

Transparent GPU Sharing in Container Clouds for Deep Learning Workloads

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, Xin Jin

Deep learning training jobs: important workloads in datacenters

- Deep learning is widely used in many applications
 - Recommendation
 - Machine Translation
 - Voice Assistant
 - •
- Deep learning models are often trained in shared GPU clusters

Deep learning training jobs in container clouds

Low GPU utilization in production

- Microsoft [1]: the average GPU utilization is only 52%
- Alibaba [2]: the median GPU utilization is no more than 10%
- Low GPU utilization is bad
 - Container clouds: idle GPUs are a huge waste
 - Users: longer queueing delay, longer job completion time

Root cause: Each GPU is statically assigned to a single container

Existing GPU sharing solutions

- Key idea: Share GPUs to improve GPU utilization
- Classify DLT jobs into two classes
 - Production job: Run without performance degradation
 - Opportunistic job: Utilize spare GPU resources to execute

- SOTA solutions:
 - Application-layer solution: AntMan [OSDI' 20]
 - OS-layer solution: NVIDIA MPS, NVIDIA MIG

Application-layer solution: AntMan

- Custom DL framework
 - Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)
- Support GPU compute sharing and GPU memory oversubscription

- Limitations: Lack of Transparency
 - Limited use cases: restricts users to use particular frameworks
 - Huge operation overhead: need to maintain custom frameworks

OS-layer solution: NVIDIA MPS

- A software solution for GPU sharing provided by NVIDIA
- Limitations:
 - Low GPU utilization
 - Does not support GPU memory oversubscription
 - Requires application knowledge to properly set the resource limit
 - Weak fault isolation
 - When a job fails, other jobs may be affected and even fails

OS-layer solution: NVIDIA MIG

- A recent hardware solution for GPU sharing provided by NVIDIA
- Limitations:
 - Performance isolation
 - Cannot arbitrarily partition a GPU
 - Cannot dynamically change GPU resources
 - Compatibility
 - Only available on a few high-end GPUs
 - Does not support GPU sharing for the multi-GPU instance

A more practical solution: TGS

	AntMan	MPS	MIG	TGS
Transparency		✓	✓	✓
High utilization	✓			✓
Performance isolation	✓	✓	✓	✓
Fault isolation	✓		✓	✓

TGS architecture

Sharing GPU compute resources

- Strawman solution: priority scheduling
 - Control the opportunistic job based on the GPU kernel queues

- Low GPU utilization:
 - The state of queues do not reflect the remaining GPU resources

Adaptive rate control of TGS

Sharing GPU memory resources

- Weak Fault isolation: total GPU memory consumption may exceed GPU memory capacity and cause OOM
- Low GPU utilization: some jobs always claim all GPU memory

- Application-layer technique cannot be used in the OS layer
 - Cannot directly ask DL framework to release unused GPU memory
 - Cannot directly change pointer address from GPU memory to host memory

Transparent unified memory of TGS

 Key ideas: leverage CUDA unified memory to transparently unify GPU memory and host memory

- High GPU utilization: The actual physical GPU memory is allocated when jobs first access to them
- Fault isolation: When GPU memory is oversubscribed, TGS changes virtual memory mapping to evict GPU memory of opportunistic job to host memory

Evaluation setup

- Implementation: ~3000 LoC C++ & Python
 - Integration with Docker and Kubernetes
- Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUS
- Trace: Philly Trace from Microsoft [Jeon et al. 2019]
- Models
 - CV: ResNet, ShuffleNet, MobileNet
 - Graph: GCN
 - NLP: Bert, GPT-2
 - Recommendation: DLRM

Evaluation baselines

- TGS: our work
- AntMan: the state-of-the-art application-layer solution
- MPS: manually set appropriate limit
- MIG: manually set best configuration
- Exclusive: give exclusive access to a GPU
- Co-execution: share a GPU without any control

Mixed workload job stream

- A job stream contains 50 production jobs and 50 opportunistic jobs
- Opportunistic jobs: 52% JCT reduction compared to Exclusive
- Production jobs: 21% JCT reduction compared to Co-execution

Comparison with AntMan

- Achieve comparable performance in different contention scenarios
- Provide transparency without sacrificing performance

Adaptive rate control of TGS

 TGS protects productions job with little overhead, while providing remaining GPU resources to opportunistic jobs

Transparent unified memory of TGS

- TGS protects production jobs under GPU memory oversubscription
- 15 × throughput improvement compared to MPS

More experiments in our paper

- System overhead
- Convergence of TGS in different scenarios
 - Convergence of the rate control under dynamic job arrival
 - Convergence of the rate control under dynamic resource usage
- Supporting different DL frameworks
- GPU sharing for large model training

Conclusion

- TGS provides transparent GPU sharing to DL training in container clouds with four important properties:
 - Transparency
 - Performance isolation
 - High GPU utilization
 - Fault isolation
- TGS improves the throughput of the opportunistic job by up to 15× compared to the existing OS-layer solution MPS

