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Graph-structured Data are Ubiquitous

Social networks Protein-protein graph
Twitter graph: ten billion edges*

*GraphJet: Real-Time Content Recommendations at Twitter
~80 billion nodes and 250 million edges
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Pattern Mining is An Important Analytics Task

• Social networks
• Spot communities and advertise to users

• Biology
• Characterize protein-protein structures or interactions

• Finance
• Money laundering detection
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A simple pattern example



Graph Pattern Mining
Find all subgraph instances matching a given pattern of interest. 

Graph Pattern

Triangle

Subgraphs
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Counting the number of any subgraphs



Exact Mining Solutions
Iterate every isomorphic subgraph
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Exact Mining Solutions
Iterate every isomorphic subgraph

Optimizations: reduce redundant enumeration, 
system optimizations, hardware accelerators,

but still NP-Complete

Exponentially growing intermediate candidate sets
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Scalability Challenge in Exact Mining 
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Approximate Pattern Mining

• Many mining tasks do not need exact answers.
• Output density of certain patterns

• List some but not all subgraphs for large graphs.
• Output representative ones

General approximate approach:
Sample a subset of the input data and estimate the count 

based on the probability. 
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Using Neighborhood Sampling [ASAP, OSDI’18]
Sample a subset of the input data and 
estimate count based on probability
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ASAP Cannot Scale to Complex Patterns
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• Need larger number of samplers 
for more complex patterns.
• From 4-node to 5-node 

patterns, there is a O(∆)
increase.

• ∆ is the maximum degree of 
the graph.
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Can we reduce the complexity of the
sampled pattern?
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If the patterns are more complex, it needs 
significantly more samplers and is less scalable.

Our key idea is to leverage graph decomposition theory 
and sample different sub-patterns individually.



Graph Decomposition Theory

Optimal fractional 
edge cover LP

Decomposed 
sub-patterns

Odd cycles with weight  0.5 on edge;
Stars with weight 1 on each edge
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Odd cycle Star

A powerful theorem (informal) [S. Assadi et al., 2019] : Solving an optimal fractional 
edge cover can decompose any patterns into a unique collection of odd cycles 
and stars, which meets optimal bounds for sampling arbitrary patterns.
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Sample Individual Sub-patterns

13

5-Star

5-Cycle

• Star sampler

• Odd cycle sampler: edge sampling 



Form a Pattern

Test remaining edges in 5Cycle-5Star.
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Accelerate the computation

Test remaining edges in 5Cycle-5Star.

15(check more details in our paper)

System optimizations:
• Failure-probability-aware 

sampler scheduling
• Cache and reuse sampled sub-

patterns



The “Failure Probability” of Cycle/Star Samplers

More likely to fail
e.g., 92%

Do not fail
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• Different subpatterns have different sampling failure probabilities. 
• “Failure”: A sampler does not find the pattern

• The subpattern sampling order matters for mining time!
• If any subpattern sampling fails, the entire pattern sampling fails.
• We can early terminate the sampling if there are any failures.



Scheduling More-likely-to-fail Subpatterns First

Improve the performance by 2x without affecting accuracy.

0% fail

100% sample triangle

92% fail

8% sample 1-star
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Putting It Together -- Arya

Fractional Edge Cover 
LP Solver

Pattern Decomposer

Graph.size (1B)
Pattern(5house, 5%, 0.95)

Graph Pattern

Parallel Sampling Engine

…

Error-Latency Profile
/ User Configuration

Count: 12345 +/- 617
Time: 12s

…

Sampled subgraphs
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Evaluation

• Twitter, 1.2B edges
• Friendster, 1.8B edges

• RMAT-5B, 5B edges
• RMAT-10B, 10B edges

• Mico, 1M edges
• YouTube, 2.9M edges

19

<5% error

• Evaluated on medium, large, and giant Graphs

• Distributed system implementation (11K LOC)
• OpenMP/MPI
• Memcached key-value store

• Patterns
• 3-Motifs (2 patterns), 4-Motifs (6 patterns), complex patterns (>= 5 nodes)



Evaluation: Exact Mining Systems

1822 2479 failed
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2,000x

140x

Distributed replicated graph setting



Evaluation: Exact Mining Systems
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Up to 20,000x faster than Fractal
Up to 1,000x faster than GraphPi
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Distributed replicated graph setting



Evaluation: Approximate Mining Systems

150x

• Arya’s number of samplers is smaller than or similar as ASAP. 
• Each Arya’s sampler runs faster because of edge sampling. 

YouTube, 5-House YouTube, Triangle-Triangle
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Discussion and Future Work
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1/6x
• Extending Arya to trillion-edge graph 

scenarios. 

• Selecting the best graph pattern mining 
algorithm for different graph-pattern 
inputs. 

• Sampling-based approaches are hard to 
find a pattern when the graph is sparse.



Conclusions 

• Graph pattern mining is important and challenging.
• Larger and denser graphs and complex and arbitrary patterns.
• Poor scalability of existing systems.

• Arya leverages graph decomposition theory and sampling techniques 
for fast and scalable pattern mining.
• Outperforming existing exact and approximate pattern mining solutions by up

to five orders of magnitude.

• Open-sourced at https://github.com/Froot-NetSys/Arya. 
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https://github.com/Froot-NetSys/Arya

