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MOTIVATION: SECURE COLLABORATIVE ANALYTICS
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Requirements: 

- No information leakage 
to untrusted entities 

- No reliance on trusted 
resources 

- Relational analytics 

- Practical performance
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APPROACHES TO SECURE COLLABORATIVE ANALYTICS
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(very high computational cost)

Fully Homomorphic 
Encryption (FHE)

Enc(x)

Enc(y)

Enc(z)

Computation on 
encrypted data

Security via homomorphic encryption

Trusted Execution 
Environments (TEEs)

Computation on 
plaintext data inside the 
TEE (e.g. Intel’s SGX)

Security via physically protected HW

(prone to side-channel attacks)
Security via decentralized trust

Collective computation 
on encoded data

Secure Multi-Party 
Computation (MPC)

(high communication cost)



CHALLENGE: HOW TO REDUCE THE MPC COST?

1 N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and A. Bestavros. Conclave: secure multi-party computation on big data. EuroSys, 2019.
2 J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers. SMCQL: secure querying for federated databases. PVLDB, 10(6):673–684, 2017.
3 H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable Computation of Aggregate Statistics, NSDI, 2017.

“The primary source of the slowdown arises from 
their join operators that have hundreds of 

input tuples…”

“Running the query entirely under MPC […] fails 
to scale beyond 3,000 total records…”

“Computing a function f on millions of client inputs 
[…] could potentially take an astronomical 

amount of time in a full MPC.”

Aggregation Join
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PRIOR WORK ON RELATIONAL MPC

Peer-to-peer MPC

Data owners act as computing 
parties using trusted resources

MPC does not scale well with the 
number of data owners

Data owners may not have domain 
expertise or private infrastructure   
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OUR FOCUS: OPTIMIZE MPC IN THE CLOUD

Peer-to-peer MPC

Data owners act as computing 
parties using trusted resources

MPC does not scale well with the 
number of data owners

Data owners may not have domain 
expertise or private infrastructure   

Outsourced MPC

Data owners outsource secret shares 
of their data to untrusted third parties

A small number of third parties can 
support a large number of data owners

Data owners can use untrusted cloud 
resources on demand   
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SECRECY AS A SERVICE

Data ownersData analysts

Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts

1 Submit query
Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party

2 Provision parties
Secrecy
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SECRECY AS A SERVICE

Data ownersData analysts 3 Send secret 
shares to parties

Secrecy

Arithmetic sharing:     (mod )s = s1 + s2 + s3 2k Boolean sharing:    s = s1 ⊕ s2 ⊕ s3

(for k-bit integers) (for k-bit strings)

s1, s2

s2, s3

s3, s1

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party
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SECRECY AS A SERVICE

Data ownersData analysts

Wide area network 4
Secure 

computation

Secrecy

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party
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SECRECY AS A SERVICE

Data ownersData analysts 5 Send result 
shares 

Secrecy

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party



SECRECY AS A SERVICE

Data ownersData analysts

Secrecy

Secrecy 
computing party

Secrecy 
computing party

Secrecy 
computing party

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. CCS, 2016.

Honest majority
(can tolerate one compromised party)

Semi-honest model
(parties are “honest but curious”)
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Arithmetic sharing:     (mod )s = s1 + s2 + s3 2k

FROM SECURE MPC PRIMITIVES TO RELATIONAL ANALYTICS

Boolean sharing:    s = s1 ⊕ s2 ⊕ s3

ADD ( )+ MUL ( )× XOR ( )⊕ AND ( )∧

SELECT DISTINCT GROUP-BY JOIN

SEMI-JOIN ORDER-BY COMPOSE AGGREGATION

EQUALITY INEQUALITY …CMP-SWAP CONVERSION

MPC primitives

Complex 
operations

Secure SQL 
operators 
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SECRECY’s CORE CONTRIBUTIONS

1. Relational MPC primitives 
- Amortize network I/O
- Make secret-sharing competitive in WAN 

2. Exposing relational query costs in terms of secure computation and communication primitives 

1. Operation cost (number of MPC operations)
2. Synchronization cost (number of rounds)
3. Composition cost (extra cost of composing relational operators)

3. Volcano-style query processor for vectorized MPC execution 
- Novel logical optimizations (e.g., operator reordering, decomposition)
- Physical optimizations (e.g., operator fusion)
- Protocol-specific optimizations (e.g., dual sharing)
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EXAMPLE: MESSAGE BATCHING IN SECRECY

“Select all records with timestamp T”t >
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EXAMPLE: MESSAGE BATCHING IN SECRECY

“Select all records with timestamp T”t >

Secret-sharing protocols exchange 
many small messages between parties

Each inequality requires  communication rounds under MPCO(log k)
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EXAMPLE: MESSAGE BATCHING IN SECRECY

Secrecy requires  communication 
rounds for the entire data table

log k + 1

(independent of the number of records)“Select all records with timestamp T”t >



EFFECT OF MESSAGE BATCHING (LAN)
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∼ 1000 ×

* Secrecy servers deployed on AWS EC2 r5.xlarge instances (us-east-2)

- Eager: Message batching disabled 
(one network I/O per row)

- Batched: Message batching enabled

Lower is 
better
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1. Relational MPC primitives 
- Amortize network I/O
- Make secret-sharing competitive in WAN

2. Analytical cost model for MPC 
- Operation cost: number of primitive MPC operations
- Synchronization cost: number of communication rounds
- Composition cost: extra cost of composing relational operators

3. Volcano-style query processor for vectorized MPC execution 
- Novel logical optimizations (e.g., operator reordering, decomposition)
- Physical optimizations (e.g., operator fusion)
- Protocol-specific optimizations (e.g., dual sharing)

SECRECY’s CORE CONTRIBUTIONS



1. Relational MPC primitives 
- Amortize network I/O
- Make secret-sharing competitive in WAN 

2. Analytical cost model for MPC 
- Operation cost
- Synchronization cost
- Composition cost

3. Volcano-style query processor for vectorized MPC execution 
- Novel logical optimizations (e.g., operator reordering, decomposition)
- Physical optimizations (e.g., operator fusion)
- Protocol-specific optimizations (e.g., dual sharing)

SECRECY’s CORE CONTRIBUTIONS
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MPC
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EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

SELECT M.med, COUNT(*)  
FROM Medication as M, Patients as P  
WHERE M.id = P.id  
GROUP-BY M.med

M

⋈M.id=P.id

γM.med

P

COUNT(*)

“Count the number of patients per prescribed medication”

γ : aggregation

⋈ : join
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Applying GROUP-BY after the join will require 
materializing the cartesian product M × P

SELECT M.med, COUNT(*)  
FROM Medication as M, Patients as P  
WHERE M.id = P.id  
GROUP-BY M.med

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

“Count the number of patients per prescribed medication”



MPC
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M

γM.med

P

SUM(cnt)

⋈M.id=P.id
+ partial 
aggregation

MPC

M

⋈M.id=P.id

γM.med

P

COUNT(*)

γ : aggregation

⋈ : join

EXAMPLE: OPERATOR DECOMPOSITION IN SECRECY

 operations / messagesO(n2 log2 n)
 roundsO(log2 n)  spaceO(n2)  spaceO(n)

 operations / messagesO(n2)
 fewer rounds∼ 4 ×

* Assuming the group-by operator  
is based on an odd-even circuit



EFFECT OF JOIN-AGGREGATION DECOMPOSITION (LAN)
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∼ 100 ×

* Secrecy servers deployed on AWS EC2 r5.xlarge instances (us-east-2)

Lower is 
better
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1. Relational MPC primitives 
- Amortize network I/O
- Make secret-sharing competitive in WAN

2. Analytical cost model for MPC 
- Operation cost
- Synchronization cost
- Composition cost

3. Vectorized MPC query processor 
- Logical optimizations
- System optimizations
- Protocol-specific optimizations

SECRECY’s CORE CONTRIBUTIONS
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Input1Pl
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Query Planner

Black-box  
MPC library 

e.g. EMP1

Input2

: data operator

1 X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit: Efficient MultiParty 
computation toolkit, 2016. https://github.com/emp-toolkit

Cr
os

s-
la

ye
r 

op
tim

iz
at

io
ns

Input1 Input2

End-to-end 
secure MPC 
query engine

The Secrecy Framework

Supported optimizations:

- Logical  (e.g. operator 
decomposition)

- Physical (e.g. message 
batching, operator fusion)

- Protocol-specific                        
(e.g. dual sharing)

OPENING THE MPC BLACK BOXES

https://github.com/emp-toolkit
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EFFECT OF SECRECY OPTIMIZATIONS ON REAL QUERIES (MULTI-CLOUD)

* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)

Logical + System optimizations 
result in up to  speedups2000 ×

* Secrecy servers deployed in three clouds: AWS (Ohio), GCP (South Carolina), and Azure (Virginia) 
* Reported times are for 1000 rows per input table
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EFFECT OF SECRECY OPTIMIZATIONS ON REAL QUERIES (MULTI-CLOUD)

Protocol-specific 
optimizations result in 
up to  speedups38 ×

* Reported times are for 1000 rows per input table
* Not optimized plans use message batching too (otherwise the cost of MPC is prohibitive)

* Secrecy servers deployed in three clouds: AWS (Ohio), GCP (South Carolina), and Azure (Virginia) 
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Rec. C. Diff scales to 2 
million rows in ~1.2h

“Find the distinct ids of patients who have been 
diagnosed with cdiff and have two consecutive 

infections between 15 and 56 days apart” 

SECRECY’s SCALING BEHAVIOR (LAN)

* Secrecy servers deployed on AWS EC2 r5.xlarge instances (us-east-2)
* Each server uses a single vCPU



Secure cross-site analytics on OpenShift logs2

(BU Red Hat Collaboratory)
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REAL-WORLD SECRECY USE CASES

Secure digital health analytics1

(BU Medical & Hariri Institute for Computing)

Secrecy

Client 1

Client 2

Client N

…

Red Hat
Engineer

Monitoring & analytics  
dashboard service

Secrecy

Monitoring & analytics  
dashboard service

Doctor

2 https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-openshift-logs/

1 https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/

https://www.bu.edu/rhcollab/projects/security-privacy/secure-cross-site-analytics-on-openshift-logs/
https://www.bu.edu/hic/research/focused-research-programs/continuous-analysis-of-mobile-health-data-among-medically-vulnerable-populations/


SECRECY SUMMARY

Up to 2000x speedups for real 
and synthetic workloads

Millions of input records 
entirely under MPC

Source code:  https://github.com/CASP-Systems-BU/Secrecy 

Pl
ai

nt
ex

t
Se

cu
re

Query Planner

Black-box  
MPC 

library

Secrecy

Prior Systems

End-to-end 
secure MPC 
query engine

Data ownersData analysts

WAN

Party I

Secrecy

Party II

Party III

input sharesresult shares

No reliance on 
trusted execution 
environments 

No information 
leakage

Cost-based 
optimization

Decoupling data 
owners from 
computing parties

General and composable operators

Outsourced 
MPC

Efficient query 
execution

General-purpose 
hardware

High 
expressivity

End-to-end data 
protection

https://github.com/CASP-Systems-BU/Secrecy

