failure-free scenarios), thus offering a way to
realize RDMA over converged Ethernet without PFC.

Another closely related line of work [15, 39, 55, 69] is on
predictable network performance using centralized schedulers.
These designs suffer from the usual centralized design limita-
tions, namely scalability and availability, especially for high-
bandwidth links. Harmony focuses on achieving predictable
network performance over distributed packet-switched net-
works. Indeed, our evaluation results suggest that Harmony
achieves performance similar to centralized designs while
enjoying the benefits of a distributed datacenter architecture.

8 Conclusion
Existing datacenter networks provide best-effort delivery, that
is, messages may experience unpredictable queueing, delays,
and congestion-related drops due to switch buffer overflows
within the network. System designers are thus forced to rely
on minimal assumptions from the network, resulting in ineffi-
ciency and complexity in host hardware and software. This
paper argues for datacenter architectures that provide stronger
guarantees by design. We have presented Harmony, a datacen-
ter architecture that provides congestion-free message deliv-
ery guarantees—each message experiences bounded queueing
at each switch in the network. Harmony thus ensures that net-
work delays are bounded in failure-free scenarios, and that
congestion-related drops are eliminated. We establish that
Harmony provides these properties with near-zero overheads
compared to best-effort delivery networks.

Acknowledgements

We would like to thank our shepherd, Ravi Soundararajan,
and NSDI reviewers for insightful feedback. We would also
like to thank Midhul Vuppalapati for many useful discussions
during this project. This research was in part supported by
NSF grants CNS-2047283 and a Sloan fellowship.

340 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 802.1Qbb – Priority-based Flow Control . https://
1.ieee802.org/dcb/802-1qbb/.

[2] Annapurna Labs. http://www.annapurnalabs.com.

[3] Portable Switch Architecture (PSA) . https://p4.org/
p4-spec/docs/PSA.html.

[4] Switch Buffer Size. https://people.ucsc.edu/

~warner/buffer.html.

[5] Harmony Technical Report. https://github.com/

communication-harmony/tech-report.

[6] V. Addanki, O. Michel, and S. Schmid. PowerTCP:
Pushing the performance limits of datacenter networks.
In USENIX NSDI, 2022.

[7] S. Agarwal, A. Krishnamurthy, and R. Agarwal. Host
congestion control. In ACM SIGCOMM, 2023.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In ACM SIGCOMM, 2011.

[9] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal Near-
optimal Datacenter Transport. In ACM SIGCOMM,
2013.

[10] D. Amir, T. Wilson, V. Shrivastav, H. Weatherspoon,
R. Kleinberg, and R. Agarwal. Optimal oblivious recon-
figurable networks. In ACM STOC, 2022.

[11] S. Arslan, Y. Li, G. Kumar, and N. Dukkipati. Bolt: Sub-
rtt congestion control for ultra-low latency. In USENIX
NSDI, 2023.

[12] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts.
On-line Routing of Virtual Circuits with Applications
to Load Balancing and Machine Scheduling. In JACM,
1997.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS, 2012.

[14] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Steven-
son. JumpStart: A Just-in-time Signaling Architecture
for WDM Burst-switched Networks. In IEEE communi-
cations magazine, 2002.

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards Predictable Datacenter Networks. In ACM
SIGCOMM, 2011.

[16] D. Banerjee and B. Mukherjee. Wavelength-routed Opti-
cal Networks: Linear Formulation, Resource Budgeting
Tradeoffs, and a Reconfiguration Study. In IEEE/ACM
ToN, 2000.

[17] C. Basso, J. Calvignac, D. Orsatti, and F. Verplanken.
Hop-by-hop Flow Control in an ATM Network, 1998.
US Patent.

[18] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In ACM IMC,
2010.

[19] Q. Cai, M. T. Arashloo, and R. Agarwal. dcPIM: Near-
optimal Proactive Datacenter Transport. In ACM SIG-
COMM, 2022.

[20] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and
R. Agarwal. Understanding Host Network Stack Over-
heads. In ACM SIGCOMM, 2021.

[21] Q. Cai, M. Vuppalapati, J. Hwang, C. Kozyrakis, and
R. Agarwal. Towards µs Tail Latency and Terabit Ether-
net: Disaggregating the Host Network Stack. In ACM
SIGCOMM, 2022.

[22] J. G. Dai and B. Prabhakar. The throughput of data
switches with and without speedup. In IEEE INFOCOM,
2000.

[23] W. J. Dally, P. P. Carvey, L. R. Dennison, and P. A.
King. Router with Virtual Channel Allocation, 2003.
US Patent.

[24] T. S. El-Bawab and J.-D. Shin. Optical Packet Switching
in Core Networks: between Vision and Reality. In IEEE
Communications Magazine, 2002.

[25] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Baz-
zaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vah-
dat. Helios: a Hybrid Electrical/optical Switch Archi-
tecture for Modular Data Centers. In ACM SIGCOMM,
2010.

[26] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, et al. Azure Accelerated Net-
working: SmartNICs in the Public Cloud. In USENIX
NSDI, 2018.

[27] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Rat-
nasamy, and S. Shenker. pHost: Distributed Near-
optimal Datacenter Transport Over Commodity Network
Fabric. In ACM CoNEXT, 2015.

[28] H. Ghasemirahni, T. Barbette, G. Katsikas, A. Farshin,
A. Girondi, Massimoand Roozbeh, M. Chiesa,
G. Maguire, and D. Kostic. Packet Order Matters!
Improving Application Performance by Deliberately
Delaying Packets. In USENIX NSDI, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 341

https://1.ieee802.org/dcb/802-1qbb/.
https://1.ieee802.org/dcb/802-1qbb/.
http://www.annapurnalabs.com
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html
https://github.com/communication-harmony/tech-report
https://github.com/communication-harmony/tech-report

[29] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues Don’t
Matter When You Can Jump Them! In USENIX NSDI,
2015.

[30] C. Guillemot, M. Renaud, P. Gambini, C. Janz, I. An-
donovic, R. Bauknecht, B. Bostica, M. Burzio, F. Cal-
legati, M. Casoni, et al. Transparent Optical Packet
Switching: The European ACTS KEOPS Project Ap-
proach. In Journal of lightwave technology, 1998.

[31] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggregation
in next-generation datacenters. In ACM Workshop on
Hot Topics in Networks (HotNets), 2013.

[32] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
Datacenter Networks and Stacks for Low Latency and
High Performance. In ACM SIGCOMM, 2017.

[33] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen,
K. Tan, and Y. Wang. Aeolus: a Building Block for
Proactive Transport in Datacenters. In ACM SIGCOMM,
2020.

[34] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Deadlocks in datacenter networks: Why do
they form, and how to avoid them. In ACM HotNets,
2016.

[35] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Deadlocks in datacenter networks: Why do
they form, and how to avoid them. In ACM HotNets,
2016.

[36] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Tagger: Practical pfc deadlock prevention in
data center networks. In ACM CoNext, 2017.

[37] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal.
Rearchitecting Linux Storage Stack for µs Latency and
High Throughput. In USENIX OSDI, 2021.

[38] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter
RPCs can be General and Fast. In USENIX NSDI, 2019.

[39] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable Low Latency for Data
Center Applications. In ACM SoCC, 2012.

[40] S. Keshav and S. Kesahv. An Engineering Approach
to Computer Networking: ATM networks, the Internet,
and the Telephone Network. Addison-Wesley Reading,
1997.

[41] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld,
M. Ryan, et al. Swift: Delay is Simple and Effective

for Congestion Control in the Datacenter. In ACM SIG-
COMM, 2020.

[42] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron,
H. Williams, and X. Zhao. XFabric: a Reconfigurable
In-rack Network for Rack-scale Computers. In USENIX
NSDI, 2016.

[43] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting Failures in Distributed Systems
with the Falcon Spy Network. In ACM SOSP, 2011.

[44] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, et al. HPCC:
High Precision Congestion Control. In SIGCOMM.
2019.

[45] M. A. Marsan, E. Leonardi, M. Mellia, and F. Neri. On
the stability of input-buffer cell switches with speed-up.
In IEEE INFOCOM, 2000.

[46] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, et al. Snap: a Microkernel Approach to Host
Networking. In ACM SOSP, 2019.

[47] N. McKeown, A. Mekkittikul, V. Anantharam, and
J. Walrand. Achieving 100% throughput in an input-
queued switch. IEEE Transactions on Communications,
1999.

[48] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich,
G. Papen, A. C. Snoeren, and G. Porter. Rotornet: A
Scalable, Low-complexity, Optical Datacenter Network.
In ACM SIGCOMM, 2017.

[49] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,
D. Zats, et al. TIMELY: RTT-based Congestion Control
for the Datacenter. In ACM SIGCOMM, 2015.

[50] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishna-
murthy, S. Ratnasamy, and S. Shenker. Revisiting Net-
work Support for RDMA. In ACM SIGCOMM, 2018.

[51] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A Receiver-Driven Low-Latency Transport Pro-
tocol Using Network Priorities. In ACM SIGCOMM,
2018.

[52] C. S. R. Murthy and M. Gurusamy. WDM Optical
Networks: Concepts, Design, and Algorithms. Prentice
Hall, 2002.

[53] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan. Shenango: Achieving High {CPU} Effi-
ciency for Latency-sensitive Datacenter Workloads. In
USENIX NSDI, 2019.

342 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[54] C. Özveren, R. Simcoe, and G. Varghese. Reliable
and Efficient Hop-by-hop Flow Control. In ACM SIG-
COMM, 1994.

[55] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized “Zero-Queue” Data-
center Network. In ACM SIGCOMM, 2014.

[56] S. Plotkin. Competitive Routing of Virtual Circuits in
ATM Networks. In IEEE JSAC, 1995.

[57] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating Microsecond Circuit Switch-
ing into the Data Center. In ACM SIGCOMM CCR,
2013.

[58] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-
ers, G. P. Gopal, J. Gray, et al. A Reconfigurable Fabric
for Accelerating Large-scale Datacenter Services. In
IEEE/ACM ISCA, 2014.

[59] M. Raab and A. Steger. “Balls into Bins”—A Simple
and Tight Analysis. In RANDOM, 1998.

[60] J. Rexford. Tailoring Router Architectures to Perfor-
mance Requirements in Cut-through Networks. 1999.

[61] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the social network’s (datacenter) network. In
SIGCOMM, 2015.

[62] D. Shah. Maximal matching scheduling is good enough.
In IEEE GLOBECOM, 2003.

[63] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S.
Lee, H. Wang, R. Agarwal, and H. Weatherspoon. Shoal:
A Network Architecture for Disaggregated Racks. In
USENIX NSDI, 2019.

[64] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, and et al. Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in Google’s
Datacenter Network. In ACM SIGCOMM, 2015.

[65] R. Sivaram. Some measured google flow sizes. Techni-
cal report, 2008.

[66] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle.
DaRPC: Data Center RPC. In ACM SoCC, 2014.

[67] P. Tammana, R. Agarwal, and M. Lee. Cherrypick: Trac-
ing Packet Trajectory in Software-defined Datacenter
Networks. In ACM SOSR, 2015.

[68] P. Tammana, R. Agarwal, and M. Lee. Simplifying
Network Debugging with PathDump. In USENIX OSDI,
2016.

[69] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Sno-
eren. Practical TDMA for Datacenter Ethernet. In ACM
EuroSys, 2012.

[70] L. Zhang, S. Berson, S. Herzog, S. Jamin, and R. Braden.
RFC2205: Resource ReSerVation Protocol (RSVP) –
Version 1 Functional Specification, 1997.

[71] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. RSVP: A New Resource Reservation Protocol.
1993.

[72] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion Control for Large-scale RDMA
Deployments. In ACM SIGCOMM, 2015.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 343

	Introduction
	Congestion-free Datacenters: Motivation
	Harmony
	Harmony Protocol
	Harmony Design Details
	Harmony Theoretical Properties

	Harmony Implementation
	Harmony Evaluation
	Harmony Testbed Evaluation
	Harmony Large-Scale Simulation

	Harmony benefits
	Related Work
	Conclusion

