
Aashaka Shah1, Vijay Chidambaram1,2, Meghan Cowan3, Saeed Maleki3,
Madan Musuvathi3, Todd Mytkowicz3, Jacob Nelson3, Olli Saarikivi3, Rachee Singh4,5

TACCL: Guiding Collective Algorithm Synthesis using
Communication Sketches

Email: aashaka@utexas.edu

1UT Austin 2VMWare Research 3Microsoft Research 4Microsoft 5Cornell University

Distributed Deep Learning

Incurs network communication overhead
• GPUs can spend as much as 20% - 65% of

time idle waiting on network communication

2

Deep learning models are getting larger
• Distributed across various nodes/servers,

each with multiple GPUs

1. https://huggingface.co/blog/large-language-models
2. Sapio, Amedeo, et al. "Scaling distributed machine learning with in-network aggregation.” NSDI’21

ELMo (94M)

BERT-Large (340M)

GPT-2 (1.5B)

Megatron-LM
(8.3B)

T5 (11B)

Turing NLG
(17.2B)

GPT-3 (175B)
Megatron-Turing

NLG (530B)

PaLM (540B)

0.01

0.1

1

10

100

1000

10000

2018 2019 2020 2021 2022

N
um

be
r o

f p
ar

am
et

er
s (

in
 b

ill
io

ns
)

● MPI-style collective communication used as abstractions for
communication
○ Gather, shuffle, accumulate data
○ AllGather, AlltoAll, ReduceScatter, AllReduce

● Collective algorithm determines network utilization and speed of
communication

AllGather

3

Communication in Distributed ML

Challenges in building algorithms for collectives?
Wide variety of node topologies

⇒ Best collective algorithm could be different for different topologies

NVSwitch

NIC NIC NIC NIC

NIC NIC NIC NIC

NVIDIA DGX-2 node

Azure NDv2 node

NIC

NVLink

4

Number of GPUs
(8, 16)

Number of NICs
(shared/dedicated)

GPU interconnects
(NVLink, NVSwitches)

Azure NDv2 node0 Azure NDv2 node1

● Link connections are heterogeneous
o Inter-node bandwidth < intra-node bandwidth
○ Inter-node latency > intra-node latency

⇒ Efficient collective algorithms need to be built keeping in mind link heterogeneity

NIC NIC

5

Challenges in building algorithms for collectives?
Hardware heterogeneity

Challenges in building algorithms for collectives?
Data size awareness

6

1
100

10000
1000000

512B
2KB

8KB
32KB

128KB
512KB

2MB
8MB

32MB

128MB

512MB

Ti
m

e
(u

s)

Data sizes

latency cost
dominates

bandwidth utilization
improves

● Collective algorithms with many data transfer steps (like a state-
of-the-art Ring algorithm) perform poorly for small data sizes

⇒ Efficient collective algorithms depends on size of data chunks to be transferred

Current state-of-the-art

7

NCCL (NVIDIA Collective Communication Library)
[Topology awareness] Generic algorithms like Ring or Tree mapped onto target topology

− Not custom-built for a particular heterogeneous topology

[Data size awareness] Tuning to select algorithms (Ring, Tree) based on input size
− Complicated
− Not present for all collectives
− Done using experiments that may not match reality

[Availability at scale]
+ Scales to multi-node topologies

1. https://github.com/NVIDIA/nccl/issues/457#issuecomment-771863198

Current state-of-the-art
Synthesis-based approaches (Blink, SCCL)
[Topology and data size awareness] Synthesize collective algorithm targeted to a
particular topology

+ Maximize link utilization in heterogeneous topology (Blink)
+ Synthesize pareto-optimality in terms of latency and bandwidth (SCCL)

[Availability at scale] Synthesis is NP-hard
− Cannot scale synthesis to a multi-node topology

1. Wang, Guanhua, et al. "Blink: A fast NVLink-based collective communication library." Proc. Conf. Syst. Mach. Learn. 2018.
2. Cai, Zixian, et al. "Synthesizing optimal collective algorithms." Proceedings of the 26th ACM SIGPLAN 2021.

8

TACCL
Collective Communication Library that solves a set of mixed integer linear
programming problems to synthesize collective algorithms
● Topology-aware
● Input-size aware

Scales to multi-node topologies

Drop-in replacement for NCCL

TACCL algorithms outperform NCCL by up-to 6.7x for evaluated topologies
and provide up-to 2.4x end-to-end speedup for evaluated ML models

9

TACCL: Guiding Collective Algorithm Synthesis using
Communication Sketches

Communication Sketches

Profiled Topology

Target Collective

Synthesizer

Hyperparameters

BackendAlgorithm

10Inputs

TACCL: Guiding Collective Algorithm Synthesis using
Communication Sketches

Communication Sketches

Profiled Topology

Target Collective

Synthesizer

Hyperparameters

BackendAlgorithm

10Inputs

1

What does a synthesized collective algorithm look like?

11

0
Precondition Postcondition

ALLGATHER

1 2

3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3

1 1

1

1 1

1

Link Chunk sent? Send order Send time

(0,1) [0]

(1,0) [0, 1, 1]

(1,2) [1, 0, 2]

(2,1) [0]

(1,3) [1,0,2]

(3,1) [0]

0

1 2 3

0 1 3

2

0 1 2
3

cost of chunk transfer

L links, C chunks (NP-hard)
For each link:
1) Will a data chunk be sent across it?

O(2(C x L))
2) How will chunks be ordered wrt each

other? O(2(C x C x L))

0

1 2 3> =
01 3> >

2

01 2> >
3

0

3

2 10

3

2

Communication Sketches
● ML engineer provides Communication Sketches
● Specify intuitive parts of the algorithm
● Do not require a lot of domain knowledge to write
● Guide algorithm synthesis

12

(0,1) Y/N? Y/N? Y/N? Y/N?

(1,0) Y/N? Y/N? Y/N? Y/N?

(1,2) Y/N? Y/N? Y/N? Y/N?

(2,1) Y/N? Y/N? Y/N? Y/N?

(1,3) Y/N? Y/N? Y/N? Y/N?

(3,1) Y/N? Y/N? Y/N? Y/N?

0 1 2 3

(0,1) - - Y/N? Y/N?

(1,0) - Y/N? Y/N? Y/N?

(1,2) Y/N? Y/N? - -

(2,1) - - Y/N? Y/N?

(1,3) Y/N? Y/N? - -

(3,1) - - Y/N? Y/N?

0 1 2 3

Sketch

Li
nk

s

Chunks

1) Sketching Logical Topology

13

7

5

6

4

3

1

2

0

7

5

6

4

3

1

2

0

Node 0 Node 1

1) Sketching Logical Topology

7

5

6

4

3

1

2

0

7

5

6

4

3

1

2

0

Provided
by users

13

Node 0 Node 1

Allow users to select/deselect links between nodes
Inter-node

connections?

1) Sketching Logical Topology

7

5

6

4

3

1

2

0

7

5

6

4

3

1

2

0

Sketch-1: [0,1,2,3,4,5,6,7] à [0,1,2,3,4,5,6,7]

13

Node 0 Node 1

Allow users to select/deselect links between nodes

sk
et

ch
-1

2-node Azure NDv2, AlltoAll

sk
et

ch
-2

1) Sketching Logical Topology

7

5

6

4

3

1

2

0

7

5

6

4

3

1

2

0

Sketch-2: 0 à 1

13

Node 0 Node 1

0

0.5

1

1.5

2

1KB
4KB

16KB
64KB

256KB
1MB

4MB
16MB

64MB

256MB
1GB

sketch-1 sketch-2

2-node Azure NDv2, AlltoAll

sketch-1 sketch-2

Sp
ee

du
p

ov
er

 N
CC

L

Higher is better

Sketch-1: [0,1,2,3,4,5,6,7] à [0,1,2,3,4,5,6,7]

Allow users to select/deselect links between nodes

sk
et

ch
-1

sk
et

ch
-1

sk
et

ch
-2

1) Sketching Logical Topology

7

5

6

4

3

1

2

0

7

5

6

4

3

1

2

0

Sketch-2: 0 à 1

13

Node 0 Node 1

0

0.5

1

1.5

2

1KB
4KB

16KB
64KB

256KB
1MB

4MB
16MB

64MB

256MB
1GB

sketch-1 sketch-2

2-node Azure NDv2, AlltoAll

sketch-1 sketch-2

Sp
ee

du
p

ov
er

 N
CC

L

Higher is better

Sketch-1: [0,1,2,3,4,5,6,7] à [0,1,2,3,4,5,6,7]

Allow users to select/deselect links between nodes

Reduces number of links to make decisions about
Can extract high performance over a range of input sizes

Provided
by users

Inter-node
connections?

2) Sketching NVSwitch connections
Allow users to maximize or minimize unique
connections over NVSwitches

14

NVSwitch

NVIDIA DGX-2 node

0
0.2
0.4
0.6

1 3 7 15
Number of connections (n)

Higher with

more connections

Data size: 1.5KB Th
ro

ug
hp

ut
 (G

B/
s)

0
50

100
150

1 3 7 15
Number of connections (n)

Lower with more connections

Th
ro

ug
hp

ut
 (G

B/
s)

Data size: 384MB

2) Sketching NVSwitch connections
Allow users to maximize or minimize unique
connections over NVSwitches

14

NVSwitch

NVIDIA DGX-2 node

0
0.2
0.4
0.6

1 3 7 15
Number of connections (n)

Higher with

more connections

Data size: 1.5KB Th
ro

ug
hp

ut
 (G

B/
s)

0
50

100
150

1 3 7 15
Number of connections (n)

Lower with more connections

Th
ro

ug
hp

ut
 (G

B/
s)

Data size: 384MB

Used to guide algorithm synthesis to be performant for a particular range of input sizes

3) Sketching for symmetry

0 2

1 3

4 6

5 7

Node 0

0 2

1 3

4 6

5 7

Node 1

Plane of symmetry
Provided by algorithm designer

• Designer can annotate symmetry planes around which data
transfers will be fixed to be rotationally symmetric

ch
un

k
c

ch
un

k
(c

+8
)

15

Reduces number of transfers to make decisions about

Generating the algorithm
Stage-wise synthesis simplifies the problem!

16

Routing Ordering Batching

Stage 1 Stage 2 Stage 3

Communication Sketches

Profiled Topology

Target Collective

Synthesizer

Hyperparameters

BackendAlgorithm

Inputs

Routing Ordering Batching

Stage 1 Stage 2 Stage 3

21

3

0

0 1 2

TACCL Synthesizer
0 1 2

3

0 1 2

0 1

0 1 2

3

0 1 2

Pre-condition Post-condition

20

Example collective

17

Routing Ordering Batching

Stage 1 Stage 2 Stage 3

21

3

0

0 1 2

TACCL Synthesizer
0 1 2

3

0 1 2

0 1

0 1 2

3

0 1 2

Pre-condition Post-condition

20

Example collective

17

Determine the path that each data chunk will take
(Ordering between data chunks not decided yet)

Solve an ILP to obtain optimal paths (based on congestion and dilation metrics)

2

Routing Ordering Batching

Stage 1 Stage 2 Stage 3

TACCL Synthesizer

1

3

0

0 1 2
0 > 1 > 2 0 > 2

0 > 1

21

3

0

0 1 2

17

Order chunks sent over the same link
Ordering is done using heuristics, e.g., by giving more preference to chunks that need to

travel longer distance

Example collective

0 1 2

3

0 1 2

0 1

0 1 2

3

0 1 2

Pre-condition Post-condition

20

Example collective

2

Routing Ordering Batching

Stage 1 Stage 2 Stage 3

Batches data chunks to send them together over links in order to reduce link latency costs
Solves an ILP to optimize between reduced latency cost v/s possible pipelining gaps

TACCL Synthesizer

1

3

0

0 1 2
0 > 1 > 2 0 > 2

0 > 1

21

3

0

0 1 2

21

3

0

0 1 2
0 > 1 = 2 0 > 2

0 > 1

17

Example collective

0 1 2

3

0 1 2

0 1

0 1 2

3

0 1 2

Pre-condition Post-condition

20

Example collective

TACCL: Guiding Collective Algorithm Synthesis using
Communication Sketches

18

(MSCCL)

https://github.com/microsoft/msccl/

(Extends NCCL to implement
synthesized collectives)

Evaluation
• Compare performance against NCCL (v2.8.4)
• Collectives: AllGather, AllReduce, AlltoAll
• Topologies:
• 2-node NVIDIA DGX-2 (32 GPUs)
• 2-node & 4-node Azure NDv2 (16 GPUs & 32 GPUs)

• Distributed ML models:
• Transformer-XL, BERT (PyTorch implementation)

19

0
20
40
60
80

100

1KB 16KB 256KB 4MB 64MB 1GB
0

5

10

15

20

1KB 16KB 256KB 4MB 64MB 1GB

How do TACCL algorithms perform against NCCL?

Buffer Size

2-node NVIDIA DGX-2 2-node Azure NDv2

6.2x 5.1x

3.2x

1.25x

5.7x

1.1x

1.4x 1.1x 1.2x

2x

3.4x3.3x

AllReduce

Al
go

rit
hm

 B
/W

 (G
B/

s)
Al

go
rit

hm
 B

/W
 (G

B/
s)

Higher is better

AllGather

20

0

20

40

60

1KB 16KB 256KB 4MB 64MB 1GB

3.1x 4.1x
1.9x

0.95x

6.4x

1.0x

0

2

4

6

8

1KB 16KB 256KB 4MB 64MB 1GB

1x 1.1x 1.2x

2.2x

1.4x1.3x

0
20
40
60
80

100

1KB 16KB 256KB 4MB 64MB 1GB
0

5

10

15

20

1KB 16KB 256KB 4MB 64MB 1GB

How do TACCL algorithms perform against NCCL?

Buffer Size

2-node NVIDIA DGX-2 2-node Azure NDv2

6.2x 5.1x

3.2x

1.25x

5.7x

1.1x

1.4x 1.1x 1.2x

2x

3.4x3.3x

AllReduce

Al
go

rit
hm

 B
/W

 (G
B/

s)
Al

go
rit

hm
 B

/W
 (G

B/
s)

Higher is better

AllGather

20

0

20

40

60

1KB 16KB 256KB 4MB 64MB 1GB

3.1x 4.1x
1.9x

0.95x

6.4x

1.0x

0

2

4

6

8

1KB 16KB 256KB 4MB 64MB 1GB

1x 1.1x 1.2x

2.2x

1.4x1.3x

Algorithms synthesized by TACCL are faster than NCCL over a range of input sizes
for the evaluated collectives and topologies

1.1x
1.6x 1.4x

2x
2.4x 1.4x

0

20

40

60

2 4 8 16 32 64

2x
1.8x

1.4x 1.1x

0

50

100

16 32 64 128

Do we see speedups in end-to-end model training?

Transformer- XL (Data Parallelism) BERT (Model Parallelism)

Th
ro

ug
hp

ut
 (s

eq
/s

)

Th
ro

ug
hp

ut
 (t

ok
/s

)

Batch size

Higher is better

Batch size

Microsoft-internal Mixture-of-Experts workload: 17% speedup

21

1.1x
1.6x 1.4x

2x
2.4x 1.4x

0

20

40

60

2 4 8 16 32 64

2x
1.8x

1.4x 1.1x

0

50

100

16 32 64 128

Do we see speedups in end-to-end model training?

Transformer- XL (Data Parallelism) BERT (Model Parallelism)

Th
ro

ug
hp

ut
 (s

eq
/s

)

Th
ro

ug
hp

ut
 (t

ok
/s

)

Batch size

Higher is better

Speeding up the collective algorithm speeds up end-to-end model training

Batch size

Microsoft-internal Mixture-of-Experts workload: 17% speedup

21

Conclusion

TACCL is a tool to synthesize efficient algorithms for collectives
• Guided using intuitive communication sketches
• Solved using novel 3-stage synthesizer

Will soon be available at https://github.com/microsoft/taccl

22Email: aashaka@utexas.edu

https://github.com/microsoft/taccl

