Electrode: Accelerating Distributed
Protocols with eBPF

Sowmya

Dharanipragada Minfan Yu

“Yang Zhou "Zezhou Wang

Harvard University Peking University ~ Cornell University = Harvard University

* Co-primary author

Cloud applications need consensus protocols for high availability

Request

B
»

ZooKeeper etcd

This talk: accelerating consensus protocol implementations for cloud apps

Example: a simplified Multi-Paxos consensus protocol

... we target in-memory data replication (i.e., without persistence)

Waiting on quorum

Client .
Execution!
Leader C
o)
’77/77 y
Follower 1 \\
Follower 2

Follower 3 | | f N
Follower 4 | | V 5

Request Broadcasting Acknowledging Response
preparation

In this example, the leader node invokes networking APIs 14 times per request

Kernel networking: Multi-Paxos incurs high kernel overhead

User space Leader Paxos 19% CPU' on context switching
Socket Layer 44% CPU time
UDP Stack
Kernel space Network stack 25% CPU -

Traffic Control

NIC Driver

NIC Hardware

[1] Experiment settings: Multi-Paxos with 5 replicas using socket APIs from Linux kernel 5.8.0, measured on leader node. 4

Kernel bypassing: does it solve all problems?

DPDK: moving stacks to user space,
using busy polling instead of interrupt

Paxos
| UDPstack |

+ Good performance

- Security and isolation vulnerability

User-space driver)
E 2 - Not cloud-friendly: Busy polling discourages CPU sharing

| Kernel net. stack |
NIC Hardware

- High maintenance overhead: compatibility with others

Kernel bypassing is not a panacea

Can we achieve both?

Secuirity, isolation, cloud-
Approaches . . Performance
friendly, ease maintenance
Kernel High Low
Kernel bypassing Low High
Kernel customization for apps- High Medium - High

Electrode demonstrates it on modern Linux kernels without kernel modifications or rebooting.

... we target UDP-based applications inside data centers.

[1] Bershad, Brian N., et al. "Extensibility safety and performance in the SPIN operating system." SOSP 1995

[2] Engler, Dawson R., et al. "Exokernel: An operating system architecture for application-level resource management."
ACM SIGOPS Operating Systems Review 1995

[3] Zhong, Yuhong, et al. "XRP: In-Kernel Storage Functions with eBPF." OSDI 2022

Talk QOutline

High-level methodology and challenges
Electrode: three kernel customizations for Paxos

Evaluation

Talk QOutline

High-level methodology and challenges

Leveraging eBPF to accelerate Paxos implementation

eBPF is a mechanism to offload functions to existing kernel at runtime and safely
o It achieves safety via static verification

Leader Paxos

U on kernel + Good performance

+ Secure, isolate well: kernel-native

eBPE-offloaded Paxos ops] + Cloud-friendly: no busy polling

... in lower layers of kernel stacks,
avoiding most kernel overhead

+ Reusing kernel networking stack

Paxos on eBPF

eBPF was commonly used for simple network functions:
o Packet filtering, monitoring, load balancing

Now we are using it for application functions:
o A Paxos message is usually small enough to fit into a single packet

- TC--kernel-exposed hook point

&

{\\ XDP--vendor-exposed hook point

packets

10

Challenges of processing Paxos messages in eBPF

eBPF programming model is constrained because of static verification for safety

o Limited # of instructions, bounded loops, static memory allocation
o Challenging to support complex pointer arithmetics for memory accesses

What's the right division of labor between user and kernel
o that can greatly reduce kernel overhead
o Wwhile being implementable in eBPF for offloaded ops?

11

Division of labor between user and kernel

Perf-critical and simple to kernel | Broadcasting | | Acknowledging | | Wait-on-quorum

Complex to user

Client-facing ser/deserialization Application ops Failure, msg loss/reordering
(complex pointer arithmetics) (dynamic memory allocation) || (too complex for static verification)

Client

Leader &

Follower 1

Follower 2

Follower 3

12

Follower 4

Talk QOutline

High-level methodology and challenges

o Leveraging eBPF to offload perf-critical and simple ops to the kernel

13

Talk QOutline

Electrode: three kernel customizations for Paxos

14

Electrode offload #1: message broadcasting

Perf-critical: # of context switching and stack traversing is linear to # of replicas

Simple for eBPF: TC to clone and modify packets (using bpf _clone_redirect())
o Incur only once context switching and upper stack traversing
o Handle message loss in user space by resending messages (unlikely events)

4 send() = 1 send()
Leagler Ppxos = Leader, Paxos
Socket Llayer —o— // Socke} Layer

P Sthck == UDP ptack
Fraffc cdntrd ,’///' = <
| Nlll DriI/er I ///// ’,1’7;;._ | NIE Driyer

VAT T A e

ST —a— 15

Electrode offload #2: fast acknowledging

Perf-critical: incurring twice the kernel latency on the critical path

Simple for eBPF: XDP to buffer log entries and quickly ack back
o Remove the kernel latency from the critical path
o Detect special cases (e.g., message loss, full buffer) and forward to user space

Y E | Append log

’4’ —————— I _AFoIIower Paxos Follower Paxos <., Async
—— Socket Layer Socket Layer *, poll

o UDP Stack UDP Stack ﬁ

e

T Traffic Control Traffic Control

T NIC Driver |—i¥ Py | AEpen(iI ng Lof

in-kernel ringbu
NIC Hardware NIC Hardware
)2 ! 2
=— 1 recv() 1 send() 1 recv() 1 send()

16

Electrode offload #3: waiting on quorum

Perf-critical: leader recv ACKs from all followers, each incurring kernel overhead

Simple for eBPF: XDP to maintain # of ACKs in the driver layer
o Filter unnecessary ACKs: only the quorum-reaching ACK incurs kernel overhead
o Use bitset instead of counter to avoid double counting

4 recv() = 1 recv()
Leagler Pgxos = JRgur: s Leader, Paxos
odket Lhye —o— /// SockAayer
UP Stdck S LB UDP ptack
/7 Y4 _|J_-|_

I / e A
4 ’
Traflic Cdntrof A Traffic Control
. R =
NI|Z Dnier S T ==
NICHard}vare //:/ _ - IC Hardyvare
<\\Y\\-Y\ P//:/” bl | u L] u

-
- -
-
—— — -

o o o -

—o— 17

State synchronization challenge

No shared memory between eBPF and user space for kernel safety
o Communicate by copying data back and forth

Handling reordered
messages

O

Our approach 1: detaching eBPF program

Paxos

next_seq

Our approach 2: using eBPF map as an on-off switch

Details in the paper
18

Talk QOutline

Electrode: three kernel customizations for Paxos

o Broadcasting, fast ack’ing, waiting on quorum beneath network stacks

19

Talk QOutline

Evaluation

20

Evaluation overview

Workloads:
o Multi-Paxos on 3/5/7 replicas
o Transactional replicated key-value store on 3/5/7 replicas (skipped here)

Metrics: we vary # of clients and measure:
o Throughput, median/99th-tail latency, and CPU utilization

Testbed:
o Bare metal machines from Cloudlab xI1170
o Stock Linux kernel 5.8.0 and ubuntu 20.04
o Mellanox ConnectX-4 25Gbps NIC
o We do not use IP multicast (Cloudlab does not support either)

21

Load-latency curves (5 replicas)

99th-tail latency (us)

250

&)
o
1

o

- —_— N
o (@) o
o o o
| | |

2x throughput

improvement
- Linux kernel < >

- + Electrode
20% Iatency’\
reduction

| | |

0 20 40 60

Throughput (K req/s)

14 times context switching
and stack traversing

Electrodeﬂ

5 times

22

Other results

7 replicas: 2.3x throughput improvement and 40% tail latency reduction

Comparison to kernel-bypassing:

o Around half performance of DPDK-based one (throughput and latency)
o Hard-to-offload operations in Paxos
o eBPF with XDP/TC cannot beat DPDK, as it is interrupt-driven
o Electrode is a kernel-native approach (i.e., security, isolation, cloud-friendly, etc)

More in the paper!
o Improvement on the transactional replicated key-value store
o Performance contribution of each eBPF optimization

o Reduction of CPU usage

23

Electrode Summary

o Consensus protocols under kernel stacks suffer from high kernel overhead
o We design a set of eBPF-based kernel customizations to reduce such overhead

o Without kernel modifications or rebooting
o Up to 2.3x throughput speedup and 40% latency reduction for Multi-Paxos

Security, isolation, Kernel Kernel bypassing
Performance

cloud-friendly

Kernel customization
for applications

Thank You!

24

