

Rethinking (Predictive) WAN Traffic Engineering

Yarin Perry¹, Felipe Vieira Frujeri², Chaim Hoch¹, Srikanth Kandula², Ishai Menache², Michael Schapira¹, Aviv Tamar³

Traffic Engineering (TE) in Wide-Area Networks (WANs) [SWAN, SIGCOMM 2013] [B4, SIGCOMM 2013]

Classic Traffic Engineering Model

	1	2	3		N
1	0	100	3	•••	13
2	142	0	5		0
3	20	0	0		32
	•••	•••	•••	0	•••
N	12	0	50		0

demand matrix

network topology + tunnels

flow optimization wrt a global objective (via linear programming)

TE configuration

Wait, how can we know the upcoming demands? Predict them! [SWAN, SIGCOMM 2013] [B4, SIGCOMM 2013]

A Tale of Two Traffic Patterns

A Tale of Two Traffic Patterns

Sat.

Sat.

Sun.

Sun.

Drawbacks of Demand-Prediction-Based TE

DOTE: <u>Direct Optimization</u> for Traffic Engineering

DOTE's Offline Training

	Training data	Performance metric		
Demand Prediction	Empirically observed	Prediction loss (e.g., RMSE)	DM History	Next DM
DOTE	sequences of past DMs	The end-to-end TE objective (maximize total flow, minimize MLU, etc.)	DM History	• TE configuration

DOTE's Offline Training

• Training is a **stochastic gradient descent (SGD)** process:

 \bigcirc

O Uniformly **sample** m sequences of k+1 DMs $(D_t, ..., D_{t-k})$ from an empirical dataset of past realized DMs.

Update the DNN's parameters (link weights):

• Our realization is simple, efficient, and seems broadly applicable in TE.

- Each of nodes A and B can send traffic to node D via its direct link or through C. All link capacities are 1.
- At the beginning of each time epoch, traffic splitting ratios must be determined for each source-destination pair.

- Suppose A and B's demands are drawn (i.i.d) from a fixed probability distribution: $\left(\frac{5}{3}, \frac{5}{6}\right)$ with probability $\frac{1}{2}, \left(\frac{5}{6}, \frac{5}{3}\right)$ with probability $\frac{1}{2}$
- The TE system has no a priori knowledge of this distribution!
- **<u>Goal</u>**: minimize the maximum-link-utilization (MLU), i.e., $\max_{e} \frac{f_e}{c_e}$

- <u>Observation</u>: the <u>expected</u> maximum-link-utilization (MLU) is convex in the splitting ratios!
- Gradient descent reaches the optimum (no explicit demand prediction required)

- But wait, how can we estimate the <u>expected</u> MLU gradient?
 - The system does not know the distribution over demands!
 - O Hence, the expected MLU function is also not known
- <u>Observation</u>: Can compute MLU gradient for any past demand realization
- Averaging over gradients \rightarrow approximates **expected** MLU gradient

- Consider a <u>specific</u> demand realization: $demand_{AD} = \frac{5}{3}$ and $demand_{BD} = \frac{5}{6}$
- The MLU as a function of the splitting ratios <u>for this demand realization can be</u> expressed in closed form:

$$\max\{\frac{5}{3}W_{AD}, \frac{5}{3}(1-W_{AD}) + \frac{5}{6}(1-W_{BD}), \frac{5}{6}W_{BD}\}$$

• The (sub)gradient of the MLU for this demand realization can thus be computed

Generalizing from the toy example

- DOTE extends to arbitrary network topologies, tunnel choices, and distributions over traffic demands.
- DOTE addresses **temporal patterns in traffic** by harnessing the power of deep learning.
 - O Gradient descent is now used to **optimize the DNN link weights**

Extending DOTE to other optimization objectives

- What about optimization objectives other than MLU?
 - O Maximizing total flow
 - O Maximizing concurrent flow
- DOTE's output now also specifies a "**rate cap**" for each communicating pair.
- By **normalizing the rate caps**, DOTE avoids violating link capacities.
- <u>Key challenge</u>: the induced function is <u>not</u> concave!

Extending DOTE to other optimization objectives

We prove that <u>for any specific demand realization</u>, the resulting TE performance function is <u>quasiconcave</u>.

O (Normalized) gradient ascent reaches the optimum [Nesterov 84]

A quasiconcave, but not convace, function

Extending DOTE to other optimization objectives

We prove that <u>for any specific demand realization</u>, the resulting TE performance function is <u>quasiconcave</u>.

O (Normalized) gradient descent reaches the optimum [Nesterov 84]

 We prove that quasiconcavity also holds when <u>averaging across</u> <u>demand realizations</u>.

• The sum of quasiconcave functions need not be quasiconcave!

 This implies that (normalized) <u>stochastic</u> gradient descent also converges to the optimum [Hazan – Levy – Shalev-Shwartz, NeurIPS 2015]

Empirical Evaluation of DOTE

- We extensively evaluate DOTE using empirical data.
- Our empirical evaluation spans
 - O different network topologies (10s-100s of nodes)
 - O **O(10⁴) production demand matrices** (Abilene, GEANT, 2 MSFT WANs)
 - O several tunneling schemes (shortest-paths, edge-disjoint, SMORE)
 - O different flow optimization objectives

(maximizing flow, maximizing concurrent-flow, minimizing MLU)

Compare with ...

• Demand prediction

[Hong et al., SIGCOMM 13] [Jain et al., SIGCOMM 13] [Kumar et al., NSDI 18] [Kumar et al., SOSR 18] ...

- **Oblivious routing** [Appelgate-Cohen., SIGCOMM 03]
- Hybrid approaches: COPE [Wang et al., SIGCOMM 06], SMORE [Kumar et al., NSDI 18]
- **Reinforcement learning** [Valadarsky et al., HotNets 17]
- **Omniscient oracle** with perfect knowledge of future demands

Minimizing Maximum Link Utilization

	#Nodes	#Edges	\mathbf{Length}	Granularity
Abilene	11	14	4.5months	5 min.
GEANT	23	37	4 months	15 min.
PWAN	O(100)	O(100)	O(1) months	minutes
$PWAN_{DC}$	O(10)	O(10)	O(1) months	$\operatorname{minutes}$

 Bigger improvement on WANs with more variable demands

Minimizing Maximum Link Utilization

 DOTE outperforms other TE approaches in terms of TE quality
COPE could not scale to PWAN

edge-disjoint tunnels

	99 th	90th	75th	median
DOTE	+32%	+22%	+18%	+9%
Demand Prediction	+201%	+52%	+32%	+18%

Maximizing Total Flow Carried

Performance under link failures (for PWAN)

- **FA DM Pred** is demand-prediction-based TE with **perfectly knows future failures**
- DOTE outperforms "FA DM Pred".
- <u>Takeaway</u>: Demand variability has more effect than network failures (up to a certain number of failures)

DOTE also improves runtimes!

	WAN	Online Lat. (s)			
	VVAIN	DOTE	LP	#nodes	#edges
	Abilene	0.0005	0.02	11	14
	$PWAN_{DC}$	0.003	0.05	O(10)	O(10)
	Geant	0.002	0.04	23	37
	PWAN	0.2	1	O(100)	O(100)
_	KDL	2	30	754	895

See paper for

- More results on **TE quality**
 - Additional tunnel selection schemes
 - Additional performance metrics
- Robustness to **noisy traffic**
 - Different topologies, levels of noise
- Robustness to **natural traffic drift**
 - Different topologies, tunnel selection schemes, and performance metrics
- More results on **resiliency to link failures**
 - Different topologies, tunnel selection schemes, and performance metrics
- Comparison of demand-prediction methods for TE
- More results on **runtimes**
 - Additional benchmarks (oblivious routing, COPE)

Conclusion

- DOTE is novel approach to WAN TE: directly optimizing TE configurations (subsumes demand prediction)
- A simple learning method that extends to multiple TE objectives
- DOTE's TE quality improves over the state-of-the-art, closely approximating the omniscient oracle
- DOTE also significantly improves online runtimes for TE.

Future Research

- Learning tunnels?
- Learning to cope with failures?
- Incorporating the network topology into the DNN?
- Accelerating (offline and online) runtimes?

Thank you!

- Paper: https://www.usenix.org/system/files/nsdi23-perry.pdf
- Code: <u>https://github.com/PredWanTE/DOTE</u>