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II NetRPC: a General INC-enabled RPC System

o Motivation:

In-network computation (INC) is beneficial to system performance but difficult to program

o Goal:

Make INC easy to use for normal applications with little performance loss

o Metrics:

Reduce lines of code of INC applications by up to 97%
Support most popular INC appications
Little performance loss



INC Customizes Stateful Packet Processing
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II INC is Widely Used in Many Scenarios

In-Network
Computation

Scenario

Server Func Offloading
Line-rate Computation

Network Stack Simplification

Synchronous Aggregation
Asynchronous Aggregation
Key-value Caches
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II INC Provides Higher Throughput

o Eliminate incast to reduce traffic, especially for distributed training
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II INC Provides Lower Delay

o Reduce the hops of round trip, useful for agreement applications
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II Challenges of Developing INC Application
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| P4 Programming is Much More Complex than Software

e

/* P4 14 Program */
axypiews & get  Empd) o
subtract (tmp, smac, dmac) ;
}
action a oo zexroil) 4
// do something
}
Cabl e get tapy |
actions { a get tmpy }
}
table com zmero i
reads {tmp: exact}
sdetions { & com zZeroi }
}
Conergl O Shac dac 4
apply (get_tmp) ;
apply (com ze¥xo) ;

}

Parameter ‘
Server

1f (smac == dmac) {
// do something
}




Can We Provide a Computation-centric Programming
Model to Include INC

o P4 language is network-centric and focus on communication

o Users only take care of computation
o RPC adapts INC functions better than other models (e.g., MPI)
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/* P4 14 Program */
actien a get tmp() A
subtract (tmp, smac,

}
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void PushPull (double* data, int length) {

NewGrad request;

AgtrGrad reply;

ClientContext context;

request.mutable_tensor () ->mutable_data ()
->Add (data, data+length);

Status status = stub_

->Update (&¥context, request, &reply);
memcpy (data, reply.tensor().data(),
length * sizeof (double))

train (data) ;

dmac) ;




Il Challenges in RPC-baed INC Programming

RPC Layer
(RPC Appl ication)
\ 4
RPC Session )
\ 4
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Socket Socket
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* |nterface INC functions

* Support concurrent apps

* High-level data types

* Organize messages

- s s e o e e e e e e e ol

* Reliable computation

e Switch memory management

* Reliable transmission

* Flow control
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II Switch Program is Complex, but We Can Provide
High-level Primitives

o We identify a minimum set of primitives to compose INC applications,
named reliable INC primitives (RIPs)

o We hope to use the description of INC primitives (Netfilter) to replace
switch programs

Map.addTo stream map|[stream.key|+= stream.value

Map .get stream stream.value = map|stream.key]

Map.clear empty map|[stream.key] =0

Stream.modify op,para stream.value = op(stream.value, para)

CntFwd key,th,tgt cnt[key]++; if cnt[key] == th then forward(tgt)
else drop
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Il We Implement RIPs Using Host and Switch Memory

Stream
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Stream.modify | |Map.addTo Map.get l Map.clear CntFwd

Virtual Map

+=Value2 Valued 0 cnt++

Switch Register Memory

12



II NetRPC Programming Examples: Very Similar to gRPC

import "netrpc.proto"

1

2 essage NewGrad {

3 netrpc.FPArray tensor = 1;
4 7

5 message AgtrGrad {

6 netrpc.FPArray tensor = 1;

}
§ service Training {
9 rpc Update (NewGrad)

retyur

{}]filter "agtr

.nf"

10}

Protobuf

1 { //agtr.nf

2 "AppName": "DT-1",

3 "Precision": 8, |

4 "get": (AgtrGrad.t

5 "addTo"| "NewGrad.tens
6 "clear"| "copy",

7 "modify}: "nopd¥

8 " (Or+TErrd 0 {

() IItOII: IIALLII s

10 "threshold": 2,

11 "key": "ClientID",
12 Iy

13}

Netfilter

s

gtrGrad)
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INC-enabled data types

Indicating NetFilter file name

shared_ptr<Channel> channel = CreateCustomChannel (server_ip,
InsecureChannelCredentials ()) ;

unique_ptr<Stub> stub_(NewStub (channel));
void PushPull (doublex data, int length) {

NewGrad request;

AgtrGrad reply;

ClientContext context;
L-iequest.mutable_tensor()—>mutab1e_data()

->Add (data, datat+length);

Status status = stub_

->Update (&context , request, &reply);
memcpy (data, reply.tensor () .data(),

length * sizeof (double))
train (data) ;

RPC

Quantization factor

Reliable INC primitives 13




Il Support Concurrent INC Applications in One Switch

o We implement RIPs on the programmable switch to support multiple
applications concurrently:
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Il Reliable INC Requires Memory-Efficient Idempotence

e RPC calls should always succeed eventually, so RIPs should be same

o INC requires idempotence in addition
a. Sockets only guarantee at -least-once packet transmission
b. However, repetive accumulation on the switch causes incorrect result
c. Normal path of some INC applications do not involve servers (on-switch reliability)

o We need to detect resent packets with limited switch memory

Packet

Flip bit 1 1 1 0 0 0

Switch States
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Il Reliable INC Requires Fallback to Fit RPC Calls

o INC can fail due to insufficient switch memory, computation overflow, etc.

o We implement all RIPs on the hosts. When INC fails, the RPC server can
complete computation instead

mi wml+rm2 m2

mil m2
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II Utilizing Switch Memory Efficiently Guarantees INC Benefits

o Sufficient switch memory makes INC full effect
o We need a management scheme to utilize switch resource efficiently
o We address switch memory in a key-value level by clients

Value Stream ey

Value?2

Value5 Value3 Value4

Pool-based Streaming

Value5 Value?2 Value3 Value4
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II Utilizing Switch Memory Efficiently Guarantees INC Benetfits

Stream
1 7
Key-value Stream Key
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On-switch Cache Keyl Key2 Key3 Key4 Server
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7 Stream
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II On-Host Addressing Requires Handling Client Crash

o NetRPC relies on hosts to manage switch memory correctly
o Memory leak happens when the client crashes and loses states
o We apply a two-phase timeout to recycle valuable switch memory

Phase-1 Timeout Switch

Phase-2 Timeout I Server
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II NetRPC Evaluation: Setup

Applications and Existing Systems

SyncAgtr Distributed ML training (ATP, SHARP, SwitchML)
S1 . 54 AsyncAgtr MapReduce (ASK, NetAccel, Cheetah)
KeyValue Cache (NetCache, DistCache), Monitoring
(ElasticSketch)
SW1 Agreement Synchronization (P4xos, NetChain, NetLock)
— * Can NetRPC simplify INC programming?
SW2
 How does the NetRPC system perform?
—
 Can NetRPC support concurrent application?
S5 S8
— e Can NetRPC guarantee relaibility?
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II NetRPC Greatly Reduces User Code Complexity

o NetRPC reduces lines of code of INC application by up to 97%
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II NetRPC Achieves Similar Performance to Handcrafted Code

o NetRPC achieves similar performance (>90%) to baselines even after
programming simplification

SyncAgtr Goodput(Gbps) 50.55 46.44(ATP) 40.11
AsyncAgtr Goodput(Gbps)  72.31 73.96(ASK) 45.88
Voting Delay( ws) 20 22(P4xo0s) 92
Monitor Delay(ms) 3.52 3.26(ElasticSketch) 4.05
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II Faster than Handcrafted Code in End-to-end Application

o NetRPC achieves even better training throughput than ATP (>97%)
o NetRPC brings 12% higher throughput than P4xos
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II NetRPC Supports Multiple Concurrent Applications

o NetRPC can support concurrent INC applications with different types
and different numbers

vetics  [iaep aves
Sync Goodput(Gbps) 50.55 24.88 24.84
Async Goodput(Gbps) 72.31 36.01 36.6
Goodput Sum(Gbps) N/A 60.89 61.44
KeyValue Delay(ms) 3.52 3.56 3.85
AgreementDelay( u s) 20 21 24
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II NetRPC is Reliable under Packet Loss

o NetRPC shows less performance degradation than prior arts with
various packet loss rate.
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II Conclusion

e NetRPC:

The first framework that integrates INC into the familiar RPC programming model

o Contribution:

Make INC development easyer and offer similar or better performance boosts than
handcrafted systems

o Future work:

Explore scheduling policies and scale NetRPC to more complex topologies
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