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Distributed Deep Learning

Incurs network communication overhead
• GPUs can spend as much as 20% - 65% of 

time idle waiting on network communication

2

Deep learning models are getting larger
• Distributed across various nodes/servers, 

each with multiple GPUs

1. https://huggingface.co/blog/large-language-models
2. Sapio, Amedeo, et al. "Scaling distributed machine learning with in-network aggregation.” NSDI’21
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● MPI-style collective communication used as abstractions for 
communication
○ Gather, shuffle, accumulate data
○ AllGather, AlltoAll, ReduceScatter, AllReduce

● Collective algorithm determines network utilization and speed of 
communication

AllGather
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Communication in Distributed ML



Challenges in building algorithms for collectives?
Wide variety of node topologies

⇒ Best collective algorithm could be different for different topologies
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Number of GPUs 
(8, 16)

Number of NICs 
(shared/dedicated)

GPU interconnects 
(NVLink, NVSwitches)



Azure NDv2 node0 Azure NDv2 node1

● Link connections are heterogeneous
o Inter-node bandwidth < intra-node bandwidth
○ Inter-node latency > intra-node latency

⇒ Efficient collective algorithms need to be built keeping in mind link heterogeneity

NIC NIC
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Challenges in building algorithms for collectives?
Hardware heterogeneity



Challenges in building algorithms for collectives?
Data size awareness
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● Collective algorithms with many data transfer steps (like a state-
of-the-art Ring algorithm) perform poorly for small data sizes

⇒ Efficient collective algorithms depends on size of data chunks to be transferred



Current state-of-the-art
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NCCL (NVIDIA Collective Communication Library)
[Topology awareness] Generic algorithms like Ring or Tree mapped onto target topology

− Not custom-built for a particular heterogeneous topology

[Data size awareness] Tuning to select algorithms (Ring, Tree) based on input size
− Complicated
− Not present for all collectives
− Done using experiments that may not match reality

[Availability at scale]
+ Scales to multi-node topologies

1. https://github.com/NVIDIA/nccl/issues/457#issuecomment-771863198



Current state-of-the-art
Synthesis-based approaches (Blink, SCCL)
[Topology and data size awareness] Synthesize collective algorithm targeted to a 
particular topology

+ Maximize link utilization in heterogeneous topology (Blink)
+ Synthesize pareto-optimality in terms of latency and bandwidth (SCCL)

[Availability at scale] Synthesis is NP-hard
− Cannot scale synthesis to a multi-node topology

1. Wang, Guanhua, et al. "Blink: A fast NVLink-based collective communication library." Proc. Conf. Syst. Mach. Learn. 2018.
2. Cai, Zixian, et al. "Synthesizing optimal collective algorithms." Proceedings of the 26th ACM SIGPLAN 2021.
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TACCL
Collective Communication Library that solves a set of mixed integer linear 
programming problems to synthesize collective algorithms
● Topology-aware
● Input-size aware

Scales to multi-node topologies

Drop-in replacement for NCCL

TACCL algorithms outperform NCCL by up-to 6.7x for evaluated topologies 
and provide up-to 2.4x end-to-end speedup for evaluated ML models

9



TACCL: Guiding Collective Algorithm Synthesis using 
Communication Sketches
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What does a synthesized collective algorithm look like?
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Communication Sketches
● ML engineer provides Communication Sketches
● Specify intuitive parts of the algorithm
● Do not require a lot of domain knowledge to write
● Guide algorithm synthesis
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1) Sketching Logical Topology
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1) Sketching Logical Topology
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1) Sketching Logical Topology
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1) Sketching Logical Topology
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1) Sketching Logical Topology
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2) Sketching NVSwitch connections
Allow users to maximize or minimize unique 
connections over NVSwitches
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2) Sketching NVSwitch connections
Allow users to maximize or minimize unique 
connections over NVSwitches
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3) Sketching for symmetry
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Reduces number of transfers to make decisions about



Generating the algorithm
Stage-wise synthesis simplifies the problem!
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Routing Ordering Batching

Stage 1 Stage 2 Stage 3
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Routing Ordering Batching
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Determine the path that each data chunk will take
(Ordering between data chunks not decided yet)

Solve an ILP to obtain optimal paths (based on congestion and dilation metrics)
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Routing Ordering Batching
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Order chunks sent over the same link
Ordering is done using heuristics, e.g., by giving more preference to chunks that need to 

travel longer distance

Example collective
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Routing Ordering Batching

Stage 1 Stage 2 Stage 3

Batches data chunks to send them together over links in order to reduce link latency costs
Solves an ILP to optimize between reduced latency cost v/s possible pipelining gaps
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TACCL: Guiding Collective Algorithm Synthesis using 
Communication Sketches
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(MSCCL)

https://github.com/microsoft/msccl/

(Extends NCCL to implement 
synthesized collectives)



Evaluation
• Compare performance against NCCL (v2.8.4)
• Collectives: AllGather, AllReduce, AlltoAll
• Topologies:
• 2-node NVIDIA DGX-2 (32 GPUs)
• 2-node & 4-node Azure NDv2 (16 GPUs & 32 GPUs)

• Distributed ML models:
• Transformer-XL, BERT (PyTorch implementation)
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Conclusion

TACCL is a tool to synthesize efficient algorithms for collectives
• Guided using intuitive communication sketches
• Solved using novel 3-stage synthesizer

Will soon be available at https://github.com/microsoft/taccl

22Email: aashaka@utexas.edu

https://github.com/microsoft/taccl

