Enabling In-Network Computation
I_ in Remote Procedure Calls

Bohan Zhao™*, Wenfei Wu™**, Wei Xu™

*Tsinghua University, **Peking University




II NetRPC: a General INC-enabled RPC System

o Motivation:

In-network computation (INC) is beneficial to system performance but difficult to program

o Goal:

Make INC easy to use for normal applications with little performance loss

o Metrics:

Reduce lines of code of INC applications by up to 97%
Support most popular INC appications
Little performance loss



INC Customizes Stateful Packet Processing

Logical Stage 1 Logical Stage N
Switch State —
(metadata) ‘Statsstlcs| ‘ State ‘
: > —3 3 —
p — ‘ Configurable
' > = Output
& - & [ 7| Match — VLIW = Queues
job] @ [E . Ig‘ -
=3 o |+ | Tables Action . an o = il
Packets Prog.™ > o 8 - Packets
— D - _— > L 5| 2 " 1 A
L | g . 4>_/
L ] -G : -
Input ] & > = Output
Channels - o - Channels
K, & _ 1 K,




II INC is Widely Used in Many Scenarios

In-Network
Computation

Scenario

Server Func Offloading
Line-rate Computation

Network Stack Simplification

Synchronous Aggregation
Asynchronous Aggregation
Key-value Caches

Agreement



II INC Provides Higher Throughput

o Eliminate incast to reduce traffic, especially for distributed training

al< al< a2

\

\

al a2

Parameter
Server



II INC Provides Lower Delay

o Reduce the hops of round trip, useful for agreement applications

al’ ail a2 al’

\

al a2




II Challenges of Developing INC Application

\

g




| P4 Programming is Much More Complex than Software

e

/* P4 14 Program */
axypiews & get  Empd) o
subtract (tmp, smac, dmac) ;
}
action a oo zexroil) 4
// do something
}
Cabl e get tapy |
actions { a get tmpy }
}
table com zmero i
reads {tmp: exact}
sdetions { & com zZeroi }
}
Conergl O Shac dac 4
apply (get_tmp) ;
apply (com ze¥xo) ;

}

Parameter ‘
Server

1f (smac == dmac) {
// do something
}




Can We Provide a Computation-centric Programming
Model to Include INC

o P4 language is network-centric and focus on communication

o Users only take care of computation
o RPC adapts INC functions better than other models (e.g., MPI)

e

\

=

/* P4 14 Program */
actien a get tmp() A
subtract (tmp, smac,

}

artiAn a ~Am o vorn ()Y
void PushPull (double* data, int length) {

NewGrad request;

AgtrGrad reply;

ClientContext context;

request.mutable_tensor () ->mutable_data ()
->Add (data, data+length);

Status status = stub_

->Update (&¥context, request, &reply);
memcpy (data, reply.tensor().data(),
length * sizeof (double))

train (data) ;

dmac) ;




Il Challenges in RPC-baed INC Programming

RPC Layer
(RPC Appl ication)
\ 4
RPC Session )
\ 4
RPCCall | ... | RPCCall
4
Socket Layer
Socket Socket
network network
flow flow
packet packet

LI

* |nterface INC functions

* Support concurrent apps

* High-level data types

* Organize messages

- s s e o e e e e e e e ol

* Reliable computation

e Switch memory management

* Reliable transmission

* Flow control

- o o o S o e S e O e e e e e e o md

This Talk

in the paper

10



II Switch Program is Complex, but We Can Provide
High-level Primitives

o We identify a minimum set of primitives to compose INC applications,
named reliable INC primitives (RIPs)

o We hope to use the description of INC primitives (Netfilter) to replace
switch programs

Map.addTo stream map|[stream.key|+= stream.value

Map .get stream stream.value = map|stream.key]

Map.clear empty map|[stream.key] =0

Stream.modify op,para stream.value = op(stream.value, para)

CntFwd key,th,tgt cnt[key]++; if cnt[key] == th then forward(tgt)
else drop

11



Il We Implement RIPs Using Host and Switch Memory

Stream

oo | e | e e | e | e | e T

Valuel Value2 Value3 Valued Value5 Value6é Value7

Stream.modify | |Map.addTo Map.get l Map.clear CntFwd

Virtual Map

+=Value2 Valued 0 cnt++

Switch Register Memory

12



II NetRPC Programming Examples: Very Similar to gRPC

import "netrpc.proto"

1

2 essage NewGrad {

3 netrpc.FPArray tensor = 1;
4 7

5 message AgtrGrad {

6 netrpc.FPArray tensor = 1;

}
§ service Training {
9 rpc Update (NewGrad)

retyur

{}]filter "agtr

.nf"

10}

Protobuf

1 { //agtr.nf

2 "AppName": "DT-1",

3 "Precision": 8, |

4 "get": (AgtrGrad.t

5 "addTo"| "NewGrad.tens
6 "clear"| "copy",

7 "modify}: "nopd¥

8 " (Or+TErrd 0 {

() IItOII: IIALLII s

10 "threshold": 2,

11 "key": "ClientID",
12 Iy

13}

Netfilter

s

gtrGrad)

—

b

0 1 & Ot = W

INC-enabled data types

Indicating NetFilter file name

shared_ptr<Channel> channel = CreateCustomChannel (server_ip,
InsecureChannelCredentials ()) ;

unique_ptr<Stub> stub_(NewStub (channel));
void PushPull (doublex data, int length) {

NewGrad request;

AgtrGrad reply;

ClientContext context;
L-iequest.mutable_tensor()—>mutab1e_data()

->Add (data, datat+length);

Status status = stub_

->Update (&context , request, &reply);
memcpy (data, reply.tensor () .data(),

length * sizeof (double))
train (data) ;

RPC

Quantization factor

Reliable INC primitives 13




Il Support Concurrent INC Applications in One Switch

o We implement RIPs on the programmable switch to support multiple
applications concurrently:

(=) / Switch Memory \
ient \ |V|la
Tz |\
|ent: ap --HCntFwd* [
(TP Je—8el_T I
erver

Reliable Data Stream) /

14



Il Reliable INC Requires Memory-Efficient Idempotence

e RPC calls should always succeed eventually, so RIPs should be same

o INC requires idempotence in addition
a. Sockets only guarantee at -least-once packet transmission
b. However, repetive accumulation on the switch causes incorrect result
c. Normal path of some INC applications do not involve servers (on-switch reliability)

o We need to detect resent packets with limited switch memory

Packet

Flip bit 1 1 1 0 0 0

Switch States

15



Il Reliable INC Requires Fallback to Fit RPC Calls

o INC can fail due to insufficient switch memory, computation overflow, etc.

o We implement all RIPs on the hosts. When INC fails, the RPC server can
complete computation instead

mi wml+rm2 m2

mil m2

16



II Utilizing Switch Memory Efficiently Guarantees INC Benefits

o Sufficient switch memory makes INC full effect
o We need a management scheme to utilize switch resource efficiently
o We address switch memory in a key-value level by clients

Value Stream ey

Value?2

Value5 Value3 Value4

Pool-based Streaming

Value5 Value?2 Value3 Value4

17



II Utilizing Switch Memory Efficiently Guarantees INC Benetfits

Stream
1 7
Key-value Stream Key

Valuel Value2 Value3 Value4

On-switch Cache Keyl Key2 Key3 Key4 Server

Valuel Value2 Value8 Value4d

7 Stream
Key-value Stream Key

18




II On-Host Addressing Requires Handling Client Crash

o NetRPC relies on hosts to manage switch memory correctly
o Memory leak happens when the client crashes and loses states
o We apply a two-phase timeout to recycle valuable switch memory

Phase-1 Timeout Switch

Phase-2 Timeout I Server

19



II NetRPC Evaluation: Setup

Applications and Existing Systems

SyncAgtr Distributed ML training (ATP, SHARP, SwitchML)
S1 . 54 AsyncAgtr MapReduce (ASK, NetAccel, Cheetah)
KeyValue Cache (NetCache, DistCache), Monitoring
(ElasticSketch)
SW1 Agreement Synchronization (P4xos, NetChain, NetLock)
— * Can NetRPC simplify INC programming?
SW2
 How does the NetRPC system perform?
—
 Can NetRPC support concurrent application?
S5 S8
— e Can NetRPC guarantee relaibility?

20



II NetRPC Greatly Reduces User Code Complexity

o NetRPC reduces lines of code of INC application by up to 97%

. # mm KeyValue
162

—

I
173

166

® Endhost ® Switch

SyncAggr

AsyncAggr

21



II NetRPC Achieves Similar Performance to Handcrafted Code

o NetRPC achieves similar performance (>90%) to baselines even after
programming simplification

SyncAgtr Goodput(Gbps) 50.55 46.44(ATP) 40.11
AsyncAgtr Goodput(Gbps)  72.31 73.96(ASK) 45.88
Voting Delay( ws) 20 22(P4xo0s) 92
Monitor Delay(ms) 3.52 3.26(ElasticSketch) 4.05

22



II Faster than Handcrafted Code in End-to-end Application

o NetRPC achieves even better training throughput than ATP (>97%)
o NetRPC brings 12% higher throughput than P4xos

Ba00 gl T | 20 g

= ‘_ @ ATP 9400_ e

;300_ g E s:a: BytePS+RDMA c / BN

3 = 300/ S

2 B ga B0 BN e <200 | R

100 Bhe Bits MG B0 MG gsns | S 00

= W PR RN o o o o _ St

= oL AN AN AN RN AN NG £100 4
6G10,GGLY niexn€t L et50 10} 152 — | s | x
VIR NET estCesn® pesn® 0 NetRPC P4xos libpaxos DPDK

Distributed Training Agreement

23



II NetRPC Supports Multiple Concurrent Applications

o NetRPC can support concurrent INC applications with different types
and different numbers

vetics  [iaep aves
Sync Goodput(Gbps) 50.55 24.88 24.84
Async Goodput(Gbps) 72.31 36.01 36.6
Goodput Sum(Gbps) N/A 60.89 61.44
KeyValue Delay(ms) 3.52 3.56 3.85
AgreementDelay( u s) 20 21 24

24



II NetRPC is Reliable under Packet Loss

o NetRPC shows less performance degradation than prior arts with
various packet loss rate.

@4 NetRPC M ATP St SwitchML

= = =
> o ® O

Normalized Throughput
=2 ©
N

=
o

0.01% 0.1% 1%
Packet Loss Rate

25



II Conclusion

e NetRPC:

The first framework that integrates INC into the familiar RPC programming model

o Contribution:

Make INC development easyer and offer similar or better performance boosts than
handcrafted systems

o Future work:

Explore scheduling policies and scale NetRPC to more complex topologies

26



Thanks!

TEZE

Tsinghua University



