Transparent GPU Sharing in Container Clouds for Deep Learning Workloads

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, Xin Jin
Deep learning training jobs: important workloads in datacenters

• Deep learning is widely used in many applications
 • Recommendation
 • Machine Translation
 • Voice Assistant
 • ……

• Deep learning models are often trained in shared GPU clusters

Diagram:
- Submit DL training jobs
- Shared GPU Clusters
Deep learning training jobs in container clouds

Container 1

- ResNet Job
- TensorFlow

Container 2

- Inception Job
- PyTorch

Host Operating System

Hardware

GPU
Low GPU utilization in production

- Microsoft [1]: the average GPU utilization is only 52%
- Alibaba [2]: the median GPU utilization is no more than 10%
- Low GPU utilization is bad
 - Container clouds: idle GPUs are a huge waste
 - Users: longer queueing delay, longer job completion time

- **Root cause**: Each GPU is **statically** assigned to a single container

Existing GPU sharing solutions

• **Key idea:** Share GPUs to improve GPU utilization

• Classify DLT jobs into two classes
 • **Production job:** Run without performance degradation
 • **Opportunistic job:** Utilize spare GPU resources to execute

• **SOTA solutions:**
 • Application-layer solution: AntMan [OSDI’ 20]
 • OS-layer solution: NVIDIA MPS, NVIDIA MIG
Application-layer solution: AntMan

- Custom DL framework
 - Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)
- Support GPU compute sharing and GPU memory oversubscription

- **Limitations**: Lack of Transparency
 - **Limited use cases**: restricts users to use particular frameworks
 - **Huge operation overhead**: need to maintain custom frameworks
OS-layer solution: NVIDIA MPS

• A software solution for GPU sharing provided by NVIDIA

• Limitations:
 • Low GPU utilization
 • Does not support GPU memory oversubscription
 • Requires application knowledge to properly set the resource limit
 • Weak fault isolation
 • When a job fails, other jobs may be affected and even fails
OS-layer solution: NVIDIA MIG

• A recent hardware solution for GPU sharing provided by NVIDIA

• Limitations:
 • **Performance isolation**
 • Cannot arbitrarily partition a GPU
 • Cannot dynamically change GPU resources
 • Compatibility
 • Only available on a few high-end GPUs
 • Does not support GPU sharing for the multi-GPU instance
A more practical solution: TGS

<table>
<thead>
<tr>
<th></th>
<th>AntMan</th>
<th>MPS</th>
<th>MIG</th>
<th>TGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>High utilization</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Performance isolation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fault isolation</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
TGS architecture

Container 1
- ResNet Job
- TensorFlow

Container 2
- Inception Job
- PyTorch

Rate Monitor
Rate Control
Unified Memory

TGS

Host Operating System

Hardware
GPU
Sharing GPU compute resources

• Strawman solution: priority scheduling
 • Control the opportunistic job based on the GPU kernel queues

• Low GPU utilization:
 • The state of queues do not reflect the remaining GPU resources
Adaptive rate control of TGS

GPU kernels from production jobs

\[\alpha_{in} \]

Monitor \(\alpha_{in} \)

Report \(\alpha_{in} \)

Queue kernels And adapt \(\beta_{out} \)

\[\alpha_{out} = \alpha_{in} \]

\[\beta_{out} \leq \beta_{in} \]

GPU kernels from opportunistic jobs

\[\beta_{in} \]
Sharing GPU memory resources

- **Weak Fault isolation**: total GPU memory consumption may exceed GPU memory capacity and cause OOM
- **Low GPU utilization**: some jobs always claim all GPU memory

- Application-layer technique cannot be used in the OS layer
 - Cannot directly ask DL framework to release unused GPU memory
 - Cannot directly change pointer address from GPU memory to host memory
Transparent unified memory of TGS

- **Key ideas**: leverage CUDA unified memory to transparently unify GPU memory and host memory

- **High GPU utilization**: The actual physical GPU memory is allocated when jobs first access to them

- **Fault isolation**: When GPU memory is oversubscribed, TGS changes virtual memory mapping to evict GPU memory of opportunistic job to host memory
Evaluation setup

- Implementation: ~3000 LoC C++ & Python
 - Integration with Docker and Kubernetes
- Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUs
- Trace: Philly Trace from Microsoft [Jeon et al. 2019]
- Models
 - CV: ResNet, ShuffleNet, MobileNet
 - Graph: GCN
 - NLP: Bert, GPT-2
 - Recommendation: DLRM
Evaluation baselines

• TGS: our work
• AntMan: the state-of-the-art application-layer solution
• MPS: manually set appropriate limit
• MIG: manually set best configuration
• Exclusive: give exclusive access to a GPU
• Co-execution: share a GPU without any control
Mixed workload job stream

- A job stream contains 50 production jobs and 50 opportunistic jobs
- Opportunistic jobs: **52%** JCT reduction compared to Exclusive
- Production jobs: **21%** JCT reduction compared to Co-execution
Comparison with AntMan

- Achieve comparable performance in different contention scenarios
- Provide transparency without sacrificing performance

(a). Low-contention scenario
(b). High-contention scenario
Adaptive rate control of TGS

- TGS protects production jobs with little overhead, while providing remaining GPU resources to opportunistic jobs.

(a). Low-contention scenario

(b). High-contention scenario
Transparent unified memory of TGS

- TGS protects production jobs under GPU memory oversubscription
- $15 \times$ throughput improvement compared to MPS
More experiments in our paper

• System overhead
• Convergence of TGS in different scenarios
 • Convergence of the rate control under dynamic job arrival
 • Convergence of the rate control under dynamic resource usage
• Supporting different DL frameworks
• GPU sharing for large model training
Conclusion

• TGS provides transparent GPU sharing to DL training in container clouds with four important properties:
 • Transparency
 • Performance isolation
 • High GPU utilization
 • Fault isolation

• TGS improves the throughput of the opportunistic job by up to $15 \times$ compared to the existing OS-layer solution MPS

Thanks!

bingyangwu@pku.edu.cn