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Deep Neural Networks Become Prevalent
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Deep Neural Networks Become Prevalent
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DNN Training
Demand Is

Skyrocketing



DNN Training
Demand Is

Skyrocketing

Model accuracy (%)

Vast design space of DNNs
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DNN Training
Demand Is

Skyrocketing

Model Training

Squeeze Out the Last Ounce of ML Performance
(e.g., neural architecture search, ensemble models)




Add branches to the
model architecture
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Add branches to the
model architecture

29
Change model width, A N -

depth, ... A_ , A_ Y Train for ensemble models
Input
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Squeeze Out the Last Ounce of ML Performance
(e.g., neural architecture search, ensemble models)




DINN Tram.mg Large shared clusters run thousands of training jobs every day.
Demand 1s Can we repurpose trained models for new jobs!?

Skyrocketing
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Opportunity for Saving lraining Execution

* ML model is a graph of tensors
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Opportunity for Saving Iraining Execution ®

* ML model is a graph of tensors; training searches for best weight values
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Opportunity for Saving Iraining Execution ®

* ML model is a graph of tensors; training searches for best weight values
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Opportunity for Saving Iraining Execution ®

* ML model is a graph of tensors; training searches for best weight values

* Weight transtormation can jump start training

95  Faster convergence
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# ofTraining EpOChS (Image Classification on CIFAR-10 dataset)



Opportunity for Saving lraining Execution ©:

* ML model is a graph of tensors; training searches for best weight values

* Weight transtormation can jump start training

* Large clusters often contain jobs w/ similar architecturest
* ~40% models have archrtecturally similar counterparts

* Automated warmup w/o overhead is a must

* Due to too many jobs, varying user expertise, architectures, etc.

[ 1]"MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters”, HKUST and Alibaba, NSDI'22
[2] “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective”, Facebook, HPCA'[ 8 8
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Fffectiveness of [raining VWarmup ©

* Model architectural similarity

* Determine how many can transform
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Models are heterogeneous (ResNet-101 Example).
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How to identify

similar architectures! ModelKeeper Coordinator How to scale to
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Challenge | Identity Architecturally Similar Models
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Challenge | Identity Architecturally Similar Models

* How to quantify # of transformable weights between two models?
» Match the structure of tensors at the graph level
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Challenge | Identity Architecturally Similar Models

* How to quantify # of transformable weights between two models?
» Match the structure of tensors at the graph level

VWhy challenging?
Model @ |
. oI . ?
simifarity= @ * Models prefer matching prefix tensors
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Parent Model Query Model

04 0.2 0.1 ...
0.7 0.8 0.3 ...
0.3 0.6 0.5 ...

Tensor welights

* Model matching can be partial
@f) * Graph matching 1s NP-Hard
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Challenge | Identity Architecturally Similar Models
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Challenge | Identity Architecturally Similar Models
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Challenge | Identity Architecturally Similar Models
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Challenge | Identity Architecturally Similar Models
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Challenge | Identity Architecturally Similar Models
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Challenge | Identity Architecturally Similar Models

Query
Goal Model
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Operation score :
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Challenge | Identity Architecturally Similar Models
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Challenge 2: Transtorm Max. Parent Information

* How to achieve similarity-accuracy frontier?

* Bucketing by similarity, then select the high-accuracy model

Matcher Mapper



Challenge 2: Transtorm Max. Parent Information

* How to achieve similarity-accuracy frontier?

* Bucketing by similarity, then select the high-accuracy model
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Challenge 2: Transtorm Max. Parent Information

* How to achieve similarity-accuracy frontier?

* Bucketing by similarity, then select the high-accuracy model
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Challenge 2: Transtorm Max. Parent Information

* How to achieve similarity-accuracy frontier?

* Bucketing by similarity, then select the high-accuracy model
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Challenge 2: Transtorm Max. Parent Information

* How to transform in the presence of non-identical architectures!?

@ How to j@i\

transform?
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Challenge 2: Transtorm Max. Parent Information

* How to transform in the presence of non-identical architectures!?
* Function-preserving width operator, depth operator

@ How to /@i
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Challenge 2: Transtorm Max. Parent Information

* How to transform in the presence of non-identical architectures!?
* Function-preserving width operator, depth operator
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Challenge 2: Transtorm Max. Parent Information

* How to transform in the presence of non-identical architectures!?
* Function-preserving width operator, depth operator
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Challenge 2: Transtorm Max. Parent Information

* How to transform in the presence of non-identical architectures!?
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* Function-preserving width operator, depth operator
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* How to identify similar models on the cloud scale?

* [housands of dally jobs

T ransform
Cffectively At Scale ~
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Numerous models in the zoo
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* How to identify similar models on the cloud scale?

* [wo-stage matching using K-medoids clustering

T f uery model
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ModelKeeper responds to user requests in 8s at
cluster scale (2.5k Huggingrace zoo models).
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Transform
Cffectively At Scale

(mode is essent ydata)
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* How to identify similar models on the cloud scale?

* [wo-stage matching using K-medoids clustering

* How to manage the model zoo s.t. storage capacity?
* Admit and evict models on the fly

* How to avoid low-accuracy models in the zoo?

[ Please refer to our paper for details ]

Zoo Manager
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Evaluation ModelKeeper Training Warmup

First automated training
warmup system supporting
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Experiment setting:

80-machine cluster

[k+ CV, N

2 models

* Months of training



Large GPU Saving & raster [raining Completion (1C)
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Large GPU Saving & raster [raining Completion (1C)

Task Baseline
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[ I'] Retiari: A Deep Learning Exploratory-Training Framework, OSDI20
[2] Auto-Keras: An Efficient Neural Architecture Search System, KDD' |9



Large GPU Saving & raster [raining Completion (1C)

Baseline Workload # of Models  GPU Saving
Neural Retiariil!l NASBench 1,000 65.5%
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Large GPU Saving & raster [raining Completion (1C)

Baseline Workload # of Models  GPU Saving TC Improvement
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Large GPU Saving & raster [raining Completion (1C)

Baseline Workload # of Models  GPU Saving TC Improvement
Neural Retiariil!l NASBench 1,000 65.5% 2.9X
Architecture Bves
Search AutoKerasl(?] yeslan- 500 76.7% 4.3X
AutoKeras
Ensemble Learning MotherNetl] V-Ensemble |04 41.2% 1.7X
In?;ilge . Imgclsmob 389 64.2% 2.8X
Classification Ray w/o

ModelKeeper

Language Modeling HuggingFace 69 44.7% 1.8X

] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI20
2] Auto-Keras: An Efficient Neural Architecture Search System, KDD' |9
] MotherNets: Rapid Deep Ensemble Learning, MLSys20
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Large GPU Saving & raster [raining Completion (1C)

Baseline Workload # of Models  GPU Saving TC Improvement

Image

P Imgclsmob 389 64.2% 2.8X
Classification Ray w/o

ModelKeeper

Language Modeling HuggingFace 69 44.7% 1.8X

] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI20
2] Auto-Keras: An Efficient Neural Architecture Search System, KDD' |9
] MotherNets: Rapid Deep Ensemble Learning, MLSys20
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MadelKeeper Reduce training éxecution via

automated training warmup

https://github.com/SymbioticLab/ModelKeeper

by identifying a trained model with similar architectures

Save training execution

by transforming model weights across architectures

Q UNIVERSITY OF
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https://github.com/SymbioticLab/ModelKeeper
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