
FlexPlan: Synthesizing Runtime 
Programmable Switch Updates

Yiming Qiu, Ryan Beckett,  Ang Chen 

1



Background: Runtime programmable devices

2

• Capable of runtime reconfiguration with zero downtime
• FlexCore (NSDI’22) based on Nvidia Spectrum-2 switches
• rP4 (NSDI’22) based on Xilinx Alevo FPGAs

Runtime programmable
network devices

(e.g. Nvidia Spectrum-2,
FPGAs, SmartNICs)

P4 applications

A

B

D

C

E

r

A

B

D

C

r

A

B C

E

r

+

Old program New program

Runtime partial
reconfiguration

(e.g. FlexCore, rp4)



Background: multi-step runtime update

3

• Updating everything all at once not always feasible
• Update transaction (TX) could cause significant resource spike
• Multi-step update possible, but causes intermediate states

• Regulate intermediate states with consistency guarantees!

// Update acl tables to support nat
control ingress {
apply {
if (ipv4.isValid) {
@del(T1) acl_ipv4.apply();
@add(T1’) nat_acl_ipv4.apply();

} else if (ipv6.isValid) {
@del(T2) acl_ipv6.apply();
@add(T2’) nat_acl_ipv6.apply();

}
}}

T1
T2

T1’

T2’T2

P4 program update

Reconfiguration steps

Old New

T1

T2
T1’
T2’

Breaking it down

T1

T2

T2’

T1
T2’

T1

T1’

T2’

Intermediate
stateOld New

TX1 TX2

Resource cap

T1

T1’
T2’



SOTA: graph analysis and P4 verification

4

Program logic

User defined spec

P4 verification

SMT solving
“Must hit ACL!”

• Graph analysis does not support program semantics/user defined specs
• P4 verification does not support update reasoning/task of synthesis

Update plan generation with
Graph analysis (FlexCore)

Update graph

Fixed consistency level

old and new tables
(nodes) should never
be reachable!



FlexPlan: a formal synthesis approach

5

• FlexPlan: a formal approach to generate update plans that are both
safe (consistency guarantee) and feasible (resource usage)

Update synthesis engine

Specification language

P4 update abstraction

Failure diagnosis Runtime update plan

InstrumentationUser intention



Specification language

6

• Flexible consistency/safety specification based on user intentions

specification { 
// create new ghost variables for the program 
ghost bit sawOld = false;
ghost bit sawNew = false;
// update variables when annotations encountered
@old => { sawOld = true; }
@new => { sawNew = true; }
// define no ipv4 packet mixes old and new logic 
execution_consistency = {
$pkt.ingress.ipv4.isValid() =>
!($pkt.egress.sawOld && $pkt.egress.sawNew); 

}  
assert execution_consistency;

}

Specifications LoC

Execution consistency for IPv4 13

Field consistency for egress spec 8

Program consistency for TCP 13

Element consistency for ACL 15

Table consistency for ECMP 10

Correct VLAN table access 8

Correct TTL decrement 6



Program update sketching

7

• Translating update plan generation into a sketching problem

v1, v2, v3 = ?, ?, ?
if (v1 == new) {

// apply new table
} else if (v1 == old) {

// apply old table}
if (v2 == new) . . .
if (v3 == new) . . .

Version sketch:
Representing possible 

intermediate states

def func:
a = ? * 2
b = ? + a
c = ? % 4
return c - ?

assert (func > 0)

Program sketch [1]:
Representing possible 

programs

[1] Combinatorial sketching for finite programs. ASPLOS’06

v1 = old
v2 = old
v3 = old

v1 = new
v2 = new
v3 = new

Old New

. . .

Intermediate states

v1 = ?
v2 = ?
v3 = ?

v1 = ?
v2 = ?
v3 = ?

Sequence sketch:
Representing possible update plans 

(sequence of version sketches)



FlexPlan CEGIS loop

• Counter Example Guided Inductive Synthesis (CEGIS)

FlexPlan
CEGIS loop

SynthesizerVerifier

ipv4.srcAddr =10.0.0.1, . . .

. . .

Candidate plan:
A “guess” on feasible solution

Counter example:
Concrete packet that triggers violation

12 3

4 1 How to synthesize a sequence of
snapshots efficiently?

2 How to verify a sequence of
snapshots efficiently?

3 When to terminate the loop?

4 How to react to failures?

8



Optimization: Snapshot learning

• Learn from single snapshots, not entire sequences

Synthesizer . . .

Learn from update sequence
causes scalability problem

Verifier

The root cause of violation is
certain snapshots…

Snapshot
learner

Generating snapshot
violations

UNSAT core
learning (v1 == old && v2 == new)

=> bug()

Violation constraints

9



Optimization: Loop termination

• Novel early termination technique (more in the paper)

Synthesizer

. . . . . .

How to terminate the
loop in case the search

is doomed to fail?

10

Introspection

No need to deepen the
search, terminate!

Deepen the
search !

Diagnosis before
exhausting search space



Implementation and setup

11

• FlexPlan prototype
• https://github.com/824728350/FlexPlan

• Case study setup
• Various P4 programs such as switch.p4 (~6000LoC)
• Both random and manually crafted program updates

• Evaluation questions (more in the paper!)
• Do the specs generate granular update plans?
• Do optimizations tackle scalability problem?



Expressive specs save resources

• FlexPlan supports various user defined consistency levels
• FlexPlan spec language provides significant resource saving

 0
 5

 10
 15
 20
 25
 30
 35

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Update ratio

All-Prog
All-Exec

Flex-Exec
Flex-Field

12

L2/L3 field consistency: make sure forwarding
behavior and L2/L3 packet headers are consistent

Lower
resource

spike



Optimizations improve scalability 

• Higher update ratio results in longer completion time
• Snapshot learning/verification improve scalability significantly

13

Applying optimizations
reduces completion time

Higher update ratio leads to
longer completion time



Summary

14

• FlexPlan: a formal approach to generate update plans that are both safe
(consistency guarantee) and feasible (resource usage)

• Hardware agnostic update plan generation framework

• Define your own runtime consistency requirements

• If there is a valid update plan, we’ll find it.

• If we find a update plan, then it is correct!

Richard.Qiu@rice.edu


