
FLASH: Towards High-performance Hardware Acceleration
Architecture for Cross-silo Federated Learning

Junxue ZHANG, Xiaodian CHENG, Wei WANG, Liu YANG, Jinbin HU, Kai CHEN

Data Silos & Islands of Data

Emerging lawsuits and regulations restrict us to collect data into one central place for
processing. Data from different entities become island and are isolated from each other.

Cross-silo Federated Learning

1. Each Participant trains a local model

2. Instead of sharing original data, all
participants exchange their trained model

3. The model/intermediate results are
protected via cryptographic techniques

Horizontal & Vertical Federated Learning

XA yA

XB yB

Same
Feature
Space

Horizontal Federated Learning Vertical Federated Learning

XA y XBSame Sample ID Space

Cryptographic Techniques

Examples of some used cryptographic techniques:

1. Additive HE, Paillier

Encryption Function

If are plaintext, then

E(p)
A, B, C

A + B = C → E(A) + E(B) = E(C)

XA y XA

2. RSA blind signature-based PSI

Participant A Participant B

Same Sample ID Space Vertical FL

Horizontal FL

Vertical FL

Double-edged Sword — Cryptographic Operations

ID Crytographic Operations

O1 Paillier Encryption

O2 Paillier Decryption

O3 Ciphertext Matrix Addition

O4 Ciphertext & Cleartext Matrix Element-wise Multiplication.

O5 Ciphertext & Cleartext Matrix Multiplication

O6 Ciphertext Histogram Building

O7 RSA Encryption

O8 RSA Blind

O9 RSA Unblind

We identify 9 commonly used cryptographic operations in cross-silo FL

Preserving Privacy

Performance Penalty

Our previous work Quantifying the Performance of
Federated Transfer Learning has observed this problem and
delivers a brief analysis

https://arxiv.org/abs/1912.12795

A Fine-grained Analysis
Applications & Their Sub-tasks Involved Operations w/o CO (s) w CO (s) Degradation

RSA-PSI Computing intersection O7, O8, O9 18.91 203.88 10.78⇥ #

VLR
(One Epoch)
Total: 17.4⇥ #

Encrypting logits O1 0 242.09 -
Aggregating logits O3 6.67 9.81 1.47⇥ #
Computing fore gradientsa O3, O4 7.88 25.71 3.26 ⇥ #
Computing gradients O3, O4, O5 32.68 1550.02 47.43⇥ #
Decrypting gradients O2 0 0.06 -
Computing loss O1, O3, O4 24.20 37.74 1.56 ⇥ #

SBT
(One Epoch)
Total: 2.59⇥ #b

Encrypting gradients O1 0 486.73 -
Aggregating gradients O3, O6 83.13 2125.50 25.57 ⇥ #
Finding split O2 0.78 24.71 31.51 ⇥ #

aAccording to Federated Logistic Regression [39], the gradient computation takes two steps: fore gradients computation and gradients computation.
bThe overall performance degradation of SBT is smaller than the sum of those sub-tasks because we do not include SBT’s pure cleartext computation or

networking communication sub-tasks in the table.

Table 1: Performance penalty by cryptographic operations (CO) towards different cross-silo FL applications.

3.3 Challenges of Offloading Cryptographic
Operations

To accelerate these cryptographic operations, we choose GPU
as our first attempt. GPUs have been widely adopted in vari-
ous offloading scenarios, e.g., machine learning training [48],
graphic rendering [49], etc. However, in this paper, we find
that the cryptographic operations in cross-silo FL require
complicated pipeline computation and significantly inflate the
data, posing the following drawbacks for GPUs.

The hardware architecture of GPU is tailored for perform-
ing data parallelism over tensors, which are mostly short num-
bers, e.g., single-precision floating numbers. However, as we
will show in §4.2.1, to efficiently execute cryptographic oper-
ations, we have to use several steps to optimize the compu-
tation, e.g., Montgomery Modular Multiplication [46], thus,
pipeline parallelism is needed. Moreover, massive large num-
bers are required to be stored in the shared memory during
pipeline execution. However, these large numbers, e.g., 2048-
bit integer numbers, could easily exceed the on-chip memory.
For example, the amount of shared memory per SM is 96 KB
for NVIDIA V100 [18]. No more than 384 2048-bit integer
numbers can be stored inside one SM. Therefore, after pro-
cessing a small amount of data, the GPU has to exchange
data between shared memory and external memory, causing
pause of the pipeline execution. Consequently, the hardware
limitation of GPU largely compromises the performance gain.

To further accelerate cross-silo FL, we take one step beyond
existing proprietary hardware — GPUs, by designing a novel
hardware acceleration architecture for cross-silo FL. First,
with a customized hardware architecture, we can implement
fine-grained pipelining for those cryptographic operations
with large numbers. Moreover, the hardware can support vari-
able bit-widths to match the cross-silo FL scenarios where dif-
ferent public key sizes are used, and they yield large numbers
with different bit-widths. Second, in our hardware architec-
ture, we can provide sufficient on-chip memory for caching
large numbers used in the pipeline execution. Furthermore,

the data exchange between on-chip and external memory can
also be part of the pipeline to avoid the performance issue
discussed above. For hardware implementation, we follow the
rule-of-thumb approach to use FPGA as a prototype and eval-
uate the potential ASIC design via software tools. However,
while the direction is promising, we suffer the following in-
evitable challenges when designing our hardware architecture:

First, inadequate hardware acceleration due to limited
resources. As discussed in §3.2, all identified cryptographic
operations could cause performance penalty, thus we should
offload all of them to hardware. Furthermore, to realize a
sufficient acceleration, each operation requires multiple hard-
ware instances of accelerating modules/circuits for high par-
allelism. However, hardware chip has limited resources, and
if we naively offload all cryptographic operations to the chip,
each operation has inadequate resources to be fully acceler-
ated. Taking the multiplier resources as an example, our pre-
liminary implementation on VU13P FPGA [21] chip shows
that to accelerate Paillier encryption (O1) by 1⇥, we need
to use 2630 DSPs to implement multipliers. Yet, a high-end
FPGA chip, such as VU13P [21], has 12288 DSPs, leaving
< 1365 DSPs for one operation on average2 (some DSPs are
reserved for PCIe communication, memory controller, etc.).
Thus, directly offloading all operations on VU13P FPGA
chip leads to only ⇠ 50% acceleration on average. Similar
problems also exist in ASIC design.

Second, insufficient resource utilization due to static of-
floading. Different from software, hardware function is static
after being configured/programmed/taped-out, i.e., it cannot
change its function dynamically. Nevertheless, as shown in
§3.2, not all the cryptographic operations are used at all times
simultaneously. Consequently, if we statically offload all cryp-
tographic operations on the hardware chip, only part of these

2We will show later that all these operations share similar building blocks,
thus they require similar resources to implement.

4

• All cryptographic operations do cause much performance penalty for cross-silo federated
learning applications

• Different applications may use different cryptographic operations

• Even within one application, different cryptographic operations are used at different time

Hardware Offloading

GPU

Our research path:

Vendor-proprietary hardware GPU:

The hardware is designed for data parallel with small numbers, such as FP16, FP32.

Cross-silo FL requires pipeline parallelism with large integer numbers of 2048 bit and more.

CUDA Core

SM

CUDA Core CUDA Core

CUDA Core CUDA Core CUDA Core

External Memory

Shared Memory

Small amount of integers can be stored in shared memory of a SM

Pipeline execution pauses due to data exchange between shared and external memory

Hardware Offloading

FPGA as a prototype ASIC as an ultimate form

We seek a more efficient hardware acceleration architecture beyond the existing GPU architecture

GPU

Our research path:

Pipeline Parallism

Inflated Data

Design a hardware pipeline that is suitable for
efficiently executing these cryptographic

operations

Challenges

Cryptographic Operations

Problem 1: The hardware chip has limited hardware resources
to significantly accelerate all 9 operations

Problem 2: Hardware resource is wasted because not all
operations are used at the same time

Statically offloading all cryptographic operations to hardware
leads to the following two problems:

Our Observations

The performance of these operations mainly reply on
the 2 basic operators

Paillier Encryption: given the public key , and
data , select a random

,the ciphertext

Addition: given ciphertext and , the addition is

Ciphertext & plaintext multiplication: given ciphertext
and plaintext , the multiplication is

Similar operators are used in decryption and RSA-
related operations

(n, g)
m(0 ≤ m < n)

r,0 < r < n, r ∈ ℤ*n
c = gm . rn mod n2

a b
a * b mod n2

a
k ak mod n2

The core of these cryptographic operations is 2 basic
operator: modular multiplication & exponentiation

O1 O2 O3 O4 O5 O6 O7 O8 O9
0

50

100

%
T
im

e

Modular Multiplication Modular Exponentiation Other

Testbed experiments to breakdown the execution time
of all cryptographic operations

FLASH: a Cross-silo Federated Learning Acceleration Hardware
Architecture

FLASH in One Slide

FLASH uses majority of hardware resources
to build 2 basic operators: modular

multiplication & exponentiation

The software uses FLASH’s API to offload
cryptographic operations

FLASH dynamically composes the cryptographic
operations with the basic operators.

Modular Exponentiation & Multiplication
Engine

Dataflow Scheduling

Software Integration

Modular Exponentiation & Multiplication Engine

P = me mod N m, e, N ∈ ℤ+

P = ab mod N a, b, N ∈ ℤ+

Binary Exponentiation &

Montgomery Algorithm

Construct pipeline

R
Pre-Comp.

Pre-read data
Calculate !, #, $
Loop for % = 0
Loop for % = 1

)-bit Mult.
)-bit Mult.
)-bit Mult.

)-bit Mult.

Loop for % = 2

Loop for % = + − 1

A A A
A A A

A A A

A A A

R
Pre-Comp.

)-bit Mult.
)-bit Mult.
)-bit Mult.

)-bit Mult.

A A A
A A A

A A A

A A A

pre-read and cache data
in register

)-bit addition

pre-computation for
each -	to calculate !, #, $

R
Pre-Comp.

- = 0 - = 1

)-bit multiplication

Figure 1: General workflow of homomorphic encryption-based federated learning

random number r, and decryption is performed by m = ((c�

mod n
2)� 1)/n ⇤ µ mod n

2.
We can see from the formulation that the majority of

the computation of the Paillier en/decryption is related to
modular exponentiation (ModExp), which can be further de-
composed to a series of ModMult operations. Hence, the
execution of ModMult has a decisive effect on the over-
all performance. We choose the Montgomery ModMult
algorithm[Montgomery, 1985] to perform this operation be-
cause it is FPGA-friendly, in that it disposes of the costly in-
teger division. The Montgomery algorithm, shown in Algo-
rithm 1, computes XY · 2�l mod M for l-bit integers X , Y
and M . It divides integers into k-bit words. The body of the
algorithm is a two-level loop, where each outer iteration (line
2-8) aims to compute an intermediate result Si = X · Y i · 2k
mod M for the ith word of Y , and it further decomposes the
computation by each word of X and forms the inner loop
(line 4-6).

Algorithm 1: Montgomery Algorithm for Modular Mul-
tiplication with Radix 2k

Input: X =
Pl/k�1

j=0 X
j · 2jk, Y =

Pl/k�1
j=0 Y

j · 2jk,
M =

Pl/k�1
j=0 M

j · 2jk, r = 2k

Output: S = X · Y/2l mod M

1 S0 0;
2 for i = 0 . . . l/k � 1 do
3 q ((Si +X ⇤ Y i) · (�M�1)) mod r;
4 for j = 0 . . . l/k do
5 S̄

j
i+1 S

j
i +X

j ⇤ Y i + q ⇤M j ;
6 end
7 Si+1 S̄i+1/2k

8 end
9 if Sl/k > M then

10 Sl/k Sl/k �M ;
11 end
12 return Sl/k

3 Design and Implementation
3.1 System Overview
The overall architecture of our encryption framework is
shown in Figure 2. The framework is envisioned to be hosted
on cloud servers belonging to geo-distributed parties of fed-
erated learning. It includes components residing on both the

Figure 2: Overview of Our Encryption Framework

host CPU and the FPGA, where a PCI-e bus provides com-
munication between them. The host CPU is responsible for
the normal training workload of a machine learning model,
while it batches the requests of encryption to sends to the
FPGA, and encodes the floating point number used by ma-
chine learning to integers agree with HE schemes. Apart from
these necessities, our main contribution is designing high per-
formance processors for Paillier computation on FPGA and
encapsulating the hardware module as OpenCL kernel for in-
vocation, which we will detail in Section 3.2 and 3.3 respec-
tively.

3.2 Micro-architecture for Montgomery ModMult
A Paillier processor encapsulates units for operations in-
volved, i.e. modular multiplication, random number genera-
tor and integer divisor, along with its local storage. We repli-
cate Paillier processors in HLS to deploy multiple copies, and
the top level function is responsible for dispatching input data
and collecting results. Since the Paillier processors are inde-
pendent and work in parallel, the overall throughput of an
FPGA chip can be determined by

Throughput =
Total amount of resource

Latency⇥ Resource consumption per core
,

where resource broadly refers to multipliers, adders, memory,
etc., and latency can be further decomposed to clock cycle of
execution⇥ clock frequency. Therefore, our design guideline
is to optimize the Montgomery ModMult operation lying at
the heart of Paillier cryptosystem, with respect to clock cycle,
resource allocation, clock frequency, in addition to memory
usage. We elaborate on the optimization on these dimensions
as below.

Clock Cycle
Generally, the clock cycle required by an algorithm is intrin-
sically lower bounded by the number of operations and the

Dataflow Scheduling Modular Multiplication Modular Exponentiation

1. The engine can work in two modes. They can switch
between modular multiplication and exponentiation

Modular Multiplication

ControllerStart

End

Dataflow Scheduling

2. The core idea of dataflow scheduling is using an on-chip controller to determine which data paths should be active based on
which operation is offloaded on-demand.

Modular Multiplication Modular Exponentiation

Modular Multiplication

ControllerStart

End

1. The engine can work in two modes. They can switch
between modular multiplication and exponentiation

CRT Modules
for Decryption

Data Split Data Merge

Engine Slot

Engine Slot

Engine Slot

All available paths for dataflow scheduling

Modular
Exponentiation

CRT Modules
for Decryption

Engine Slot Engine Slot

Dataflow for decryption

Modular
Exponentiation

!!	#$%	&"

Modular
Multiplication

#&	#$%	&"

Modular
Multiplication
1 + #& 	!##$%	&"

CRT Modules
for Decryption

!, #, #!

$, #, #!

Dataflow for encryption

Software Integration

Cross-silo FL Software

Python Wrapper

DMA Driver

libsc.so

Hardware

(a) All available dataflow scheduling paths. (b) Dataflow for encryption. (c) Dataflow for decryption.
Figure 7: Dataflow scheduling. Black arrow indicates all available paths for dataflow scheduling while red arrow indicates the
active paths for a particular cryptographic operation.

Figure 8: FLASH integrates with cross-silo FL frameworks
by providing an integrated software package.
the get API is used. As shown in §4.2.3, the data exchange
between on-chip and off-chip memory is efficiently pipelined,
leading to a better end-to-end performance.
Multi-accelerator Support: The server-side software also
enables multi-accelerator support. If there are multiple
FLASH accelerators on the server, when applications in-
voke the APIs, libfl.so will break the task into multiple
sub-tasks and dispatch them to multiple accelerators. The
dispatching strategy is least workload first, and can be config-
ured to use different strategies, such as round-robin.

Listing 1: FLASH’s NumPy-like APIs
import flash_np as np

Generating 2 Paillier-encrypted arrays accelerated by FLASH

x1 = np.array([1, 2, 3], encryption="paillier")

x2 = np.array([4, 5, 6], encryption="paillier")

x3 = x1 + x2 # Homomorphic addition

x4 = np.array([1, 2, 3], encryption=None)

x5 = x4 * x1 # Ciphertext & cleartext multiplication

x3.decrypt() # Decrypting the ciphertext

x5.decrypt()

Transferring the data from accelerator to host

x3.get()

x5.get()

5 Implementation
Prototype Implementation with FPGA: We fully im-
plement FLASH with FPGA using ⇠ 30,000 lines of Ver-
ilog [65] code. We use Xilinx Virtex UltraScale+ VU13P
chip [21] in our implementation. FLASH implements 300
modular exponentiation and multiplication engines with the
chip. As the VU13P chip consists of 4 dies, we need to dis-
tribute components on different dies in a balanced way to
achieve high resource utilization. In our implementation, we
first place large modules such as PCIe and DDR controller on
separate dies with the consideration that they should be close
to the location of their corresponding I/O pins. Then, with
the settle-down of large modules, we place different numbers
of engines on different dies to make the resource utilization
of each die approximately the same to avoid the possibility
of local congestion. As a final note, the operation frequency
of our FPGA implementation is 300MHz while we achieved
⇠ 88% DSP resource utilization, which, to the best of our
knowledge, is relatively high in FPGA’s industry.
Server-side Software Stack Implementation: Our im-

plementation of FLASH’s server-side software contains ⇠
10,000 lines of C/C++ and Python code. This includes modi-
fications of FATE to harness FLASH’s acceleration capacity.
We mainly modify the federatedml module [2] in FATE
by replacing normal collection operations with FLASH’s
NumPy-like APIs. We further use Xilinx DMA (XDMA) IP
Reference driver [18] for high-performance direct memory
access through the PCIe interface.
Evaluating FLASH as ASIC: We leverage multiple standard
softwares to assess the FLASH design as an ASIC. Specifi-
cally, we first use Synopsys Design Compiler [11] to convert
FLASH’s design logics into physical implementations, i.e.,
netlist, over both 12nm and 28nm technology libraries. Then,
we use Synopsys VCS [13] to verify that the generated netlist
functions correctly and use Synopsys Prime Time [12] for
static timing analysis to validate that the netlist satisfies all
timing constraints. More evaluation results of the ASIC per-
formance will be discussed in §6.4.

6 Evaluation
In this section, we first present our evaluation methodol-
ogy (§6.1). Then we show that for the 9 cryptographic op-
erations, FLASH achieves up to 19.3⇥ and 5.1⇥ accelera-
tion over CPU and GPU (§6.2), translating up to 11.1⇥ and
2.02⇥ speedup for realistic FL applications (§6.3), respec-
tively. Finally, we evaluate the performance of FLASH as an
ASIC (§6.4).
6.1 Methodology
Environment Setup: As cross-silo FL involves multiple
participants/data silos, the end-to-end performance of the
applications is partially affected by the networking. In this
paper, our focus of FLASH is on accelerating the computa-
tion of cryptographic operations. Thus, we try to minimize
the impact of networking performance with fewer servers and
fast networking to better serve our evaluation goals. Specif-
ically, we use two x86 servers in our setup. Each server is
equipped with a Mellanox CX-4 NIC [5] and connected to a
Mellanox SN2100 [6] switch via 40Gbps DAC cables. As to
other hardware configurations, each server is equipped with
one Intel Xeon Silver 4114 CPU [4], 192GB memory, and
one FLASH acceleration card (In the multi-accelerator exper-
iment, each server will be installed with multiple acceleration
cards). We deploy FATE v1.5 as the cross-silo FL framework.
Schemes Compared: We mainly compare the performance
achieved by FLASH with that achieved by: (1) Original FATE
that uses GMP library to optimize the cryptographic opera-
tions which are executed with CPU (denoted as CPU in the
following charts). All CPU experiments are executed with
8 cores in parallel. (2) GPU-based accelerator (denoted as
GPU). We extend the GPU implementation of HAFLO [31]
since it only implements logistic regression. Note that only

8

Implementation

DC

Validation

~30,000 lines of
Verilog

Prototyping with Xilinx
VU13P

The most adopted cross-silo
FL framework

~10,000 lines of C++ and
Python code

Synopsys DC for logical
synthesis

Synopsys PT and VCS
for validation

https://github.com/FederatedAI/FATE

Evaluation — Cryptographic Operations
Intel Xeon Silver 4114 CPU (10 core)

NVIDIA P4 (share the similar INT8 TOPS with FLASH)

�

��

��

�
��
�
�
�
	

�

�� �� ��

�� ��
��
���

�

�� ��
��
��
�

�� ��
��
��
�

�� ��
���

�

�� ��
���

�

�� ��
��
���

�

�� ��
��
��
�

�� ��
��
��
�

�� ��
���

�

�� ��
���

�
�� �� �	 �

���

���

�
�
�
�
�

��� ��� ��� ! ���� ��� ! �"# ��� ���� ��� ! �"# ���

(a) Cryptographic operation performance of all compared schemes. The left Y-axis is associated with the
bar chart and is in log scale. The right Y-axis is associated with the line chart.

�� �� �� �� �� ��
�

�

�

�

�

�
�
�	

�
�

�
�

������� ������� �������

(b) Multi-accelerator performance
with selected operations.

Figure 8: Performance of cryptographic operations.

FPGA Logic Cells DSP Public Key N = 1024bit Public Key N = 2048bit
Encryption (kOP/s) Decryption (kOP/s) Encryption (kOP/s) Decryption (kOP/s)

FLASH VU13P 3,780,000 12,288 40.706 107.707 6.033 19.373
PCP [79] 7VX330T [24] 326,400 1,120 1.40625 1.15625 - -
HLS [90] VU9P [23] 2,586,000 6,840 5.238 5.238 - -
SoC [30] ZU9EG [25] 600,000 2,520 - - 0.561 0.563

Table 2: Resource consumption & performance comparison among FLASH and other Paillier accelerators.
Models Datasets

Vertical FL
RSA-PSI [45]

CreditCard [1]VLR [51]
SBT [38]

Horizontal FL

HLR CreditCard [1]
MLP FMNIST [85]
LSTM [54] Shakespeare [16]
DenseNet169 [56]

Cifar-10 [62]ResNet50 [52]
VGG16 [81]

Table 3: Models & datasets used in evaluation of FLASH.
cross-silo FL deployments, we use netem [8] to limit the net-
working bandwidth to be 50Mbps 6. As to other hardware
configurations, each server is equipped with one Intel Xeon
Silver 4114 CPU [5], 192GB memory, and one FLASH accel-
eration card (In the multi-accelerator experiment, each server
will be installed with multiple acceleration cards). We deploy
FATE v1.5 as the cross-silo FL framework.
Schemes Compared: We mainly compare the performance
achieved by FLASH with that achieved by: (1) Original FATE
that uses highly-optimized GMP library to execute crypto-
graphic operations with CPU (denoted as CPU in the follow-
ing charts). We choose Intel Xeon Silver 4114 CPU similar
to prior works [75]. All CPU experiments are executed with
all the 10 physical cores in parallel. (2) GPU-based accelera-
tor (denoted as GPU). We extend the GPU implementation
of HAFLO [39] since it only implements logistic regression.
Note that only the cryptographic operations are accelerated
by GPU in our experiments. We use NVIDIA P4 GPU be-
cause it has the same technology of 16nm and achieves the
closest INT8 TOPS as FLASH (although ⇠ 2⇥ better. P4
reaches ⇠ 20 INT8 TOPS while FLASH achieves ⇠ 12.9
INT8 TOPS).
Performance Metrics: We use the number of operations
performed per second (OP/s) as the metric when evaluating
the performance of cryptographic operations, and accelera-
tion ratio over CPU/GPU as the metric when evaluating FL

6More details on how network bandwidth affects FLASH are shown in
Appendix I

applications.

6.2 Cryptographic Operations
To demonstrate that FLASH can efficiently accelerate the
9 cryptographic operations, we compare the performance
achieved by CPU, GPU, and FLASH, respectively. For oper-
ations O4 and O5, we also evaluate different exponent bit-
widths (32bit – 1024bit). The experiment results are shown
in Figure 8a. In general, FLASH can consistently outperform
CPU and GPU for all cryptographic operations. Specifically,
FLASH outperforms CPU by 7.7⇥ – 14.0⇥ and GPU by
1.4⇥ – 3.4⇥, showing that FLASH’s hardware architecture
fits the computational requirements of these cryptographic
operations. Furthermore, we observe that when handling a
larger exponent, FLASH tends to achieve a better acceleration
ratio. For example, FLASH achieves 13.6⇥ acceleration than
CPU when evaluating O4 with e = 1024bit, but drops to 7.7⇥
with e = 32bit. The results show that when the computation
is more intensive, i.e., with a large exponent, FLASH can
achieve even better performance.
Multi-accelerator Support: We inspect how FLASH per-
forms when we use multiple FLASH acceleration cards to
speedup cryptographic operations. We evaluate 1, 2 and 3
accelerators, denoted as FLASH-1, FLASH-2 and FLASH-3
respectively. For space limitation, we only pick some opera-
tions for demonstration: O1, O2, O3, O4 with e= 1024bit, O5
with e = 1024bit, and O7. The results are shown in Figure 8b.
We observe that for most cryptographic operations, e.g., O1,
O2, O4, O5 and O7, the overall performance of FLASH is al-
most linear to the number of accelerators: FLASH-2 achieves
1.90⇥ – 1.98⇥ while FLASH-3 achieves 2.89⇥ – 2.95⇥
speedup for these operations. However, for O3, FLASH-2
and FLASH-3 only achieve 1.47⇥ and 1.80⇥ acceleration,
respectively. The reason is as follows: the computation work-
load of O3 is relatively low, thus the control overhead, e.g.,
multi-accelerator synchronization, takes a considerable por-
tion, leading to non-linear speedup. However, in real-world
use case, we envision that FLASH with multiple accelerators

10

For cryptographic operations:

1. FLASH outperforms CPU by achieving speedup

2. FLASH outperforms GPU by achieving speedup

3. The overall performance of FLASH is almost linear to the number of accelerators

7.7 × ∼ 14.0 ×
1.4 × ∼ 3.4 ×

Evaluation — Cross-silo FL Application

For RSA-PSI, VLR, SBT, and HLR:

1. FLASH outperforms CPU by achieving speedup

2. FLASH outperforms GPU by achieving speedup

1.6 × ∼ 6.8 ×
1.1 × ∼ 2.0 ×

�� �� �� �� ��

� �	
��� ���

�

�

�

�
��

�
�

	
��
� ��� ��� �����

(a) RSA-PSI

�� �� �� �� ��

� �	
��� ���

�

�

�

�

�
��

�
�

	
��
� ��� ��� �����

(b) VLR

�� �� �� �� ��

� �	
��� ���

�

�

�

�
��

�
�

	
��
� ��� ��� �����

(c) SBT

�� �� �� �� ��

� �	
��� ���

�

�

�

�

�
��
�
�
	
��
� ��� ��� � ��!

(d) HLR
Figure 9: Performance of RSA-PSI, VLR, SBT, and HLR with changing data volumes.

� � �� �� �� �� ��

� ��	�
���	 ���

�

�

�

�
��

�
�

�
��
�

��� ����

���	�
����

��	
���� ������� ��� �����

Figure 10: Performance of 5 deep neural networks.
would still be an efficient solution to accelerate large-scale
cross-silo FL applications.
Comparison with Other Paillier Accelerators: To give
readers a better understanding of how efficient the FLASH’s
hardware design is, we further compare FLASH with some
state-of-the-art hardware-based solutions, e.g., Paillier Crypto-
processor (PCP) [79], HLS [90], and SoC [30] based solutions.
Moreover, due to the limited hardware resources, some of
these works only implement a subset of cryptographic opera-
tions supported by FLASH. The comparison results are shown
in Table 2. PCP and HLS report their data with public key
N = 1024bit, while SoC uses N = 2048bit, thus we report the
performance of FLASH with both N = 1024 and 2048bit. The
results show that, compared to PCP, HLS and SoC, FLASH
consumes 10.97⇥, 1.80⇥, 4.88⇥ DSP resources, but deliv-
ers 28.95⇥, 7.77⇥, and 10.75⇥ encryption acceleration and
93.15⇥, 20.56⇥, and 34.38⇥ decryption acceleration, respec-
tively. The results demonstrate that by using inter- & intra-
engine pipelining and dataflow scheduling, FLASH can (1)
deliver much better performance if utilizing comparable re-
sources, and (2) support more complete functions.

6.3 Cross-silo FL Applications
We then present how FLASH can accelerate real-world cross-
silo FL applications, including both vertical and horizontal.
The models and datasets used are shown in Table 3. For ver-
tical FL, before performing the model training algorithms,
we first run a commonly used sample alignment algorithm:
RSA blind signature-based PSI (RSA-PSI). Then, we per-
form Vertical Logistic Regression (VLR) [51] and Secure
Boosting Tree (SBT) [38] algorithms over the data intersec-
tion (generated from PSI), respectively. For horizontal FL, we
mainly evaluate Horizontal Logistic Regression (HLR) and
5 deep learning applications with different parameters. Each
application runs a fixed number of epochs.
RSA-PSI, VLR, SBT, and HLR: The performance of RSA-
PSI, VLR, SBT, and HLR is related to the data volumes. Thus
we evaluate FLASH with different data volumes. The re-
sults are shown in Figure 9. In general, FLASH consistently

outperforms CPU and GPU by achieving 1.6⇥ – 6.8⇥ and
1.1⇥ – 2.0⇥ acceleration ratio respectively. The results have
demonstrated that by designing a tailored hardware accelera-
tion architecture for cross-silo FL, we can effectively speed
up FL applications and outperform the existing CPU/GPU
architectures. Furthermore, we also notice that for RSA-PSI
and VLR, GPU tends to reach a similar acceleration ratio
as FLASH while processing more data. The reason is that
for RSA-PSI and VLR, the cleartext computation, which is
purely executed on CPU, takes a significant portion of the
total computation time. For example, in VLR, when handling
50K data samples in one epoch, after sufficient acceleration,
the ciphertext computation takes < 10% of the total computa-
tion time. Therefore, the performance is mainly decided by
the time of cleartext computation when the cryptographic op-
erations are sufficiently accelerated, which leads to the results
that FLASH and GPU achieve similar acceleration ratios over
CPU. In contrast, for HLR and SBT, FLASH can achieve a
higher acceleration ratio than GPU because the cryptographic
operations of these two applications consume a significant
portion of the total computation time.
5 Deep Learning Applications: We have further evaluated 5
deep learning models of different numbers of parameters with
horizontal FL. The results are shown in Figure 10. We find that
FLASH can outperform CPU and GPU by achieving 4.1⇥ –
5.4⇥ and 1.2⇥ – 1.6⇥ acceleration ratio respectively due to a
similar reason discussed above. Furthermore, we note that for
models with more parameters, e.g., DenseNet169, ResNet50,
VGG16, FLASH can achieve a higher speedup than models
with fewer parameters, e.g., MLP, LSTM. This experiment
implies that for more computation-intensive tasks, FLASH
can deliver more notable results.
Correctness: In addition to evaluating the performance of the
above 9 cross-silo FL applications, we also validate the final
results of all compared schemes (we avoid the randomness
by setting an identical random seed). Results have shown that
all schemes yield identical results, showing that FLASH does
not affect the correctness of model training.
Summary: Implemented as a FPGA prototype, FLASH has
already largely outperformed CPU and achieved moderately
better performance than GPU with comparable price. We also
understand that high-end GPUs, e.g., A100 [9], H100 [10],
may outperform FLASH’s FPGA prototype due to more ad-
vanced foundry technology, which are also of much higher
price. However, they still share the drawbacks as mentioned

11

CPU: Intel Xeon Silver 4114 CPU (10 core)

GPU: NVIDIA P4 (share the similar INT8 TOPS with FLASH)

FPGA: Xilinx VU13P

Evaluation — Cross-silo FL Application

For deep learning models:

1. FLASH outperforms CPU by achieving speedup

2. FLASH outperforms GPU by achieving speedup

4.1 × ∼ 5.4 ×
1.2 × ∼ 1.6 ×

�� �� �� �� ��

� �	
��� ���

�

�

�

�
��

�
�

	
��
� ��� ��� �����

(a) RSA-PSI

�� �� �� �� ��

� �	
��� ���

�

�

�

�

�
��

�
�

	
��
� ��� ��� �����

(b) VLR

�� �� �� �� ��

� �	
��� ���

�

�

�

�
��

�
�

	
��
� ��� ��� �����

(c) SBT

�� �� �� �� ��

� �	
��� ���

�

�

�

�

�
��
�
�
	
��
� ��� ��� � ��!

(d) HLR
Figure 9: Performance of RSA-PSI, VLR, SBT, and HLR with changing data volumes.

� � �� �� �� �� ��

� ��	�
���	 ���

�

�

�

�
��

�
�

�
��
�

��� ����

���	�
����

��	
���� ������� ��� �����

Figure 10: Performance of 5 deep neural networks.
would still be an efficient solution to accelerate large-scale
cross-silo FL applications.
Comparison with Other Paillier Accelerators: To give
readers a better understanding of how efficient the FLASH’s
hardware design is, we further compare FLASH with some
state-of-the-art hardware-based solutions, e.g., Paillier Crypto-
processor (PCP) [79], HLS [90], and SoC [30] based solutions.
Moreover, due to the limited hardware resources, some of
these works only implement a subset of cryptographic opera-
tions supported by FLASH. The comparison results are shown
in Table 2. PCP and HLS report their data with public key
N = 1024bit, while SoC uses N = 2048bit, thus we report the
performance of FLASH with both N = 1024 and 2048bit. The
results show that, compared to PCP, HLS and SoC, FLASH
consumes 10.97⇥, 1.80⇥, 4.88⇥ DSP resources, but deliv-
ers 28.95⇥, 7.77⇥, and 10.75⇥ encryption acceleration and
93.15⇥, 20.56⇥, and 34.38⇥ decryption acceleration, respec-
tively. The results demonstrate that by using inter- & intra-
engine pipelining and dataflow scheduling, FLASH can (1)
deliver much better performance if utilizing comparable re-
sources, and (2) support more complete functions.

6.3 Cross-silo FL Applications
We then present how FLASH can accelerate real-world cross-
silo FL applications, including both vertical and horizontal.
The models and datasets used are shown in Table 3. For ver-
tical FL, before performing the model training algorithms,
we first run a commonly used sample alignment algorithm:
RSA blind signature-based PSI (RSA-PSI). Then, we per-
form Vertical Logistic Regression (VLR) [51] and Secure
Boosting Tree (SBT) [38] algorithms over the data intersec-
tion (generated from PSI), respectively. For horizontal FL, we
mainly evaluate Horizontal Logistic Regression (HLR) and
5 deep learning applications with different parameters. Each
application runs a fixed number of epochs.
RSA-PSI, VLR, SBT, and HLR: The performance of RSA-
PSI, VLR, SBT, and HLR is related to the data volumes. Thus
we evaluate FLASH with different data volumes. The re-
sults are shown in Figure 9. In general, FLASH consistently

outperforms CPU and GPU by achieving 1.6⇥ – 6.8⇥ and
1.1⇥ – 2.0⇥ acceleration ratio respectively. The results have
demonstrated that by designing a tailored hardware accelera-
tion architecture for cross-silo FL, we can effectively speed
up FL applications and outperform the existing CPU/GPU
architectures. Furthermore, we also notice that for RSA-PSI
and VLR, GPU tends to reach a similar acceleration ratio
as FLASH while processing more data. The reason is that
for RSA-PSI and VLR, the cleartext computation, which is
purely executed on CPU, takes a significant portion of the
total computation time. For example, in VLR, when handling
50K data samples in one epoch, after sufficient acceleration,
the ciphertext computation takes < 10% of the total computa-
tion time. Therefore, the performance is mainly decided by
the time of cleartext computation when the cryptographic op-
erations are sufficiently accelerated, which leads to the results
that FLASH and GPU achieve similar acceleration ratios over
CPU. In contrast, for HLR and SBT, FLASH can achieve a
higher acceleration ratio than GPU because the cryptographic
operations of these two applications consume a significant
portion of the total computation time.
5 Deep Learning Applications: We have further evaluated 5
deep learning models of different numbers of parameters with
horizontal FL. The results are shown in Figure 10. We find that
FLASH can outperform CPU and GPU by achieving 4.1⇥ –
5.4⇥ and 1.2⇥ – 1.6⇥ acceleration ratio respectively due to a
similar reason discussed above. Furthermore, we note that for
models with more parameters, e.g., DenseNet169, ResNet50,
VGG16, FLASH can achieve a higher speedup than models
with fewer parameters, e.g., MLP, LSTM. This experiment
implies that for more computation-intensive tasks, FLASH
can deliver more notable results.
Correctness: In addition to evaluating the performance of the
above 9 cross-silo FL applications, we also validate the final
results of all compared schemes (we avoid the randomness
by setting an identical random seed). Results have shown that
all schemes yield identical results, showing that FLASH does
not affect the correctness of model training.
Summary: Implemented as a FPGA prototype, FLASH has
already largely outperformed CPU and achieved moderately
better performance than GPU with comparable price. We also
understand that high-end GPUs, e.g., A100 [9], H100 [10],
may outperform FLASH’s FPGA prototype due to more ad-
vanced foundry technology, which are also of much higher
price. However, they still share the drawbacks as mentioned

11

Evaluation — ASIC Evaluation

FPGA System Logic Cells DSP Encryption (kOP/s) Decryption (kOP/s) Encryption/DSP (OP/s) Decryption/DSP (OP/s)

FLASH VU13P 3,780,000 12,288 40.706 107.707 3.313 8.765
PCP [63] 7VX330T [1] 326,400 1,120 1.40625 1.15625 1.256 1.032

Ratio - 11.58⇥ 10.97⇥ 28.95⇥ 93.15⇥ 2.64⇥ 8.49⇥

Table 3: Resource consumption & performance comparison between FLASH and Paillier Cryptoprocessor (PCP).

28nm Technology Library 12nm Technology Library
Area/Unit (mm2) # Unit Total Area (mm2) Area/Unit (mm2) # Unit Total Area (mm2)

PCIe Gen3⇥16 8.46 1 8.460 (6.56%) 5.25 1 5.250 (4.04%)
DDR4 7.25 2 14.500 (11.24%) 4.43 2 8.860 (6.81%)
Engine Logic 0.093 800 74.480 (57.72%) 0.046 1900 87.499 (67.26%)
Engine Memory 0.033 800 26.200 (20.30%) 0.014 1900 25.927 (19.93%)
Dataflow Scheduling & Others 5.399 1 5.399 (4.18%) 2.561 1 2.561 (1.97%)

Total - - 129.04 (99.26%) - - 130.10 (100.08%)

Table 4: ASIC resource evaluation for both 28nm and 12nm technology libraries.

Frequency (MHz) # Engines Performancea

VU13P FPGA 300 300 1
28nm ASIC 800 800 6.40⇥ "
12nm ASIC 1120 1900 23.64⇥ "

aWe use the performance achieved by VU13P FPGA as a baseline. All per-
formance data achieved by other implementations are normalized to VU13P
FPGA.

Table 5: ASIC performance estimation.

similar optimization methods as FLASH, e.g., Binary Expo-
nentiation [40] and Montgomery Modular Multiplication [48].
Readers may wonder the differences between these works and
FLASH.

First, our idea of composing various cryptographic opera-
tions based on the 2 basic operators via dataflow scheduling
mechanism is tailored for cross-silo FL, which makes FLASH
a unique and novel solution compared with existing works.
Second, most existing works target at optimizing a single
modular exponentiation operation. Directly leveraging these
works to the cross-silo FL leads to insufficient performance
gain because cross-silo FL needs many such engines to be effi-
ciently accelerated. Naively piling up these modular exponen-
tiation operations leads to poor resource utilization and low
parallelism. In contrast, FLASH’s design goal is to implement
massive high-performant modular exponentiation and multi-
plication engines instead one single modular exponentiation
operation. In addition, FLASH uses inter- and intra-engine
pipelining and hierarchical data distribution technics, which
is also novel in the research community.

Extending to Other Application Domains: Although
FLASH is designed for accelerating cross-silo FL, actually, it
can accelerate applications in other domains as well. First, the
Paillier and RSA cryptosystems used in cross-silo FL are also
widely adopted in other domains. Thus FLASH can accel-
erate applications built on them, e.g., electronic voting [35],
electronic cash [31], and threshold cryptosystem [34]. Sec-
ond, since FLASH’s core idea is to accelerate modular mul-
tiplication and exponentiation operators, cryptographic sys-

tems/operations built on them, e.g., Diffie–Hellman key ex-
change [43], can also benefit from FLASH.

8 Related Works
Accelerating FL: Recently, due to the increasing deployment
of FL, various research works have emerged to accelerate FL.
MAGE proposes to optimize the secure computation from a
memory perspective [52]. BatchCrypt tries to optimize the
Paillier encryption by encoding a batch of quantized gradi-
ents into a long integer and encrypting it in one batch [74].
VF2Boost proposes a novel training protocol to reduce the
idle time of each participant [37]. We design FLASH from
a different angle: accelerating the cryptographic operations
used in FL, thus FLASH could be easily combined with them.

Considering accelerating the cryptographic operations of
FL, HAFLO uses GPU to accelerate the Federated Logistic
Regression [33]. Yang et al.use FPGA to accelerate the Pail-
lier encryption operation for cross-silo FL [72]. Yet none of
them performs a thorough analysis towards all cryptographic
operations used in cross-silo FL and offloads them efficiently
on hardware-based accelerator as FLASH.
Domain Specific Accelerator: Domain Specific Accelera-
tor (DSA) has been an emerging research topic recently. DSA
adopts hardware, e.g., FPGA, ASIC, etc., to accelerate par-
ticular applications. For example, Tiara uses FPGA and pro-
grammable switch to accelerate layer-4 load balancing [73].
FlowBlaze offloads complex networking functions on a NetF-
PGA SmartNIC [60]. hXDP proposes to use FPGA to accel-
erate eBPF programs for fast XDP execution [30]. MicroRec
offloads neural networks on FPGA to implement efficient
recommendation systems [47]. HEAX designs a hardware
architecture to accelerate fully homomorphic encryption [61].
FLASH follows the principle of DSA to design a hardware-
based solution to efficiently accelerate cross-silo FL.

9 Conclusion
This paper presents FLASH, a hardware acceleration archi-
tecture for cross-silo FL. We have provided a full functional
FPGA prototype and evaluate our design as ASICs. Extensive

12

If implemented as an ASIC

1. FLASH achieves performance gain

compared to FPGA prototype with 28nm
technology library

2. FLASH achieves performance gain
compared to FPGA prototype with 12nm
technology library

7.11 ×

23.64 ×

28nm Technology Library 12nm Technology Library
Area/Unit (mm2) # Unit Total Area (mm2) Area/Unit (mm2) # Unit Total Area (mm2)

PCIe Gen3⇥16 8.46 1 8.460 (6.56%) 5.25 1 5.250 (4.04%)
DDR4 Controller 7.25 2 14.500 (11.24%) 4.43 2 8.860 (6.81%)
Engine Logic 0.093 800 74.480 (57.72%) 0.046 1900 87.499 (67.26%)
Engine Memory 0.033 800 26.200 (20.30%) 0.014 1900 25.927 (19.93%)
Dataflow Scheduling & Others 5.399 1 5.399 (4.18%) 2.561 1 2.561 (1.97%)

Total - - 129.04 (99.26%) - - 130.10 (100.08%)

Table 4: ASIC resource evaluation for both 28nm and 12nm technology libraries.
Frequency (MHz) # Engines Performancea

VU13P FPGA 300 300 1
28nm ASIC 800 800 7.11⇥ "
12nm ASIC 1120 1900 23.64⇥ "

a We use the performance achieved by VU13P FPGA as a baseline. All performance
data achieved by other implementations are normalized to VU13P FPGA.

Table 5: ASIC performance estimation.
operating frequency after physical design should be lower
than logic synthesis, we reduce the actual operation frequency
by multiplying 80% to the design target for a conservative
purpose. Table 5 shows our final assessment results. With
28nm technology library, we can allocate 2.67⇥ engines com-
pared to our FPGA implementation (800 v.s. 300), and the
operation frequency of these engines is 2.67⇥ that of the
FPGA implementation (800MHz v.s. 300MHz), leading to
an overall 7.11⇥ performance gain. With 12nm technology
library, we can allocate 6.33⇥ engines (1900 v.s. 300) with
3.73⇥ operation frequency (1120MHz v.s. 300MHz), and
achieve 23.64⇥ overall performance improvement. Finally,
we have contacted our ASIC design service provider to ob-
tain the power consumption for a single engine, which is
⇠ 16.6mWatt with 28nm technology library. Thus, the total
power consumption for all engines is ⇠ 13.28Watt. Since we
do not have the power consumption data of other parts, e.g.,
PCIe controller, etc., we cannot tell the total power consump-
tion. However, we believe the total power consumption of
FLASH as an ASIC should be significantly lower than the
120Watt of our FPGA implementation.

7 Discussion
FLASH v.s. other FPGA implementations: Some exist-
ing works also target at implementing modular exponenti-
ation operations on FPGA [23, 25, 26, 54, 64], which lever-
age similar algorithm optimization methods, e.g., Binary
Exponentiation [40] and Montgomery Modular Multiplica-
tion [48]. However, the differences between these works and
FLASH are as follows. First, our idea of composing vari-
ous cryptographic operations based on the 2 basic operators
via dataflow scheduling matches the cross-silo FL scenarios,
making FLASH a unique solution compared to prior works.
Second, most existing works focus on optimizing a single
modular exponentiation operation. Directly borrowing these
works to the cross-silo FL leads to insufficient performance
gain because cross-silo FL needs many such engines to be
fully accelerated. Naively piling up these modular exponen-
tiation operations leads to poor resource utilization and low
parallelism. In contrast, FLASH’s design goal is to imple-
ment massive high-performant modular exponentiation and
multiplication engines instead of one single modular expo-
nentiation operation. Furthermore, our design of FLASH is
not limited to FPGA but also applied to ASICs.
Extending to other application domains: While FLASH

is introduced for accelerating cross-silo FL, it can speed
up applications in other domains as well. First, the Pail-
lier and RSA cryptosystems used in cross-silo FL are also
widely adopted in other domains. Thus FLASH can accel-
erate applications built on them, e.g., electronic voting [34],
electronic cash [29], and threshold cryptosystem [33]. Sec-
ond, since FLASH’s core idea is to accelerate modular mul-
tiplication and exponentiation operators, cryptographic sys-
tems/operations built on them, such as Diffie–Hellman key
exchange [43], can also benefit from FLASH.

8 Related Works
Accelerating FL: Recently, due to the increasing deploy-
ment of FL, various research works have emerged to accel-
erate FL. MAGE proposes to optimize the secure computa-
tion from a memory perspective [52]. BatchCrypt tries to
optimize the Paillier encryption by encoding a batch of quan-
tized gradients into a long integer and encrypting it in one
batch [72]. VF2Boost proposes a novel training protocol to
reduce the idle time of each participant [37]. Relative to them,
we design FLASH from a different angle: accelerating the
cryptographic operations used in FL, and our FLASH could
be easily combined with these prior works.

Considering accelerating the cryptographic operations of
FL, HAFLO [31] uses GPU to accelerate the Federated Logis-
tic Regression. Yang et al. [70] leverages FPGA to accelerate
the Paillier encryption operation for cross-silo FL. Yet, none
of them performs a thorough analysis towards all crypto-
graphic operations used in cross-silo FL and offloads them
efficiently on hardware-based accelerator as FLASH.
Domain Specific Accelerator (DSA): DSA has recently
been an emerging research topic that adopts hardware, e.g.,
FPGA, ASIC, etc., to accelerate particular applications. For
example, Tiara [71] uses FPGA and programmable switch to
accelerate layer-4 load balancing. FlowBlaze [58] offloads
complex networking functions to a NetFPGA SmartNIC.
hXDP [28] proposes to use FPGA to accelerate eBPF pro-
grams for fast XDP execution. MicroRec [47] offloads neural
networks to FPGA to implement efficient recommendation
systems. HEAX [59] designs a hardware architecture to
accelerate fully homomorphic encryption. F1 [60] further
proposes a RTL design for programmable fully homomorphic
encryption. Similar to them, FLASH follows the principle
of DSA to design a hardware-based solution to efficiently
accelerate cross-silo FL.

9 Conclusion
This paper presented FLASH, a hardware acceleration archi-
tecture for cross-silo FL. We have provided a fully functional
FPGA prototype and evaluated our design as an ASIC. Exten-
sive experiments with realistic applications and cryptographic
operations have shown that FLASH is a viable solution.

11

Conclusion

Thank You !

1. We identified 9 cryptographic operations that are widely used in cross-silo FL that
cause dramatic performance degradation.

2. We proposed FLASH, a high-performance hardware acceleration architecture for
cross-silo federated learning. FLASH leverages the observation that these 9
cryptographic operations are built upon two basic operators: modular multiplication
& exponentiation to achieve high performance and resource utilization.

3. We provided a fully-functional implementation of FLASH with FPGA and integrated
it with FATE. We also used Synopsys tools to evaluate FLASH as an ASIC. Testbed
and evaluation results show that FLASH is a promising solution.

