
Enabling In-Network Computation
in Remote Procedure Calls

Bohan Zhao*, Wenfei Wu**, Wei Xu*

NSDI 2023

*Tsinghua University, **Peking University

NetRPC: a General INC-enabled RPC System

2

l Motivation:
In-network computation (INC) is beneficial to system performance but difficult to program

l Goal：
Make INC easy to use for normal applications with little performance loss

l Metrics:
Reduce lines of code of INC applications by up to 97%
Support most popular INC appications
Little performance loss

3

SW

Server1 Server3Server2

INC Customizes Stateful Packet Processing

4

INC is Widely Used in Many Scenarios

In-Network
Computation

• Server Func Offloading

• Line-rate Computation

• Network Stack Simplification

• Synchronous Aggregation

• Asynchronous Aggregation

• Key-value Caches

• Agreement

INC Provides Higher Throughput
l Eliminate incast to reduce traffic, especially for distributed training

5

Switch

Worker1 Parameter
ServerWorker2

a1 a2

a1 a2

a1 a2

a1’

l Reduce the hops of round trip, useful for agreement applications

6

Switch

Participant1 LeaderParticipant2

INC Provides Lower Delay

a1 a2

a1 a2

a1 a2

a1’ a1’

Switch

Server1 Server3Server2

Challenges of Developing INC Application

Static switch
memory layout

Complex chip-
specific language

Tedious network
programming

8

Switch

Server1 Parameter
ServerServer2

P4 Programming is Much More Complex than Software

9

Switch

Server1 ClientServer2

Can We Provide a Computation-centric Programming
Model to Include INC

l P4 language is network-centric and focus on communication
l Users only take care of computation
l RPC adapts INC functions better than other models (e.g., MPI)

10

Challenges in RPC-baed INC Programming

• Interface INC functions

• Support concurrent apps

• High-level data types

• Organize messages

• Reliable computation

• Switch memory management

• Reliable transmission

• Flow control

This Talk

in the paper

l We identify a minimum set of primitives to compose INC applications,
named reliable INC primitives (RIPs)

l We hope to use the description of INC primitives (Netfilter) to replace
switch programs

11

Switch Program is Complex, but We Can Provide
High-level Primitives

Primitive Args Semantics

Map.addTo stream map[stream.key]+= stream.value

Map .get stream stream.value = map[stream.key]

Map.clear empty map[stream.key] = 0

Stream.modify op,para stream.value = op(stream.value, para)

CntFwd key,th,tgt cnt[key]++; if cnt[key] == th then forward(tgt)
else drop

12

We Implement RIPs Using Host and Switch Memory

13

INC-enabled data types

Indicating NetFilter file name

Quantization factor

Reliable INC primitives

NetRPC Programming Examples: Very Similar to gRPC

Protobuf

Netfilter

RPC

l We implement RIPs on the programmable switch to support multiple
applications concurrently:

14

Support Concurrent INC Applications in One Switch

l RPC calls should always succeed eventually, so RIPs should be same
l INC requires idempotence in addition

a. Sockets only guarantee at -least-once packet transmission
b. However, repetive accumulation on the switch causes incorrect result
c. Normal path of some INC applications do not involve servers (on-switch reliability)

l We need to detect resent packets with limited switch memory

15

1 1 10 1

Switch States

Reliable INC Requires Memory-Efficient Idempotence

l INC can fail due to insufficient switch memory, computation overflow, etc.
l We implement all RIPs on the hosts. When INC fails, the RPC server can

complete computation instead

16

SW

Client Client Server

m1 m2

m1+m2m1+m2

m1 m2

m1 m2

Reliable INC Requires Fallback to Fit RPC Calls

l Sufficient switch memory makes INC full effect
l We need a management scheme to utilize switch resource efficiently
l We address switch memory in a key-value level by clients

17

Value1

Value1

Value2

Value2

Value3

Value3

Value4

Value4

Pool-based Streaming

Value Stream

Utilizing Switch Memory Efficiently Guarantees INC Benefits

Value5

Value5

1 2 3 4 5 6 7 Stream
Key

Value1 Value2 Value3 Value4 Value5 Value6 Value7

18

Key-value Stream

Key-value Stream

Key1 Key2

Value1

Value1

Value2

Value2

Key3

Value3

Value8

Key4

Value4

Value4

On-switch Cache Server

Utilizing Switch Memory Efficiently Guarantees INC Benefits

1

1 2 3 4 5 6 7 Stream
Key

Value1 Value2 Value3 Value4 Value5 Value6 Value7 1

1 2 3 4 5 6 7 Stream
Key

Value1 Value2 Value3 Value4 Value5 Value6 Value7 2

On-Host Addressing Requires Handling Client Crash

l NetRPC relies on hosts to manage switch memory correctly
l Memory leak happens when the client crashes and loses states
l We apply a two-phase timeout to recycle valuable switch memory

19

1 1 1
Phase-1 Timeout

Phase-2 Timeout

Switch

Server

NetRPC Evaluation: Setup

20

SW1

S1 S4

S8

...

Type Applications and Existing Systems

SyncAgtr Distributed ML training (ATP, SHARP, SwitchML)

AsyncAgtr MapReduce (ASK, NetAccel, Cheetah)

KeyValue Cache (NetCache, DistCache), Monitoring
(ElasticSketch)

Agreement Synchronization (P4xos, NetChain, NetLock)

• Can NetRPC simplify INC programming?

• How does the NetRPC system perform?

• Can NetRPC support concurrent application?

• Can NetRPC guarantee relaibility?
S5

SW2

...

NetRPC Greatly Reduces User Code Complexity

l NetRPC reduces lines of code of INC application by up to 97%

21

SyncAggr

AsyncAggr

KeyValue

Agreement

5329

3394

4258

3278

2360

898

5441

931

173

166

162

1453

NetRPC Achieves Similar Performance to Handcrafted Code

l NetRPC achieves similar performance (≥90%) to baselines even after
programming simplification

22

Metrics NetRPC Prior Arts DPDK

SyncAgtr Goodput(Gbps) 50.55 46.44(ATP) 40.11

AsyncAgtr Goodput(Gbps) 72.31 73.96(ASK) 45.88

Voting Delay(μs) 20 22(P4xos) 92

Monitor Delay(ms) 3.52 3.26(ElasticSketch) 4.05

Faster than Handcrafted Code in End-to-end Application

l NetRPC achieves even better training throughput than ATP (≥97%)
l NetRPC brings 12% higher throughput than P4xos

23

Distributed Training Agreement

NetRPC Supports Multiple Concurrent Applications

l NetRPC can support concurrent INC applications with different types
and different numbers

24

Metrics 1APP 4APP 4APP×5

Sync Goodput(Gbps) 50.55 24.88 24.84

Async Goodput(Gbps) 72.31 36.01 36.6

Goodput Sum(Gbps) N/A 60.89 61.44

KeyValue Delay(ms) 3.52 3.56 3.85

AgreementDelay(μs) 20 21 24

NetRPC is Reliable under Packet Loss

l NetRPC shows less performance degradation than prior arts with
various packet loss rate.

25

Conclusion

26

l NetRPC:
The first framework that integrates INC into the familiar RPC programming model

l Contribution：
Make INC development easyer and offer similar or better performance boosts than
handcrafted systems

l Future work:
Explore scheduling policies and scale NetRPC to more complex topologies

Thanks!

