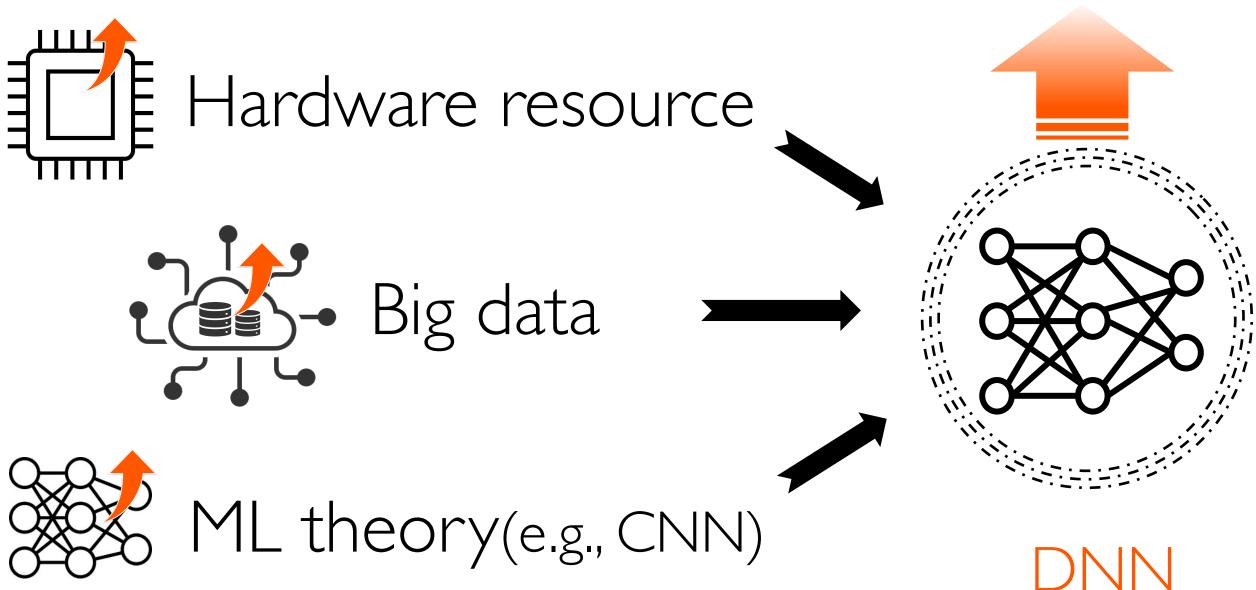
Accelerating DNN Training via Automated Training Warmup

Fan Lai, Yinwei Dai,

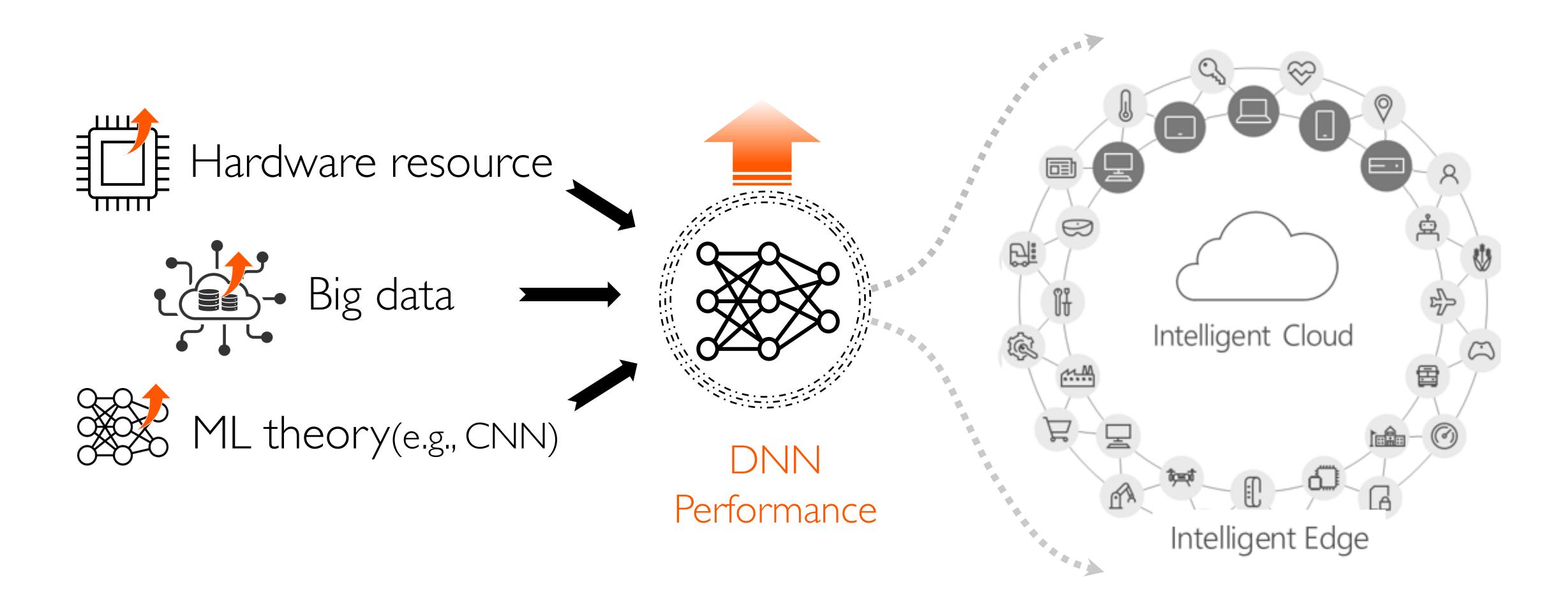
Harsha V. Madhyastha, Mosharaf Chowdhury

Deep Neural Networks Become Prevalent



DNN Performance

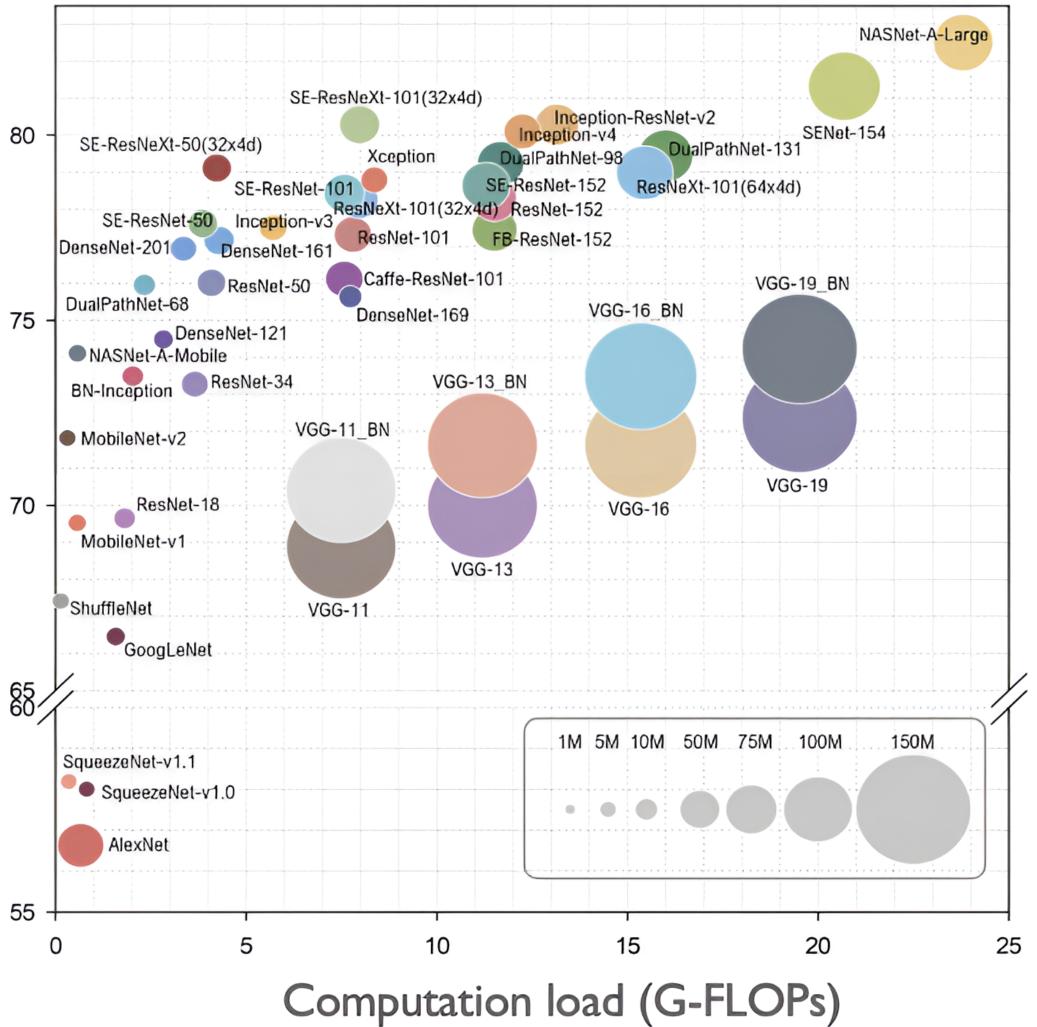
Deep Neural Networks Become Prevalent

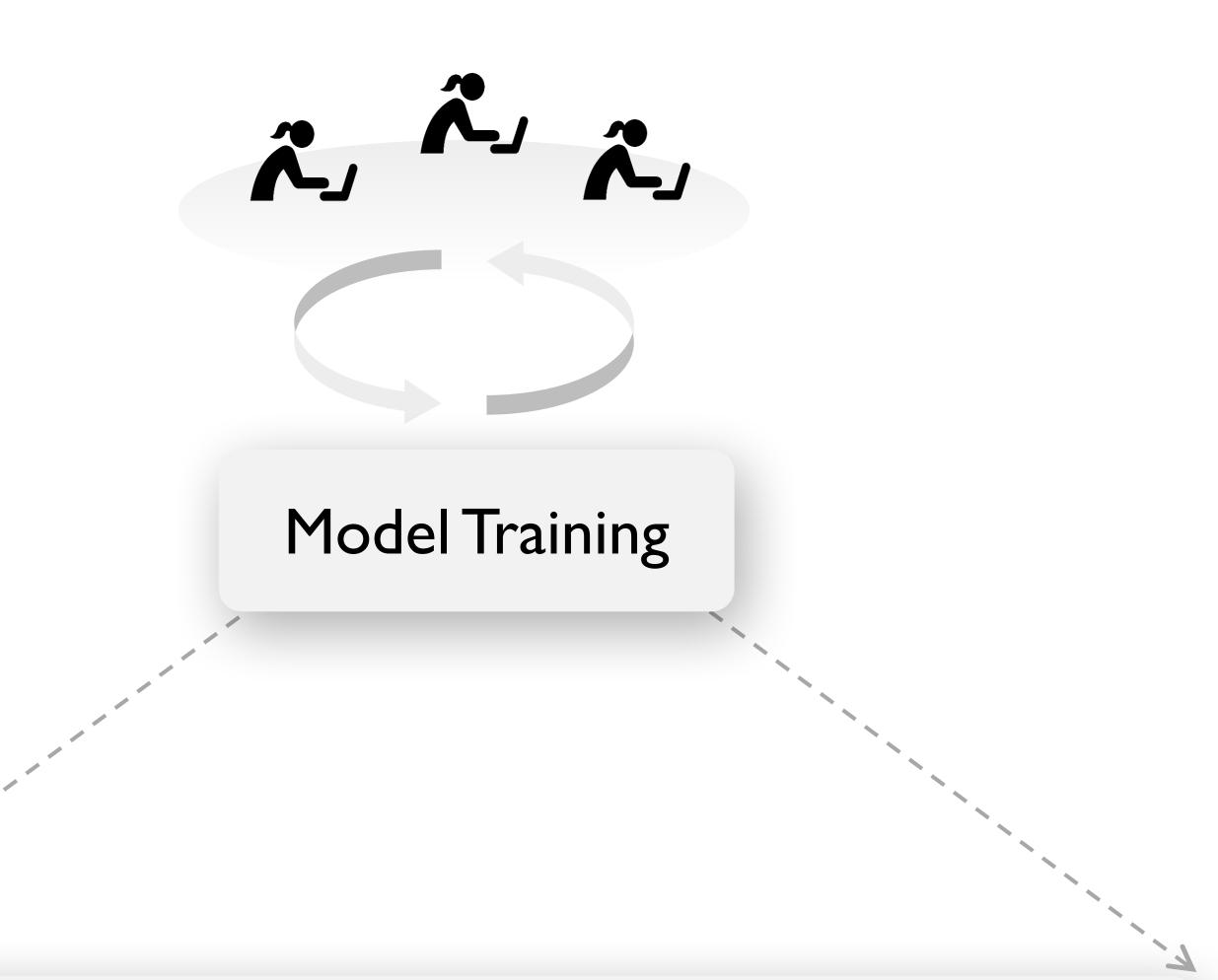


3

% Model accuracy

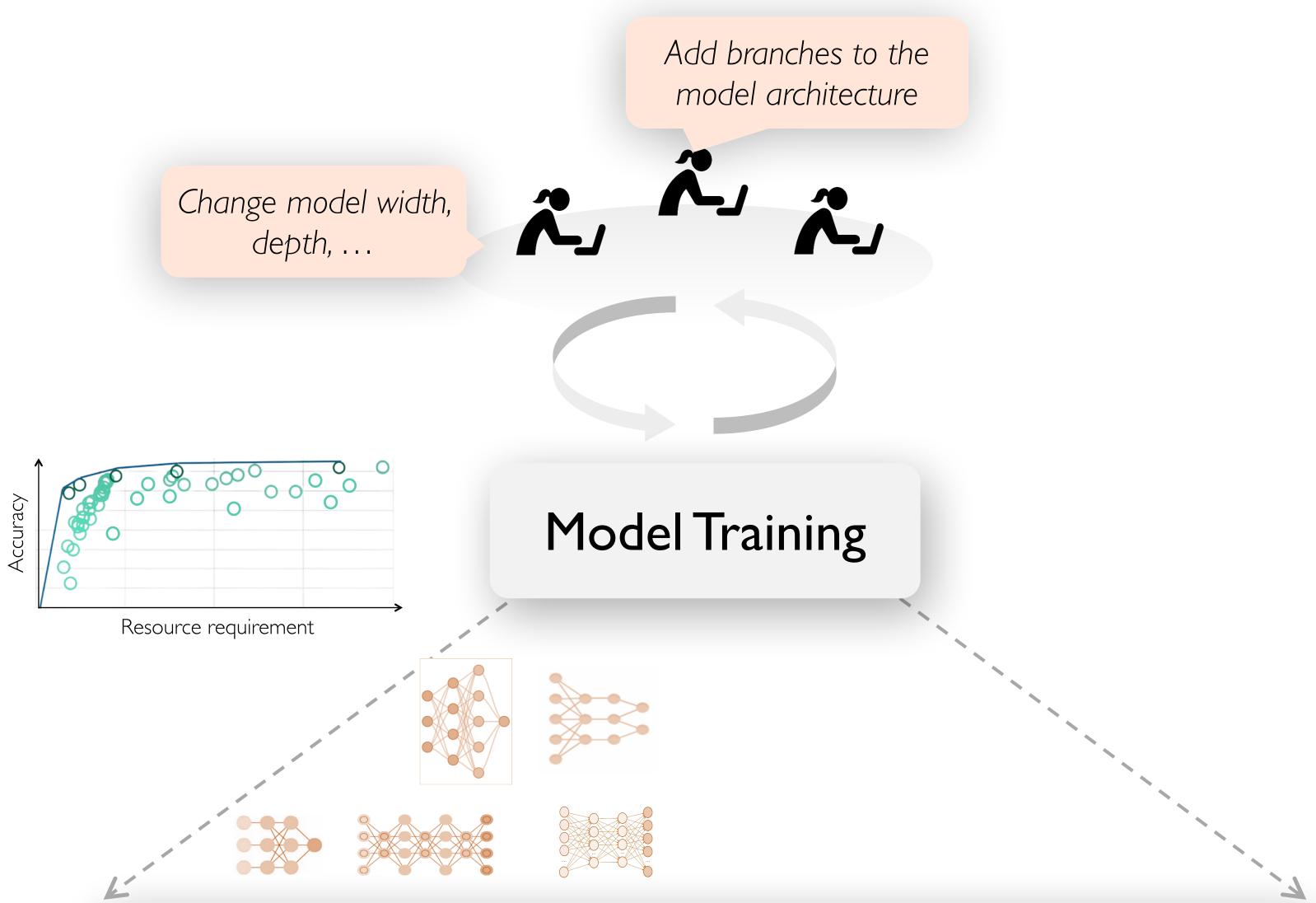
Vast design space of DNNs

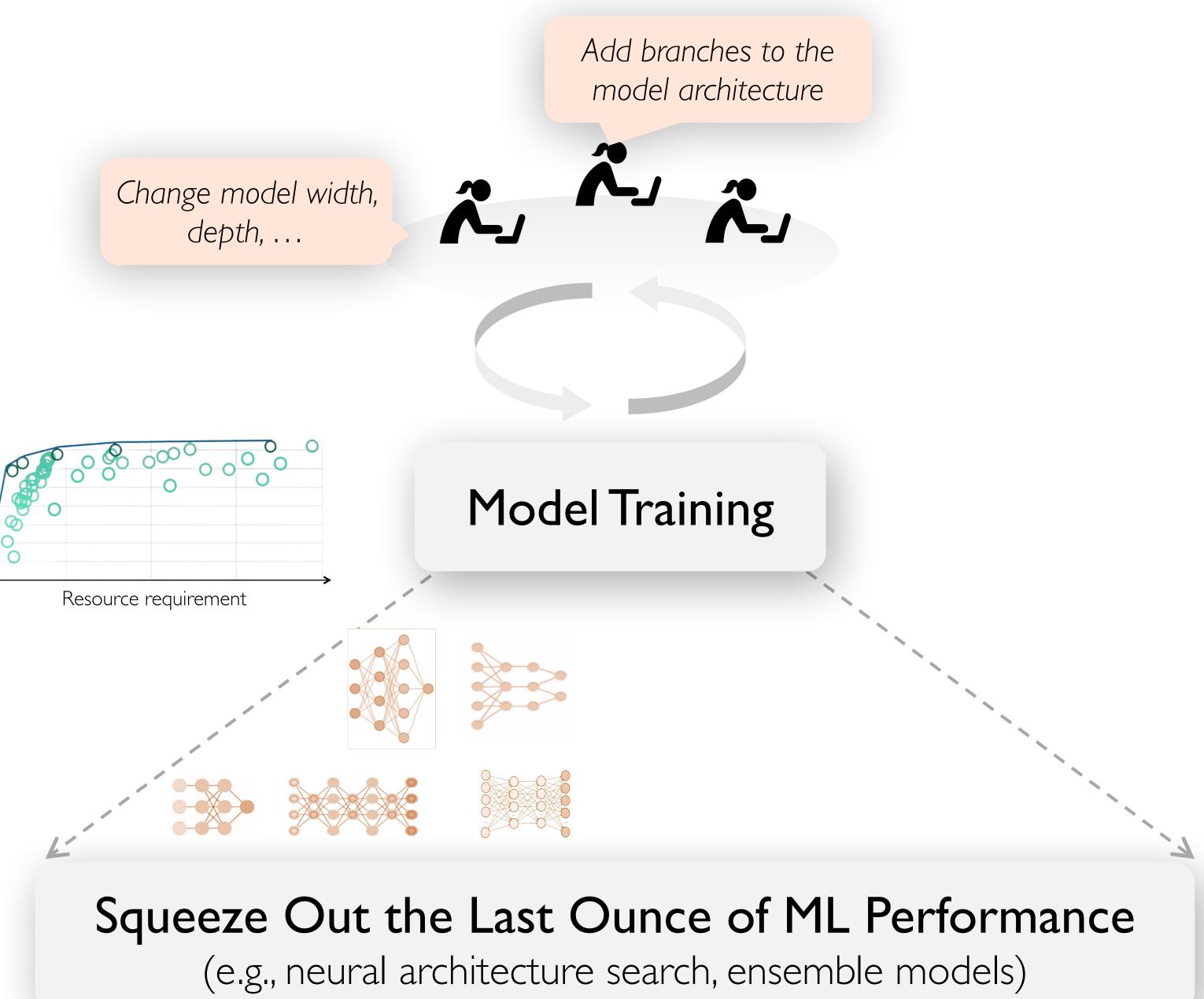


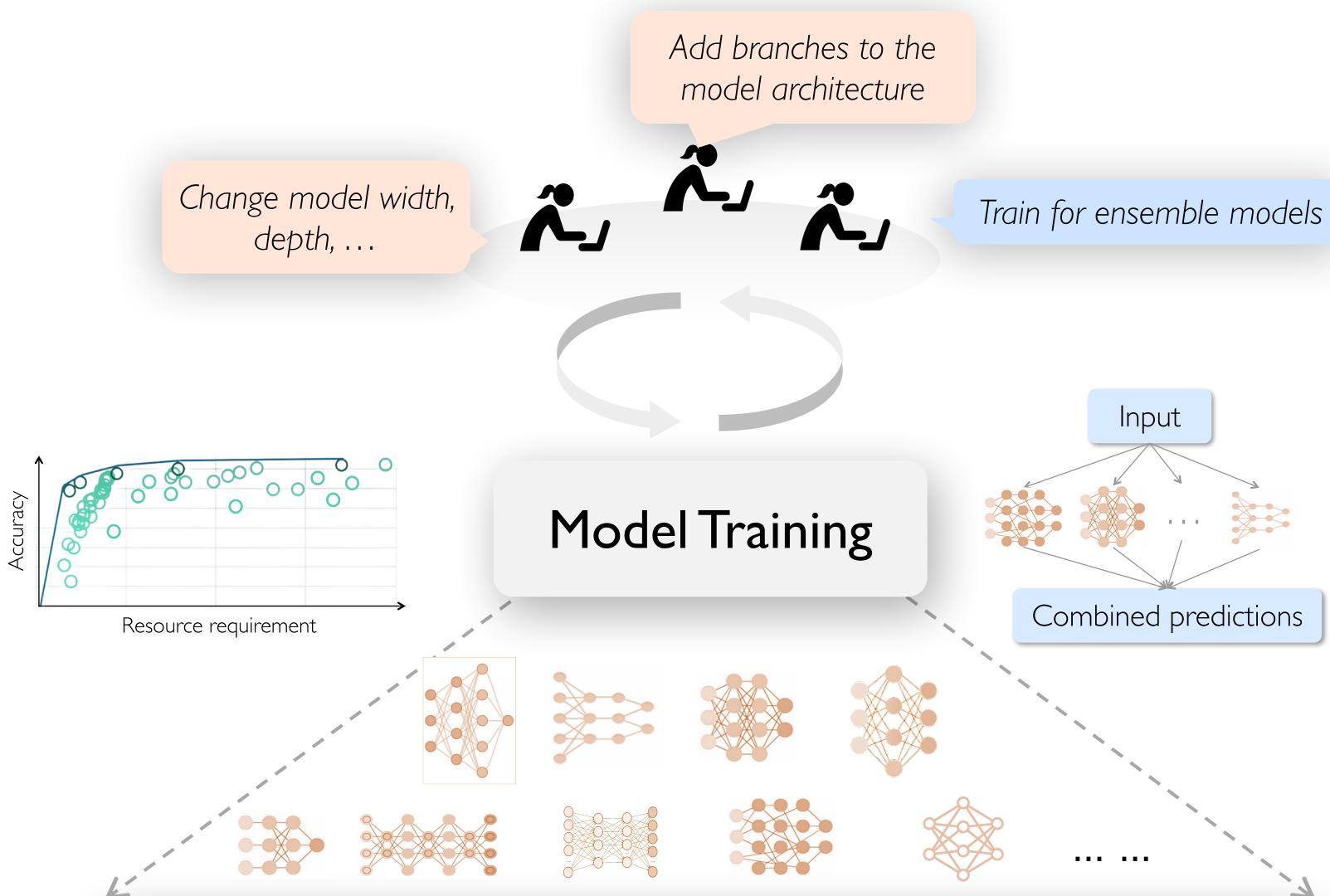


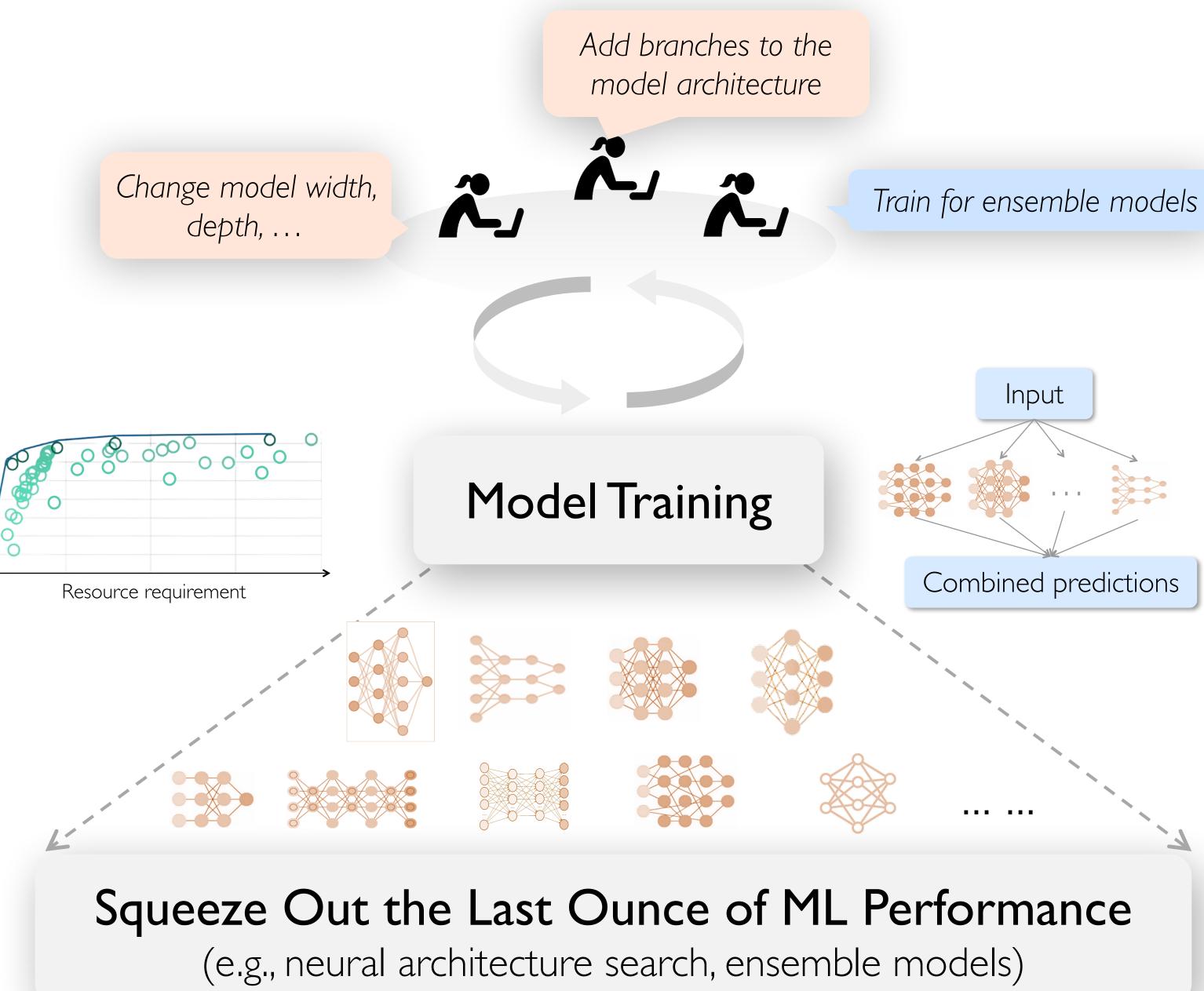
Squeeze Out the Last Ounce of ML Performance

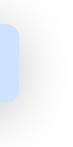
(e.g., neural architecture search, ensemble models)



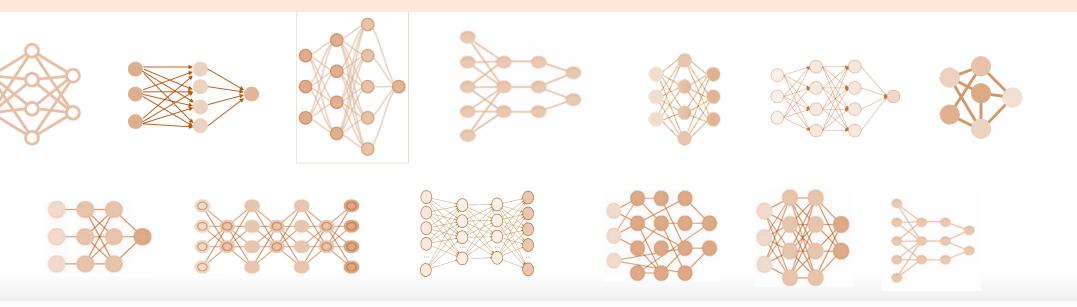




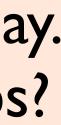




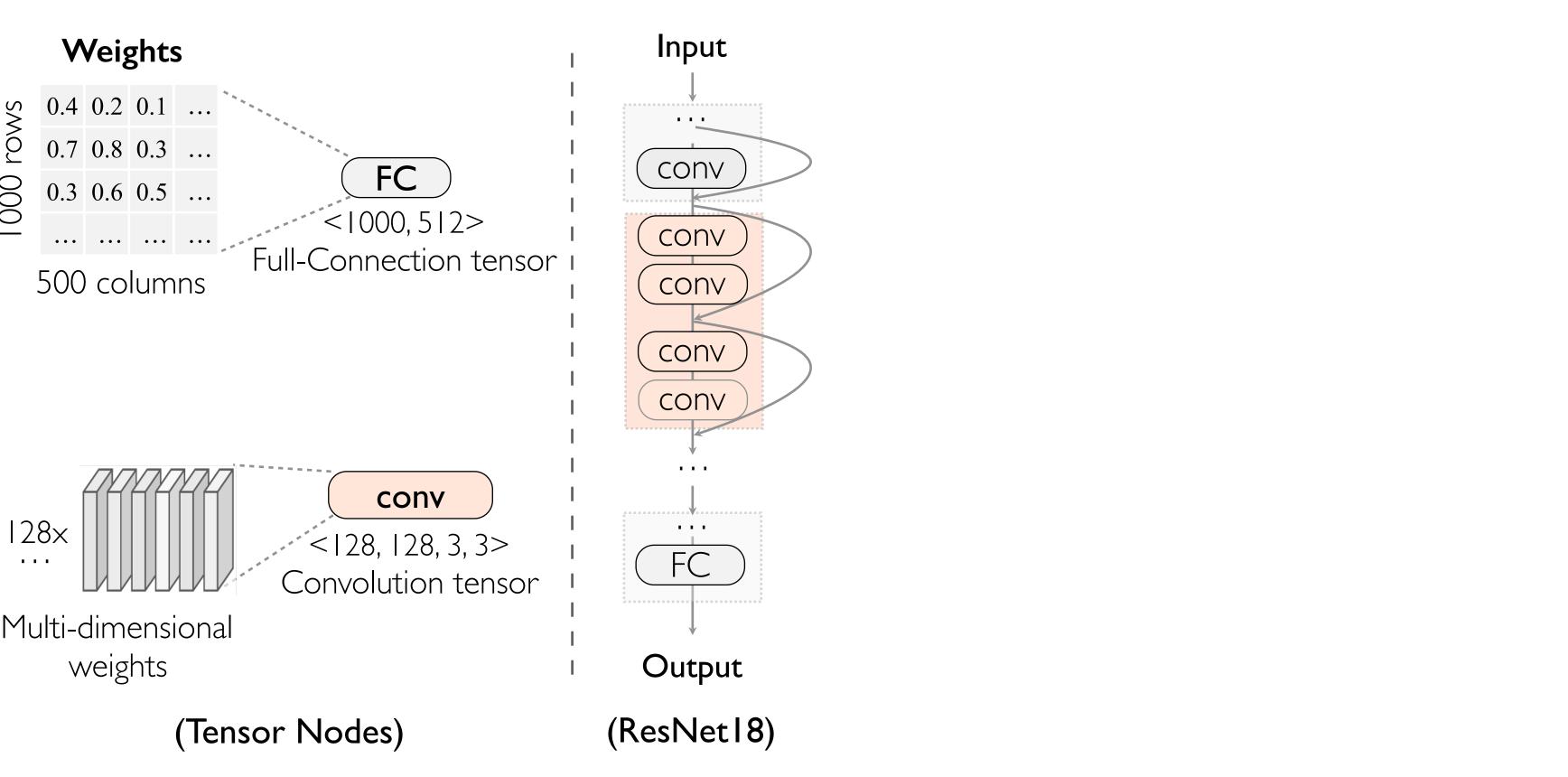
Large shared clusters run thousands of training jobs every day. Can we automatically repurpose trained models for new jobs?

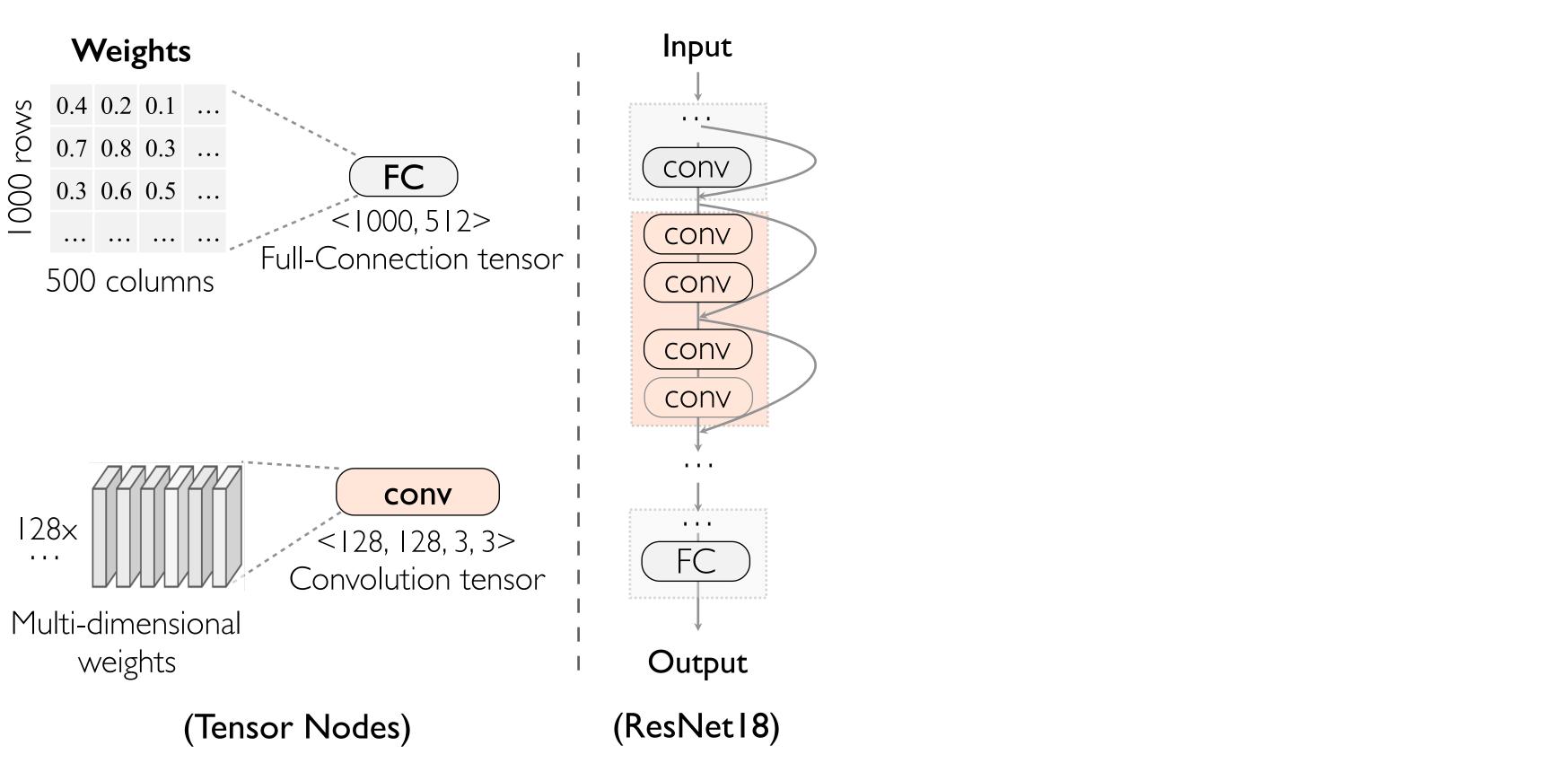


Squeeze Out the Last Ounce of ML Performance (e.g., neural architecture search, ensemble models)



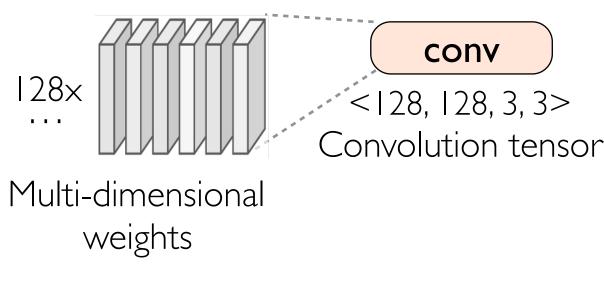
• ML model is a graph of tensors



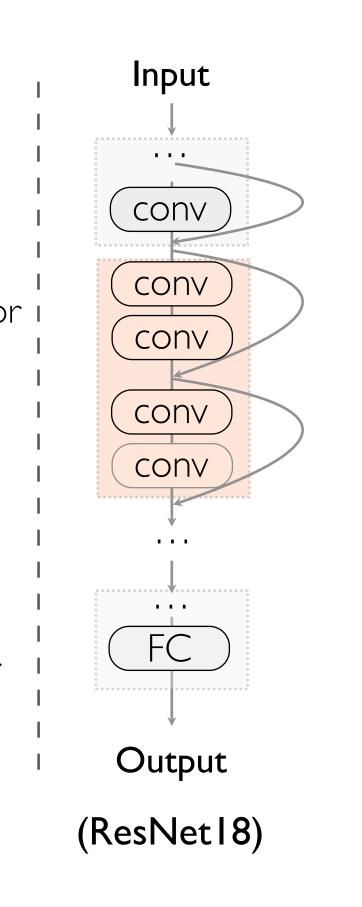


• ML model is a graph of tensors; training searches for best weight values

Weights 0.4 0.2 0.1 ... 0.7 0.8 0.3 ... 0.3 0.6 0.5 ... 1... 1... 1... 500 columns Full-Connection tensor

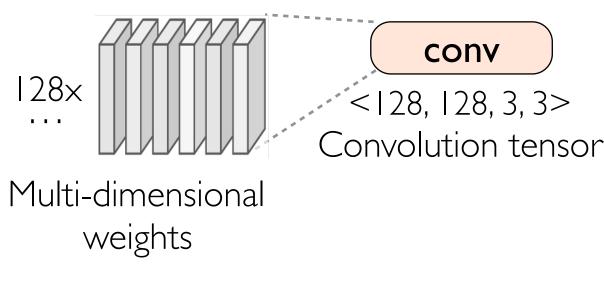


(Tensor Nodes)

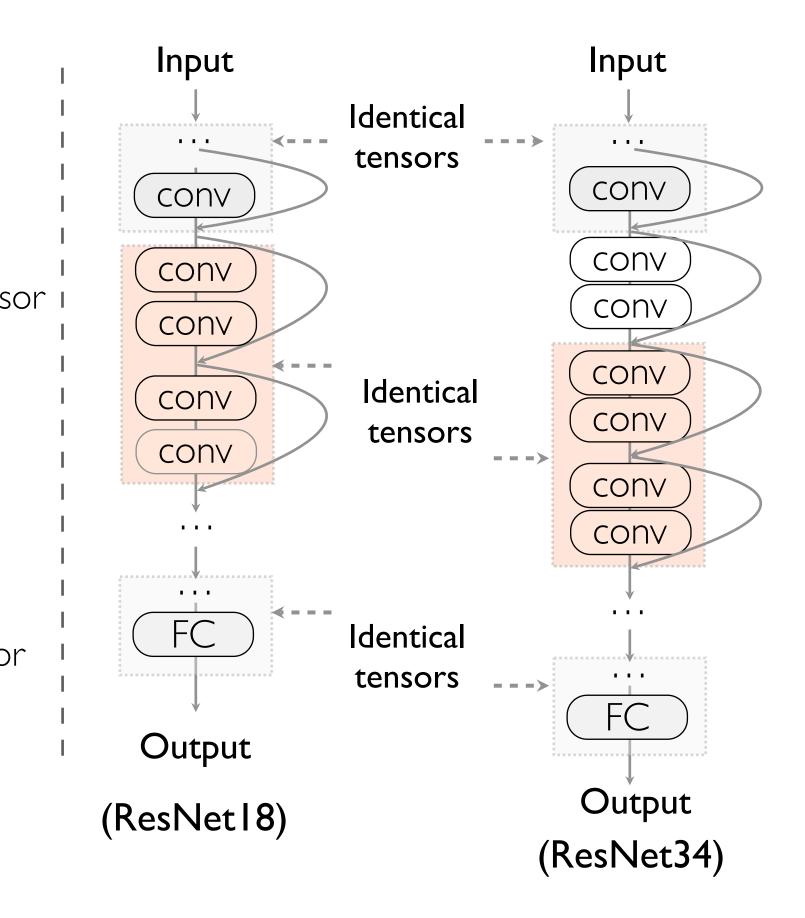


• ML model is a graph of tensors; training searches for best weight values

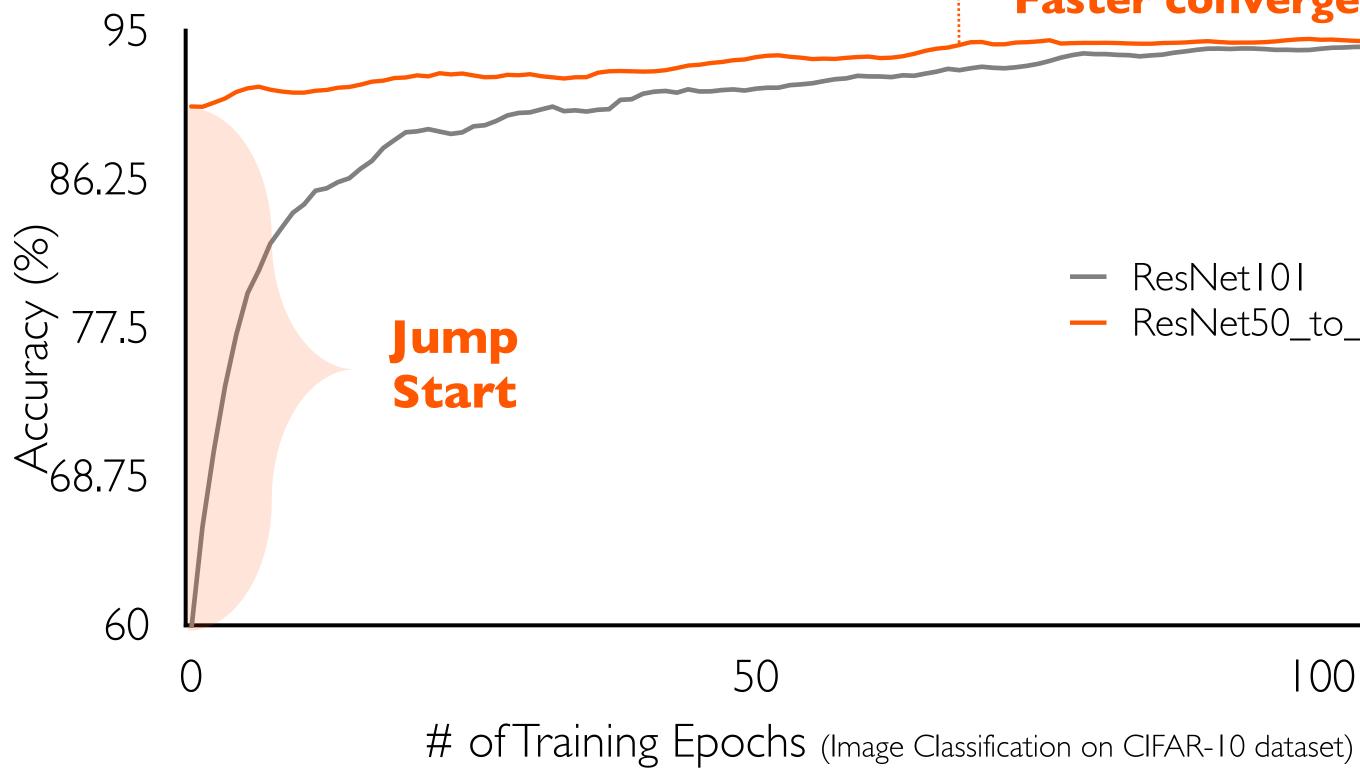
Weights 0.4 0.2 0.1 ... 0.7 0.8 0.3 ... 0.3 0.6 0.5 ... 1... 1... 1... 500 columns Full-Connection tensor



(Tensor Nodes)



- - Weight transformation can jump start training



• ML model is a graph of tensors; training searches for best weight values

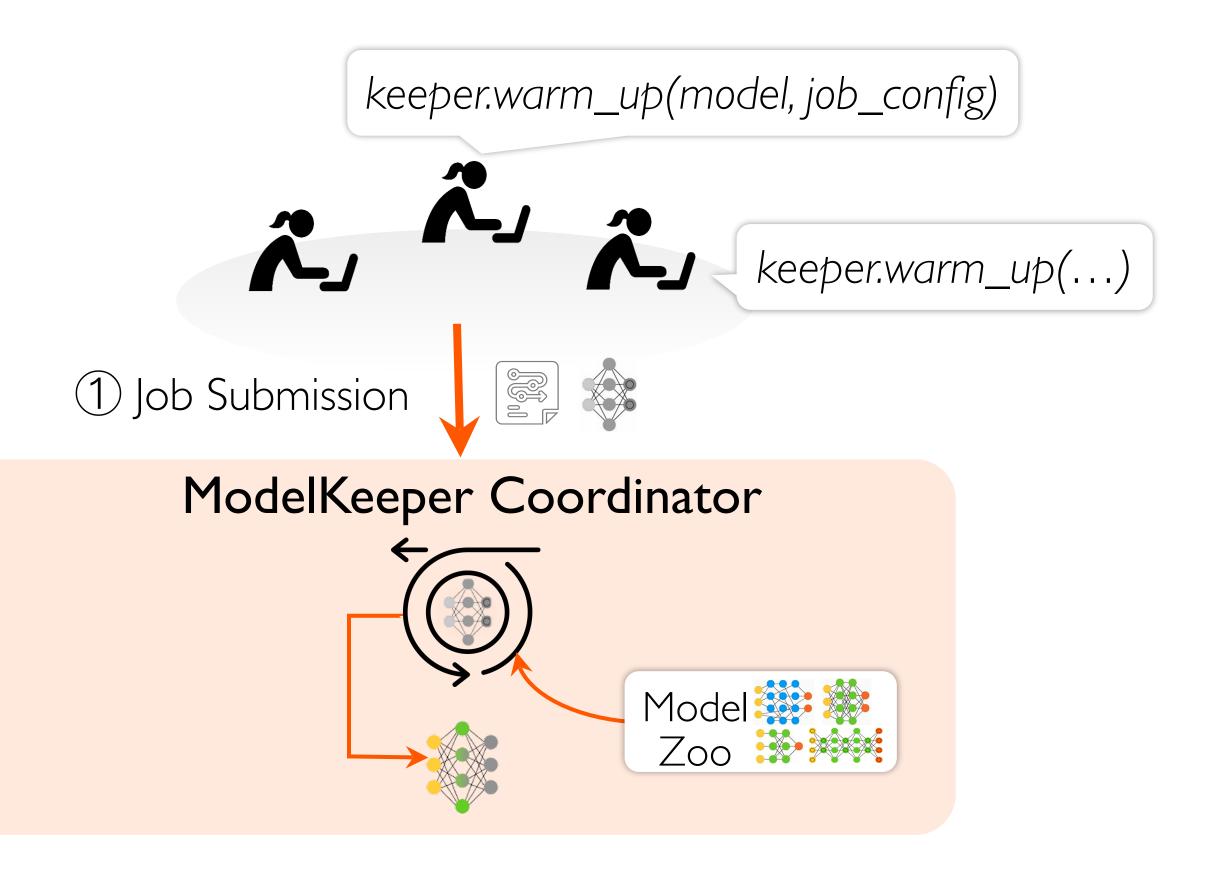
Faster convergence

ResNet50_to_ResNet101

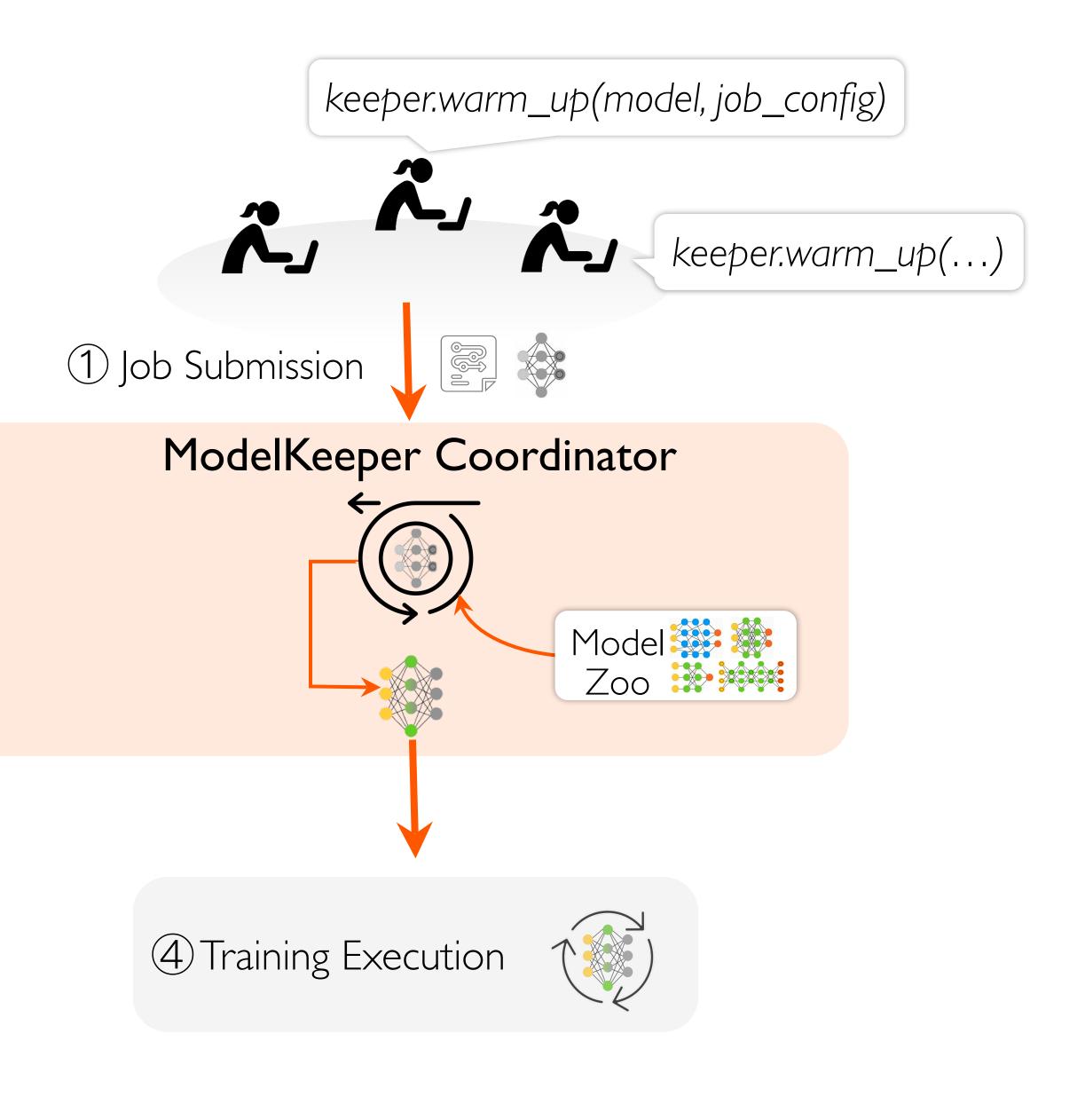
- ML model is a graph of tensors; training searches for best weight values • Weight transformation can jump start training
- Large clusters often contain jobs w/ similar architectures^[1,2]
- ~40% models have architecturally similar counterparts
- Automated warmup w/o overhead is a must
 - Due to too many jobs, varying user expertise, architectures, etc.

[1] "MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters", HKUST and Alibaba, NSDI'22 [2] "Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective", Facebook, HPCA'18

ModelKeeper Automated Training Warmup System



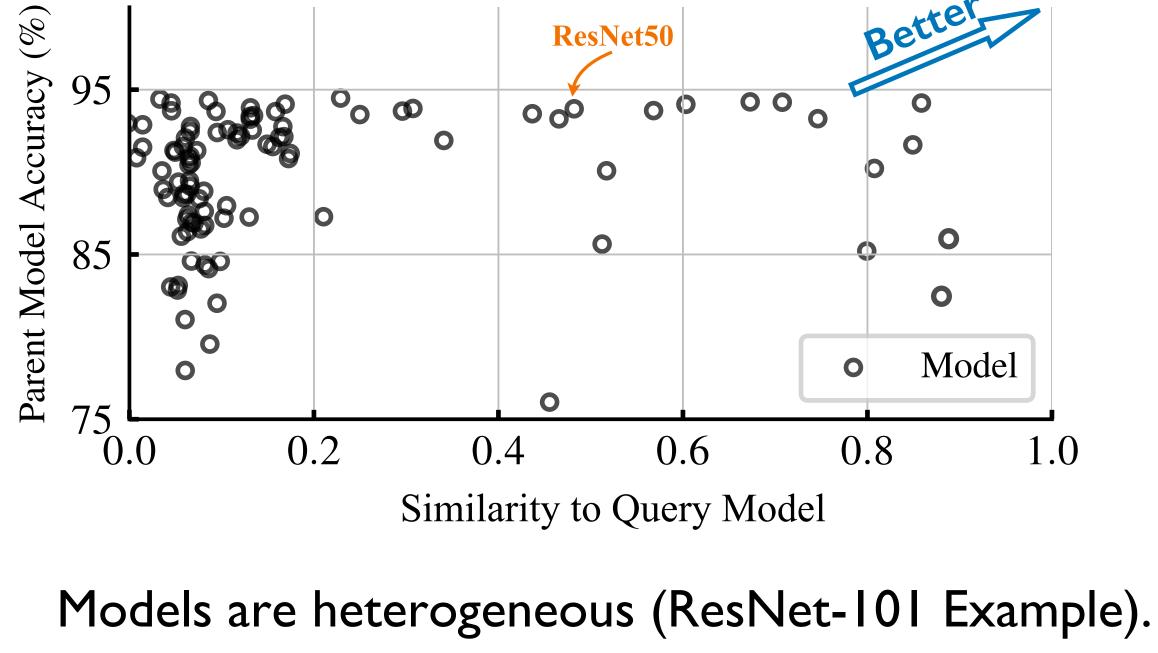
ModelKeeper Automated Training Warmup System



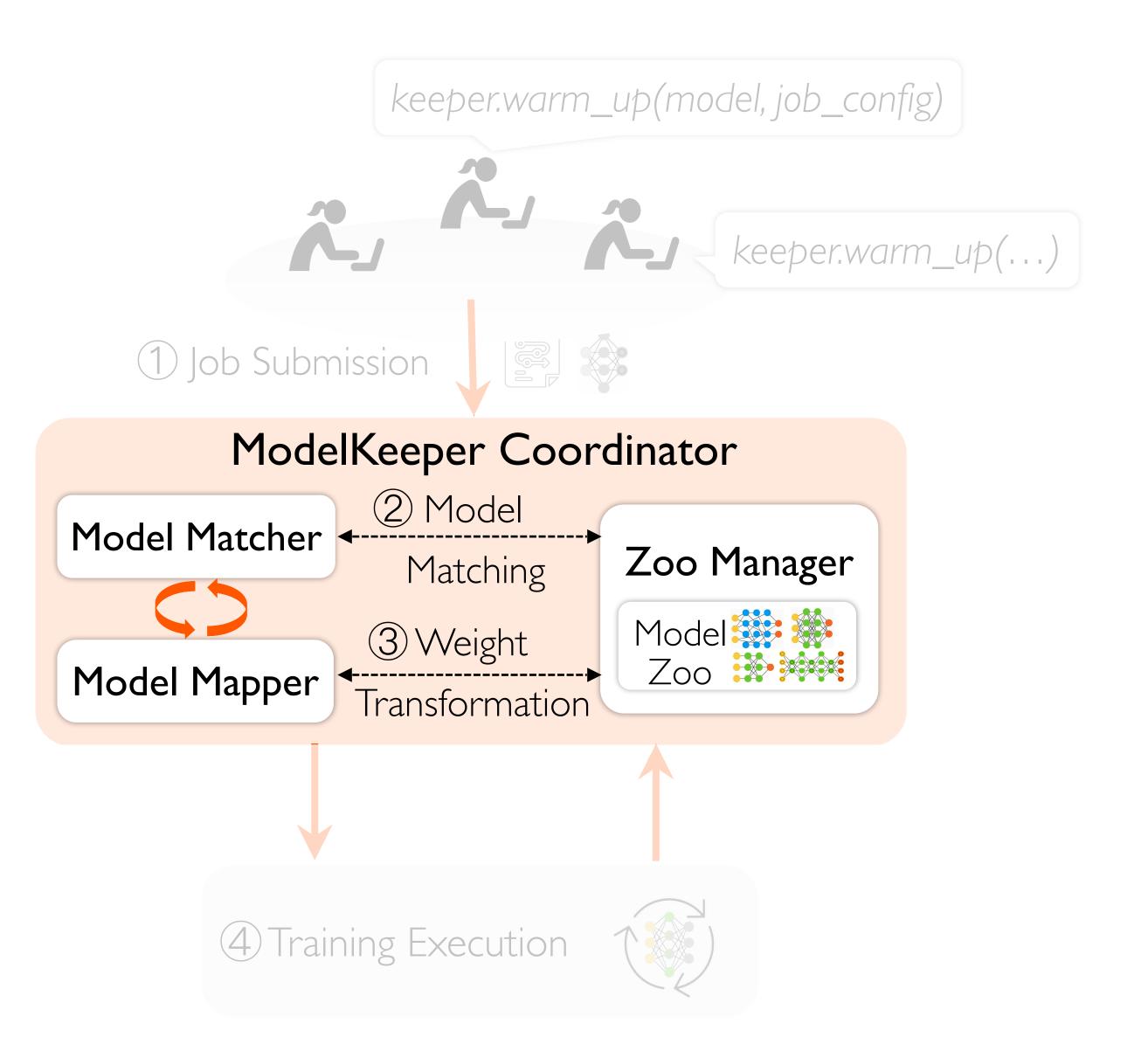
Effectiveness of Training Warmup

- Model architectural similarity
 - Determine how many can transform

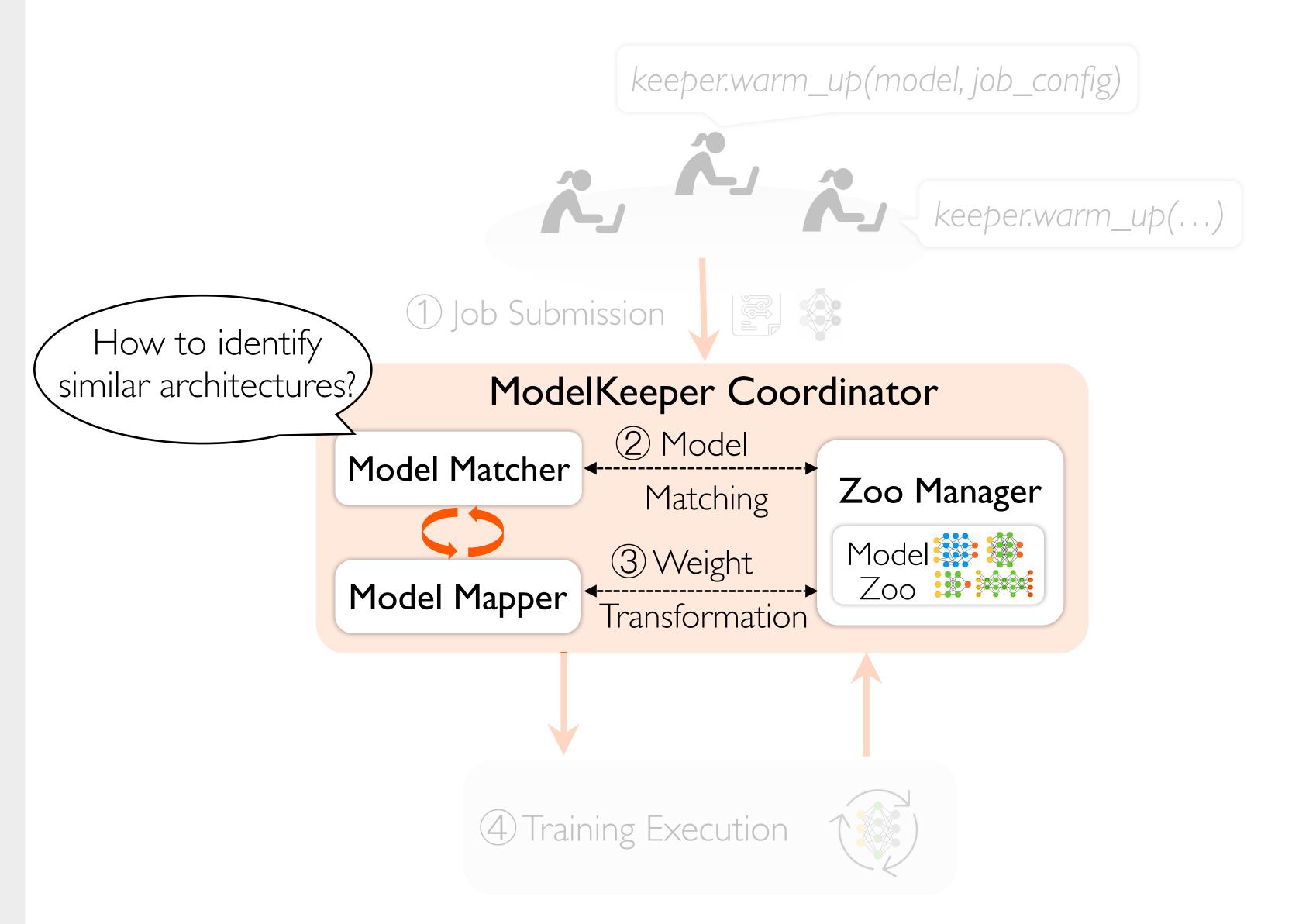
- Parent model accuracy
 - Determine how beneficial to transform



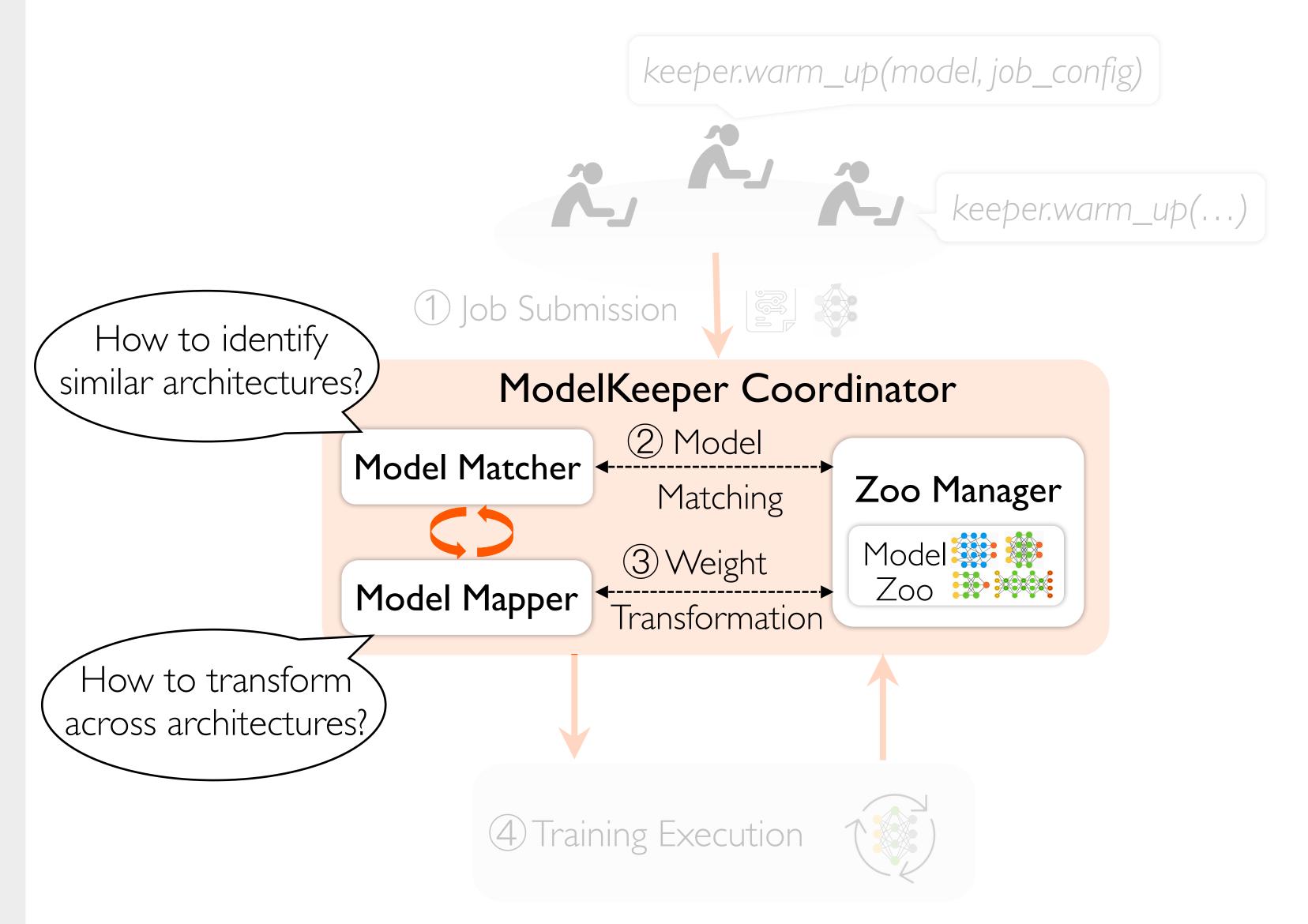
ModelKeeper Automated Training Warmup System



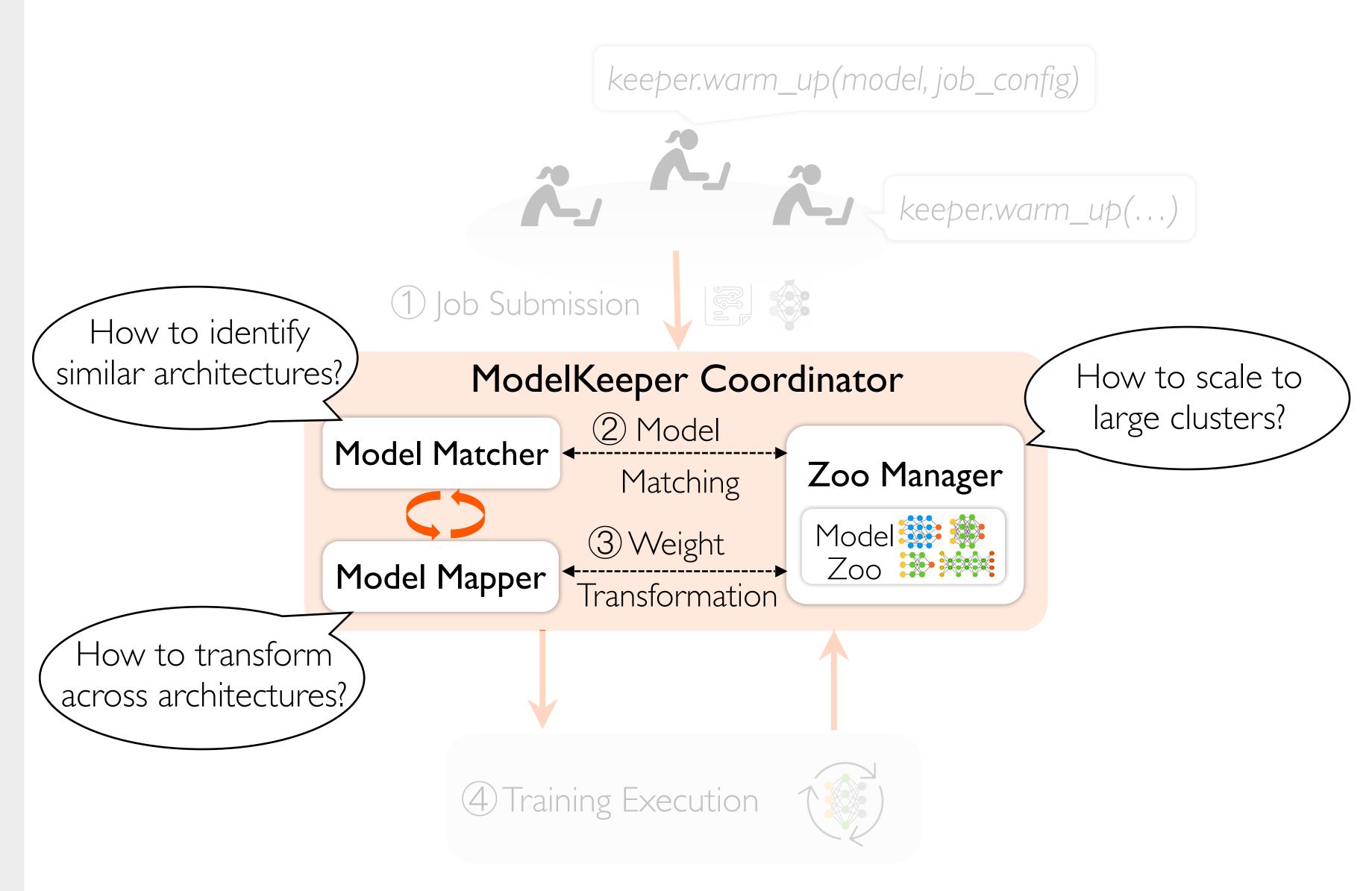
Automated Training Warmup System

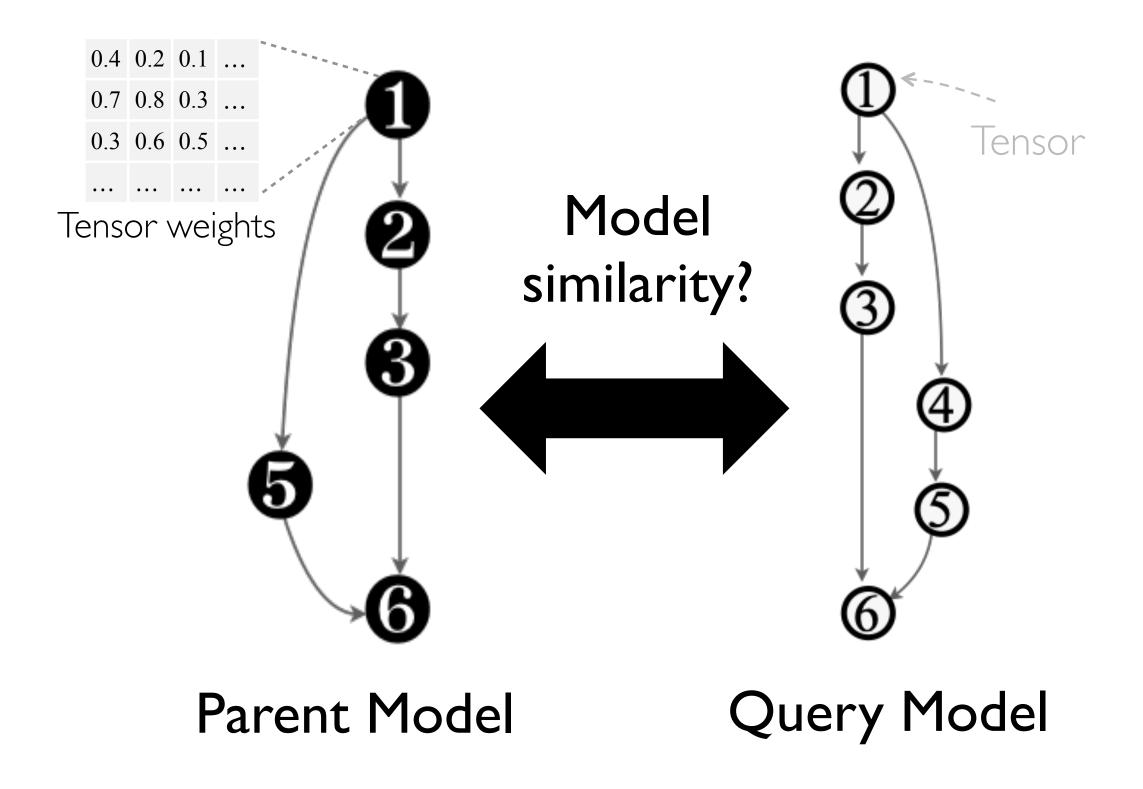


Automated Training Warmup System

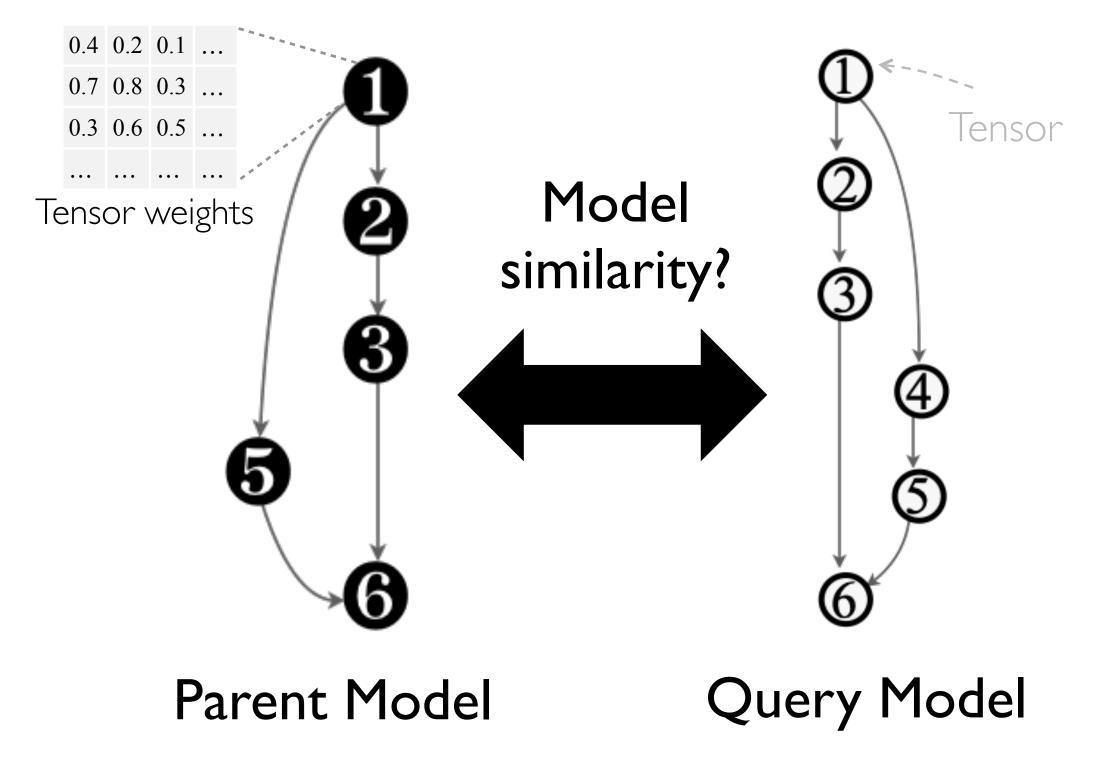


Automated Training Warmup System

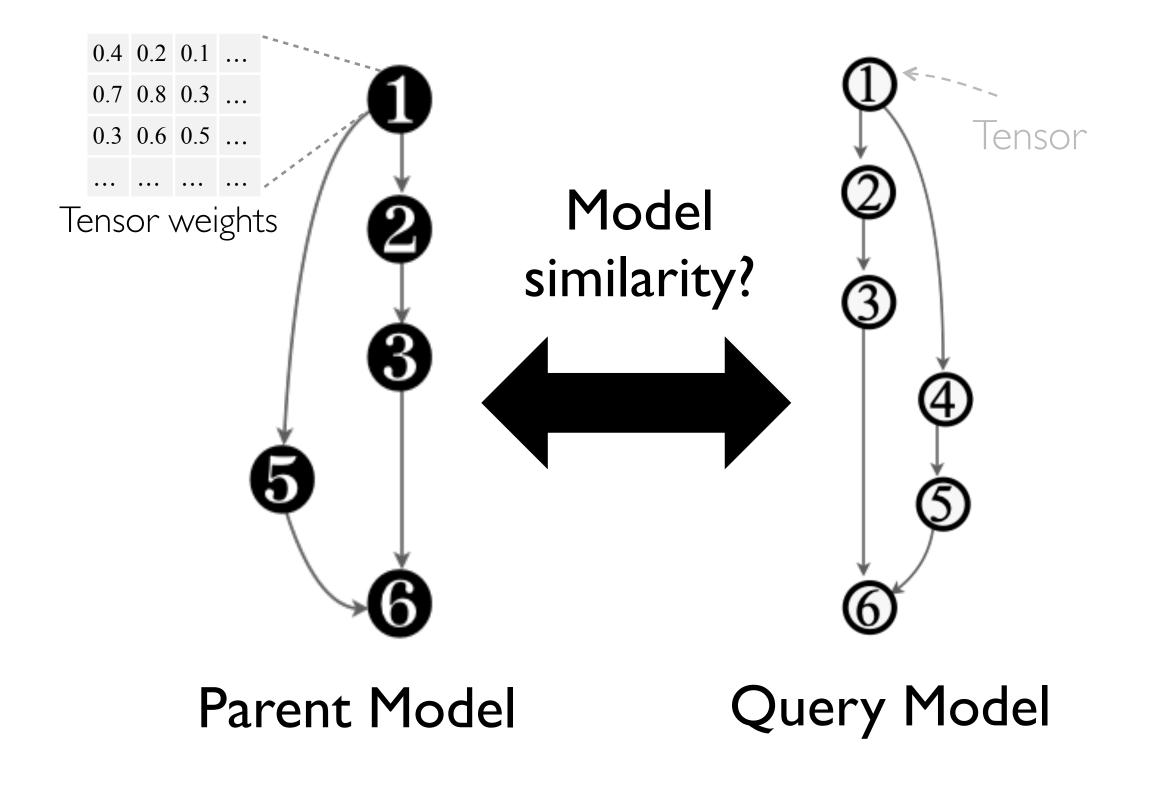




How to quantify # of transformable weights between two models? Match the structure of tensors at the graph level



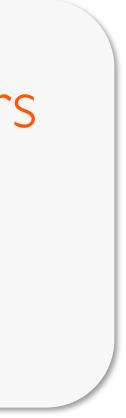
• How to quantify # of transformable weights between two models? • Match the structure of tensors at the graph level



Matcher

Why challenging?

- Models prefer matching prefix tensors
- Model matching can be partial
- Graph matching is NP-Hard



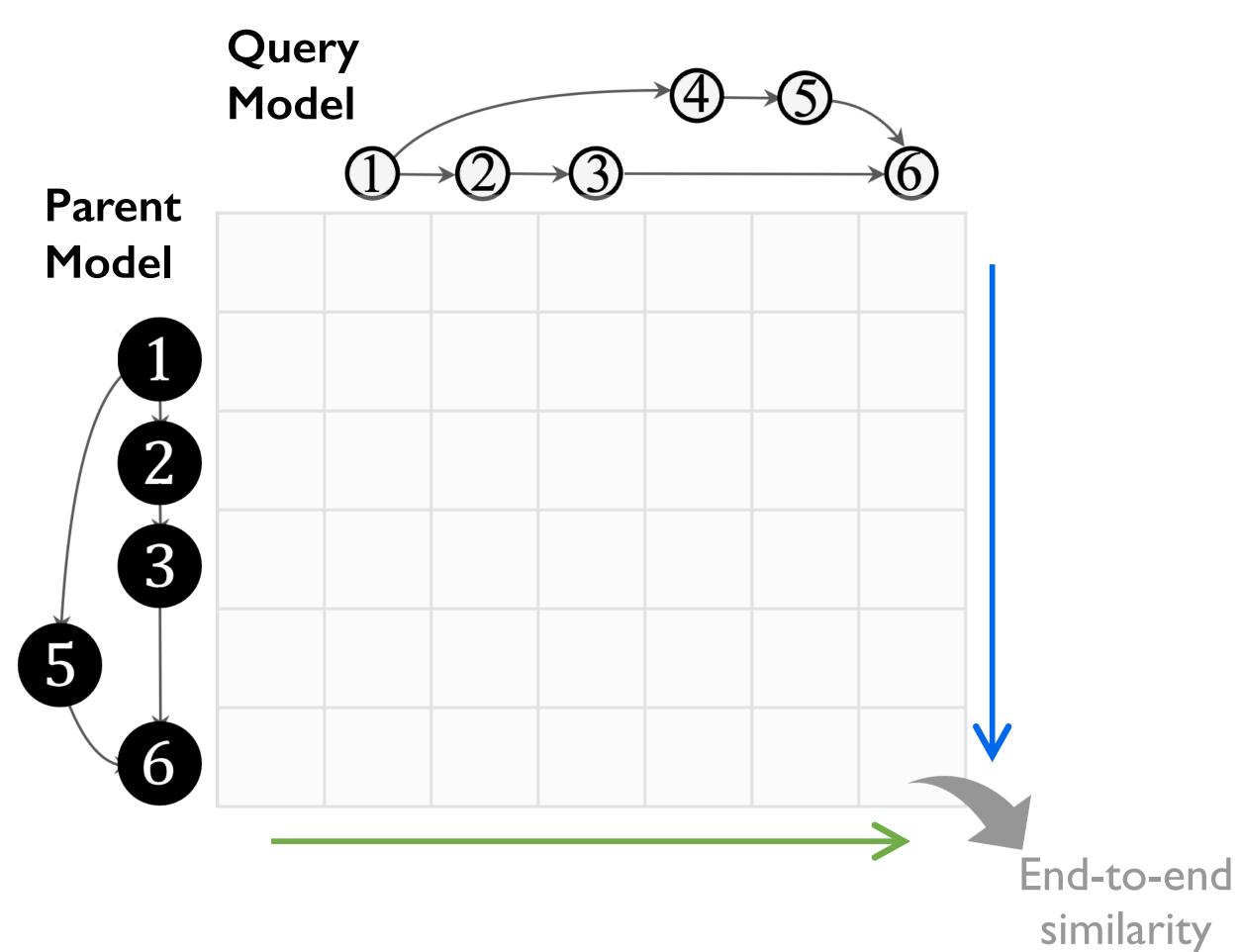
<u>Goal</u>

Identify the maximum number of transformable weights

Mapper

Goal

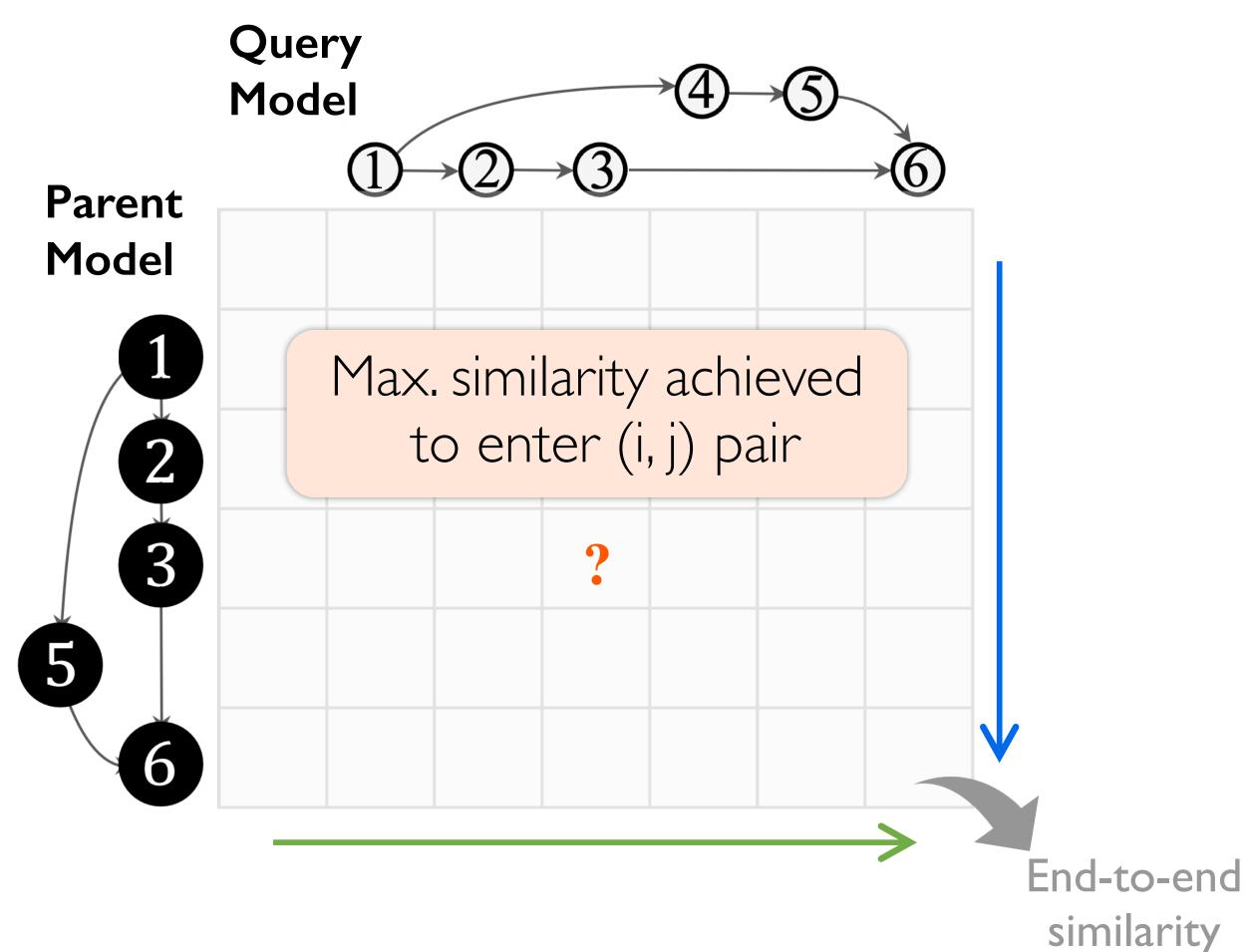
Identify the maximum number of transformable weights



Mapper

Goal

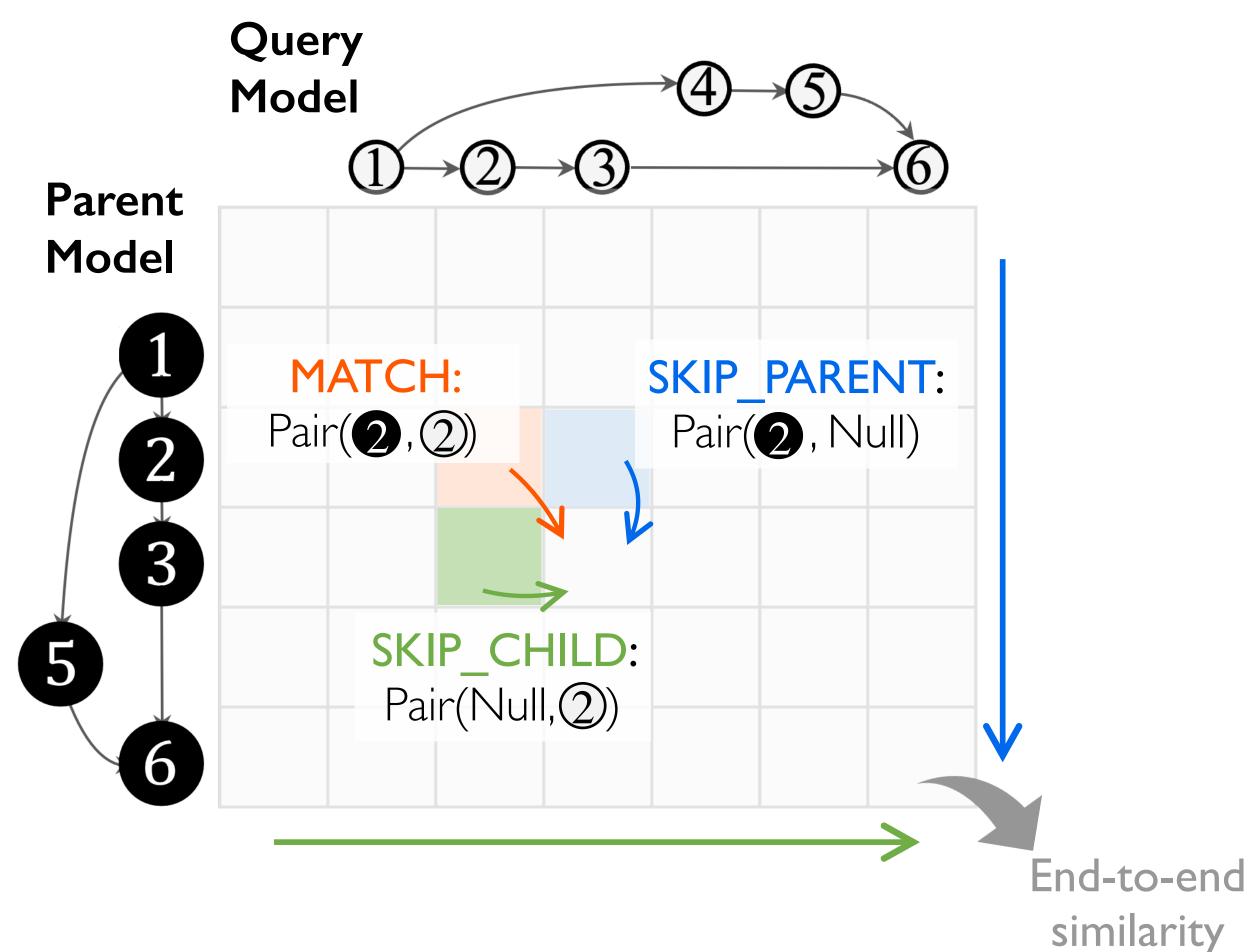
Identify the maximum number of transformable weights



Mapper

Goal

Identify the maximum number of transformable weights



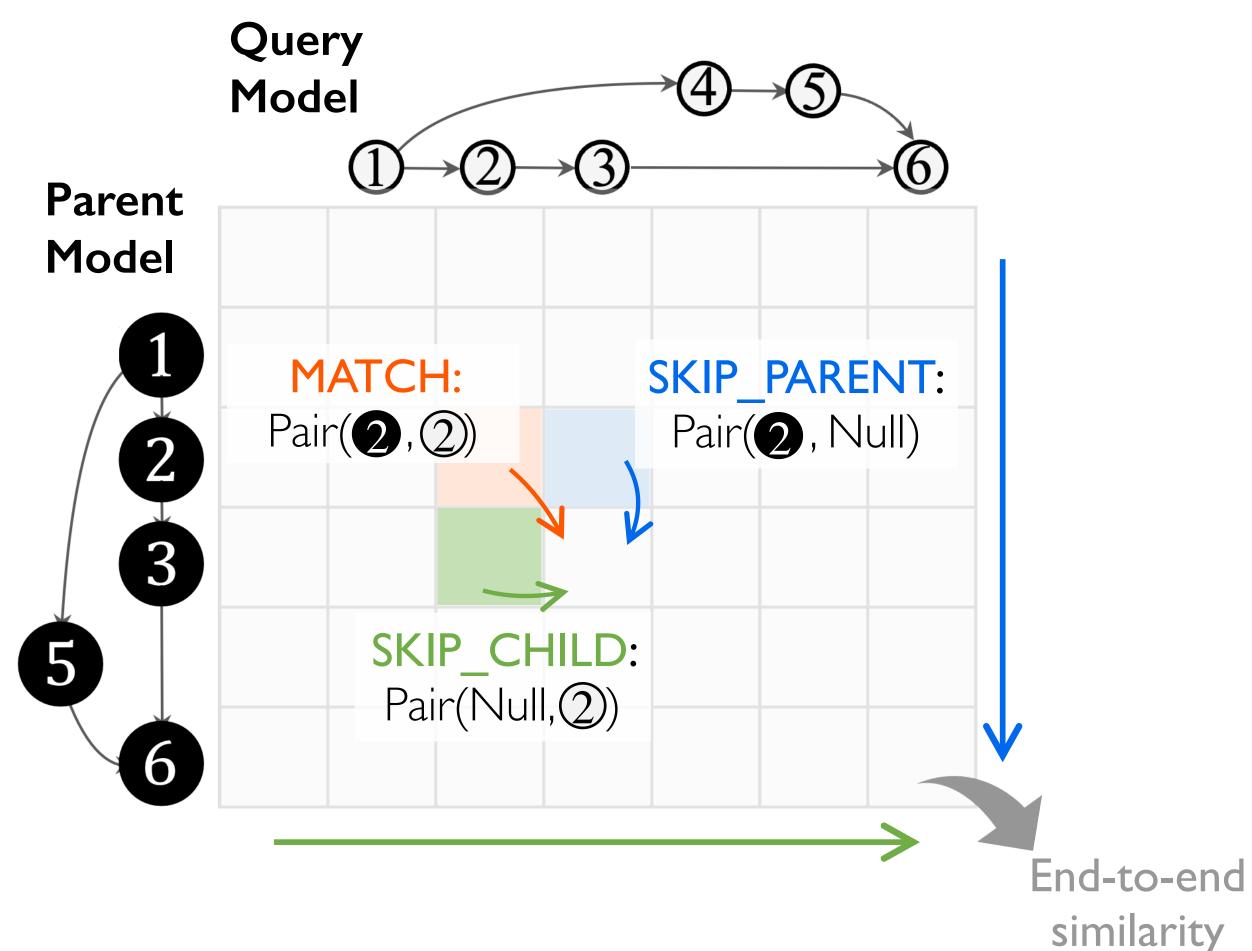
Mapper

Goal

Identify the maximum number of transformable weights

Operation score

- MATCH: % of transformable weights
- **SKIP CHILD**: 0 (transfer 0% weights)



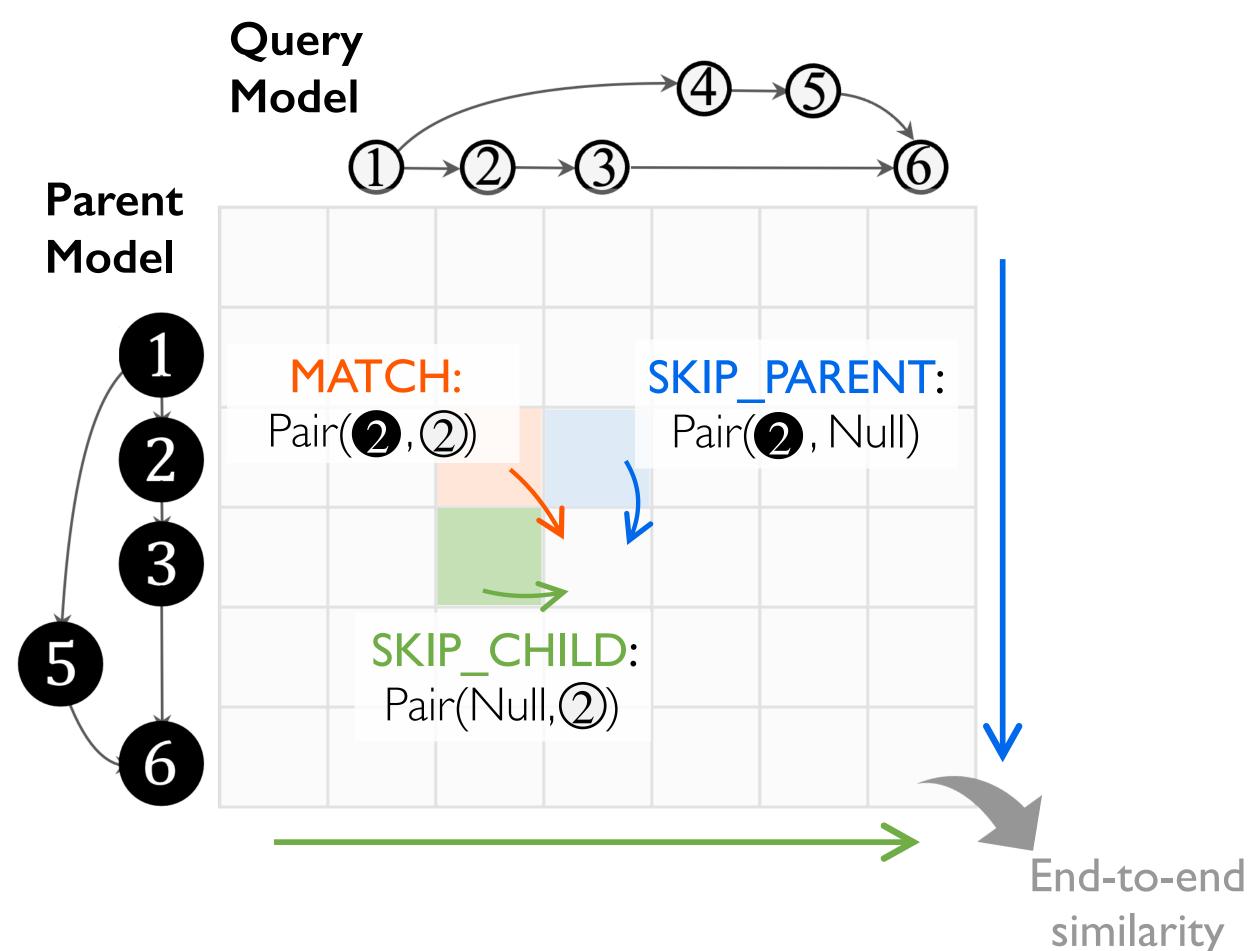
Mapper

Goal

Identify the maximum number of transformable weights

Operation score

- MATCH: % of transformable weights
- **SKIP CHILD**: 0 (transfer 0% weights)
- **SKIP_PARENT**: -1 (lose 100% weights)



Mapper

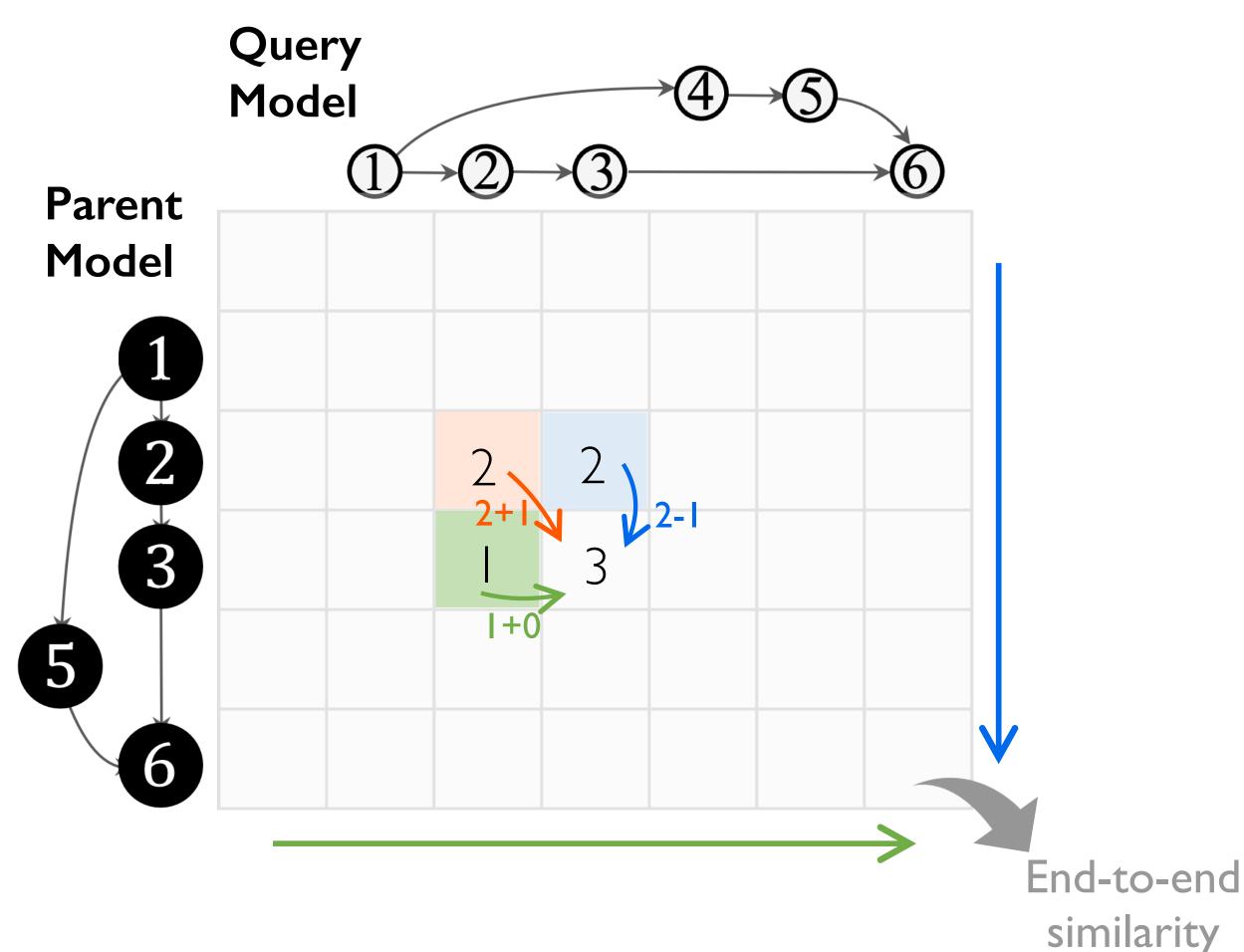
Goal

Identify the maximum number of transformable weights

Max{last_state + operation score}

Operation score

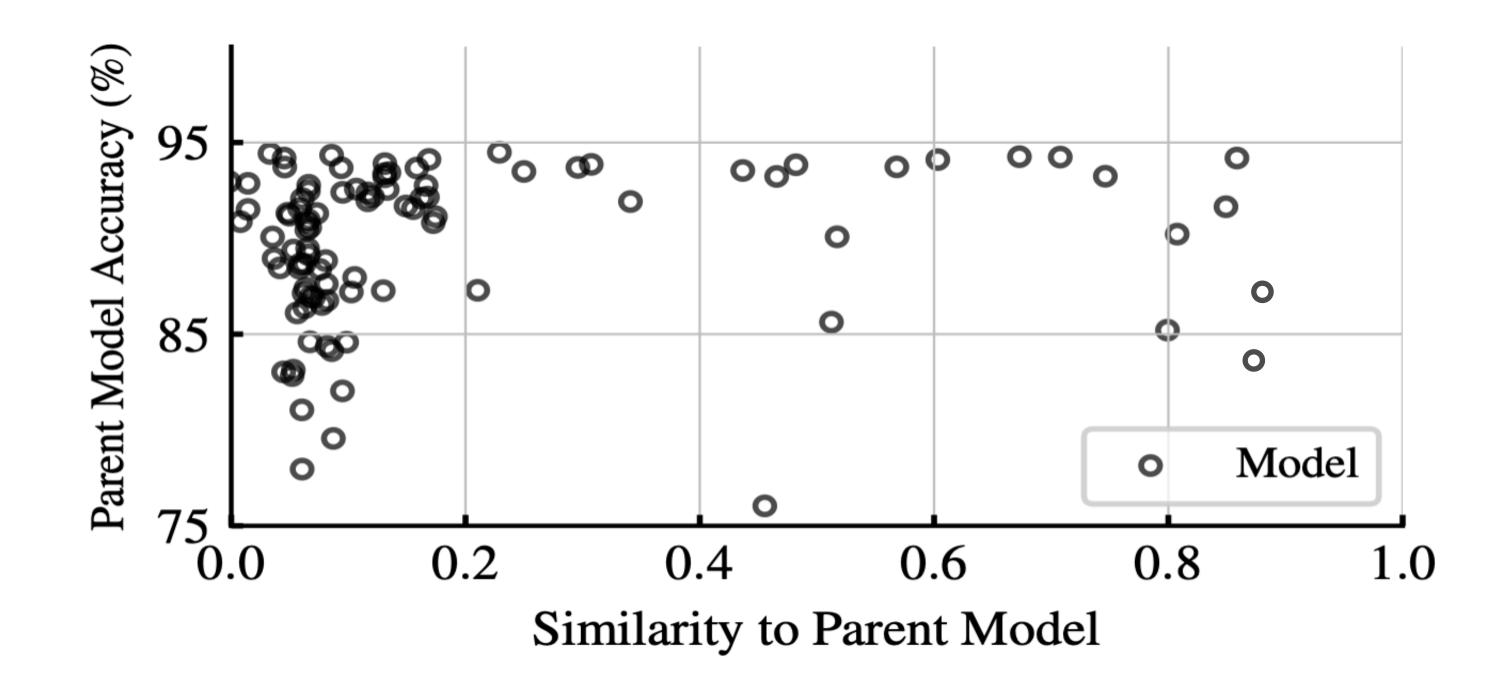
- MATCH: % of transformable weights
- **SKIP CHILD**: 0 (transfer 0% weights)
- **SKIP_PARENT**: -1 (lose 100% weights)



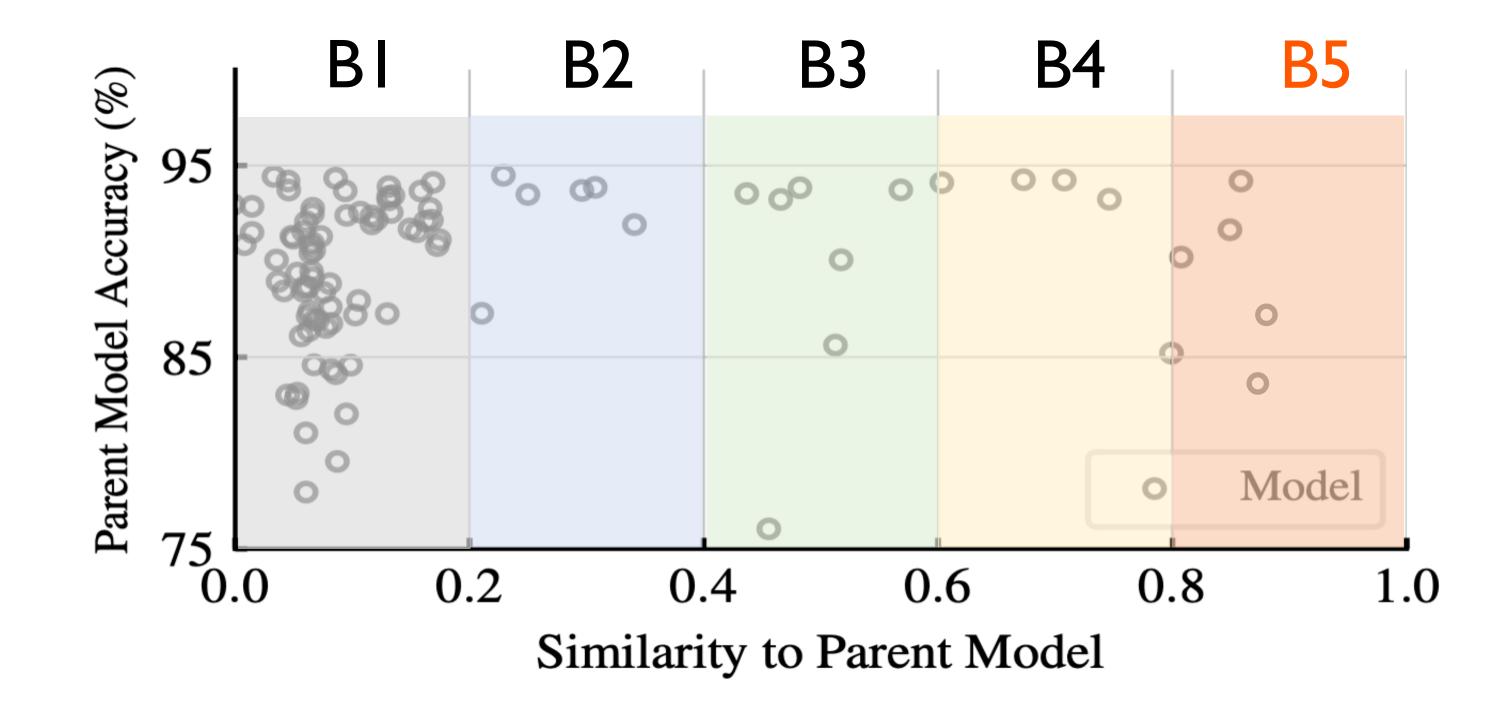
- How to achieve similarity-accuracy frontier?
 - Bucketing by similarity, then select the high-accuracy model

.cy frontier? the high-accuracy mode

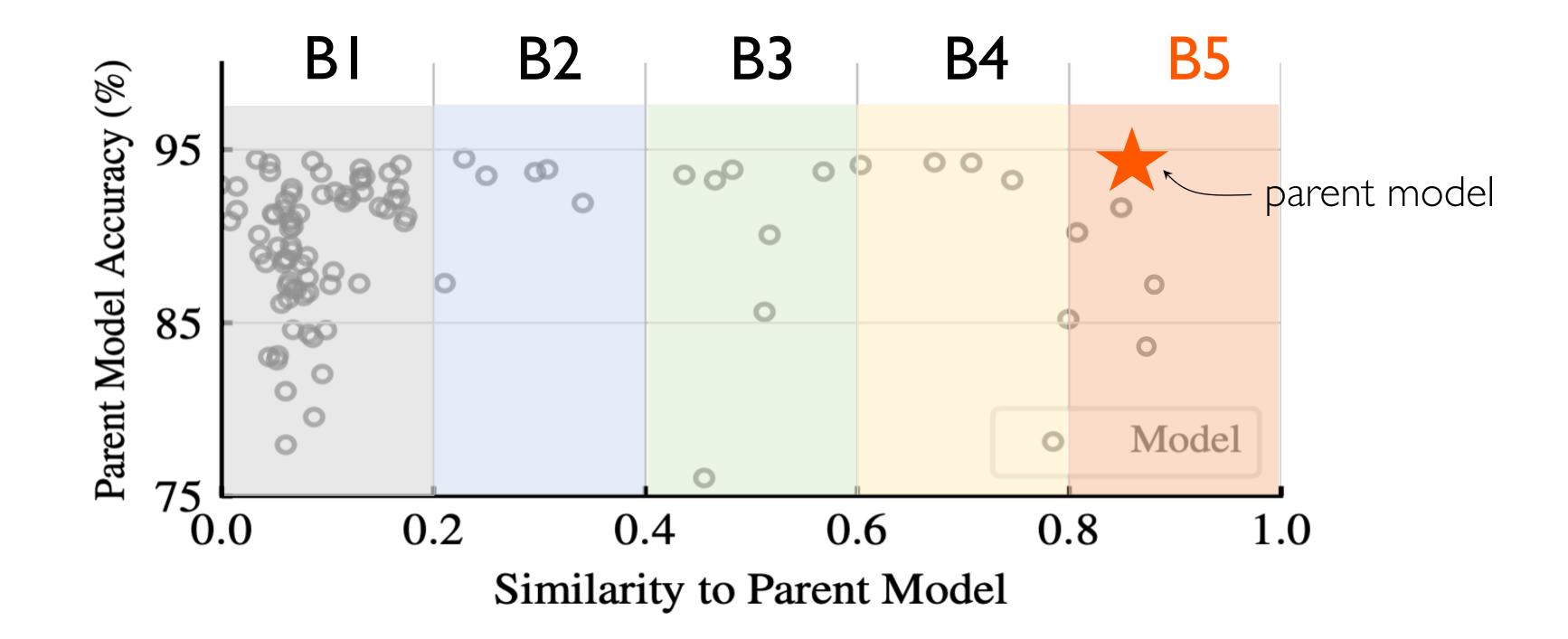
- How to achieve similarity-accuracy frontier?
 - Bucketing by similarity, then select the high-accuracy model



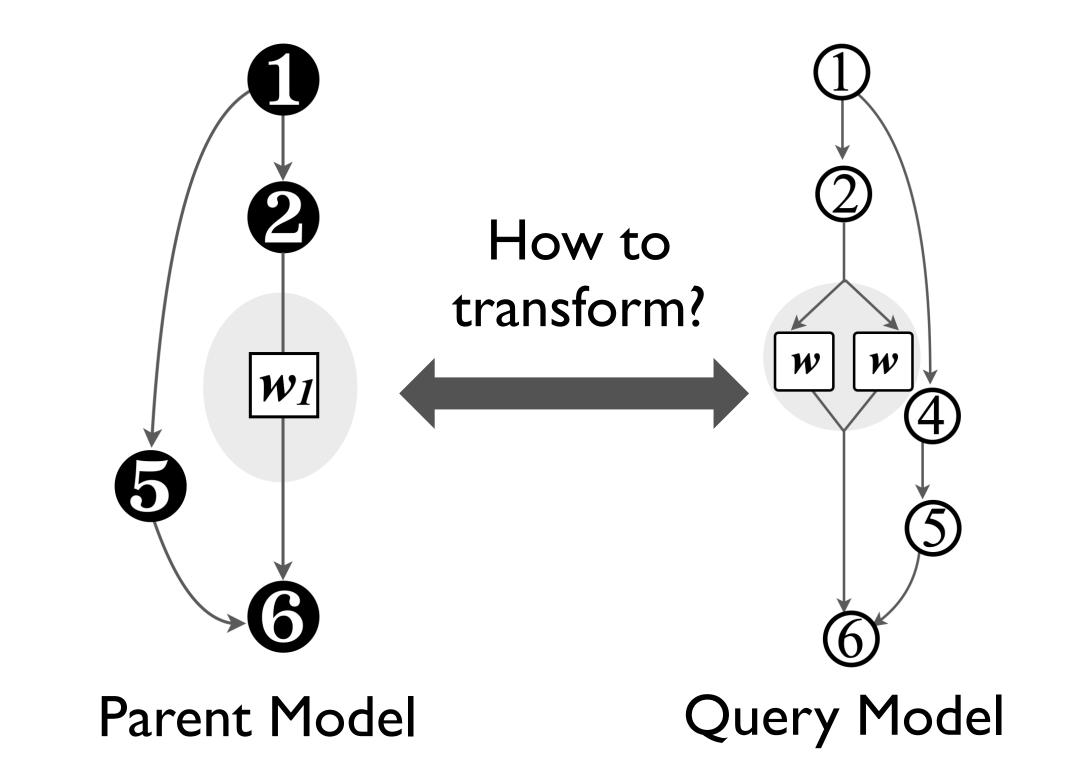
- How to achieve similarity-accuracy frontier?
 - Bucketing by similarity, then select the high-accuracy model



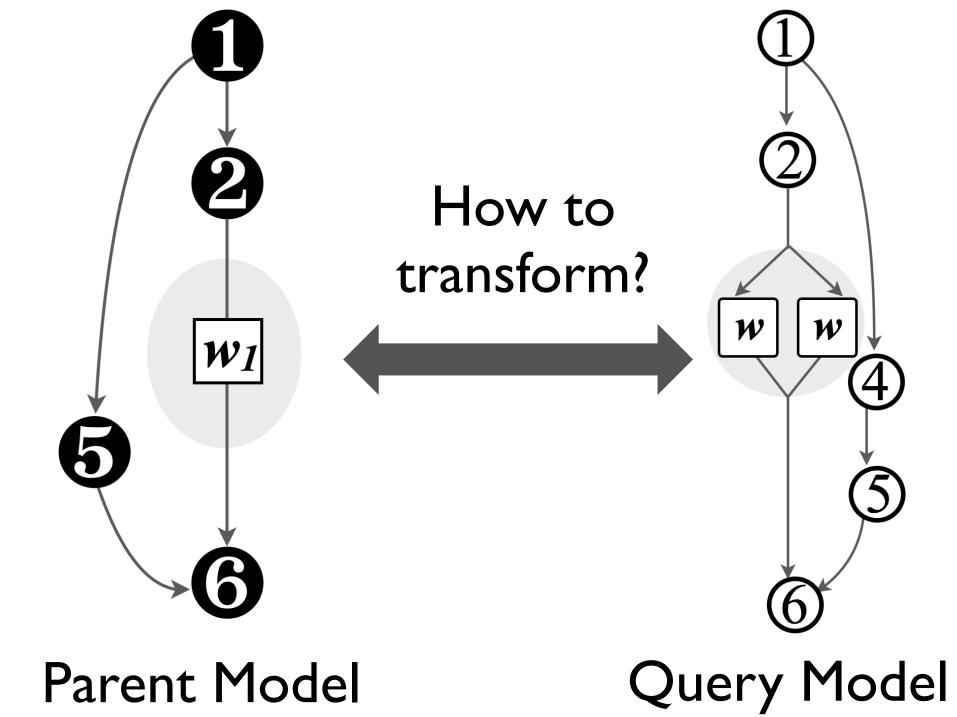
- How to achieve similarity-accuracy frontier?
 - Bucketing by similarity, then select the high-accuracy model



• How to transform in the presence of non-identical architectures?

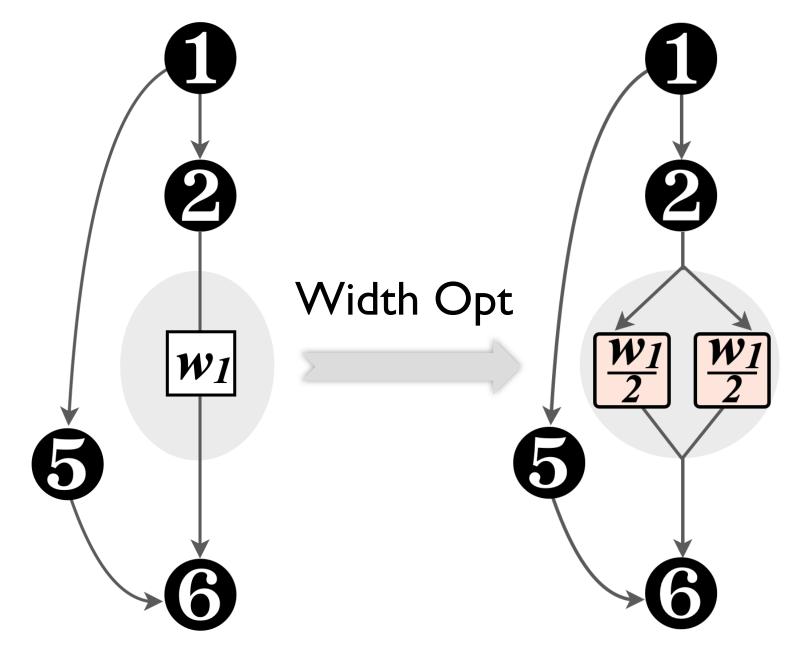


- How to transform in the presence of non-identical architectures?
 - Function-preserving width operator, depth operator



Matcher

- How to transform in the presence of non-identical architectures?
 - Function-preserving width operator, depth operator

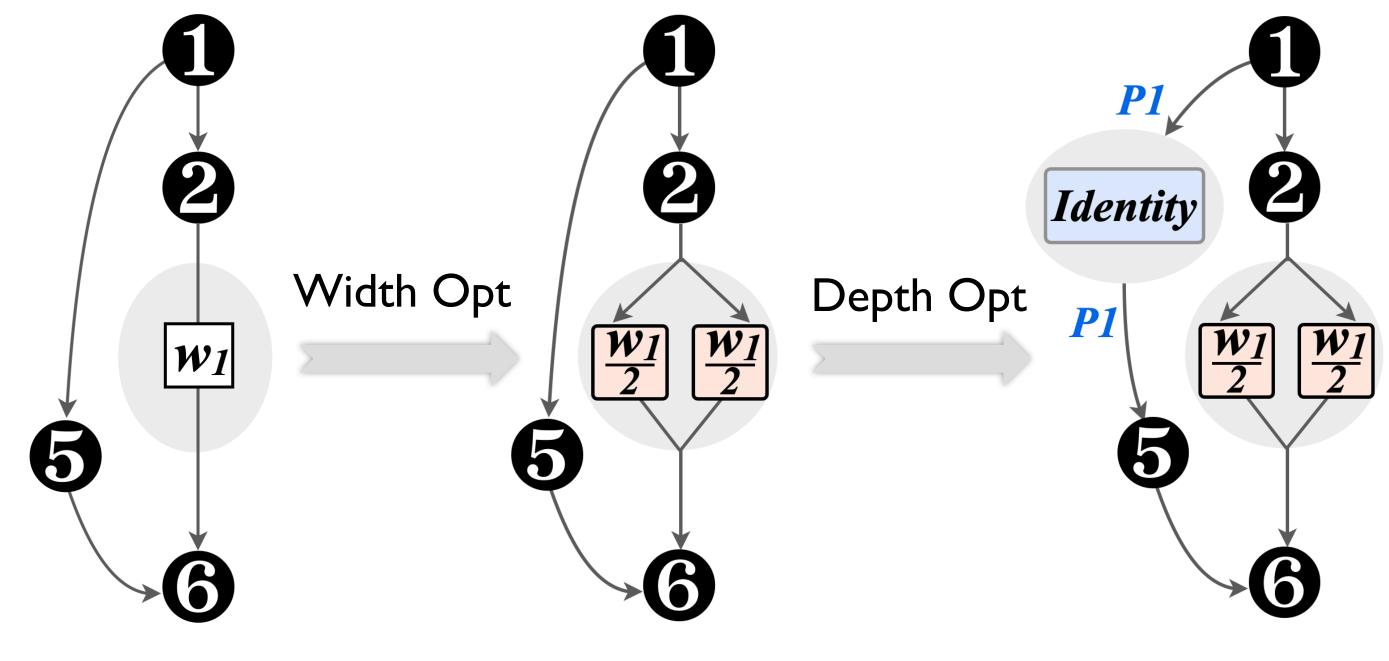


Parent Model

Matcher

ce of non-identical architectures? r, depth operator

- How to transform in the presence of non-identical architectures?
 - Function-preserving width operator, depth operator

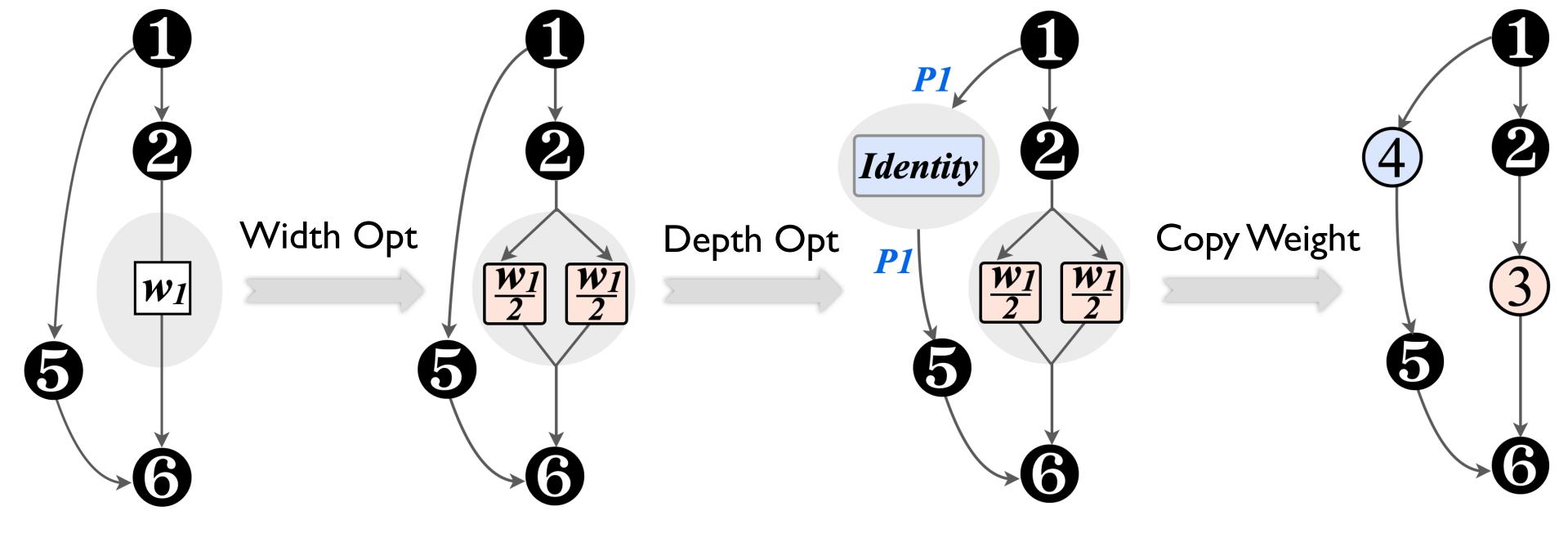


Parent Model

Matcher

ce of non-identical architectures? r, depth operator

- How to transform in the presence of non-identical architectures?
 - Function-preserving width operator, depth operator



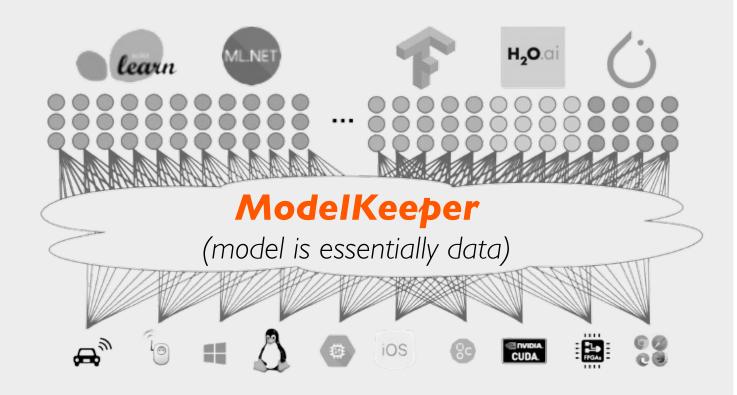
Parent Model

Matcher

ce of non-identical architectures? r, depth operator

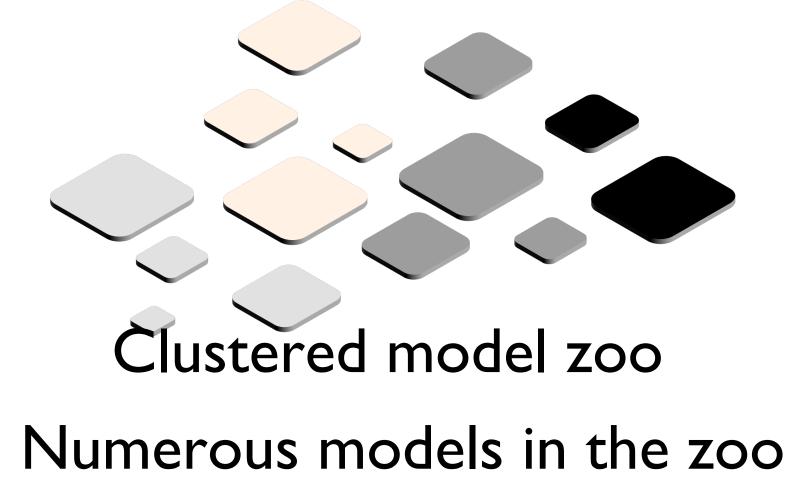
Query Model

Transform Effectively At Scale

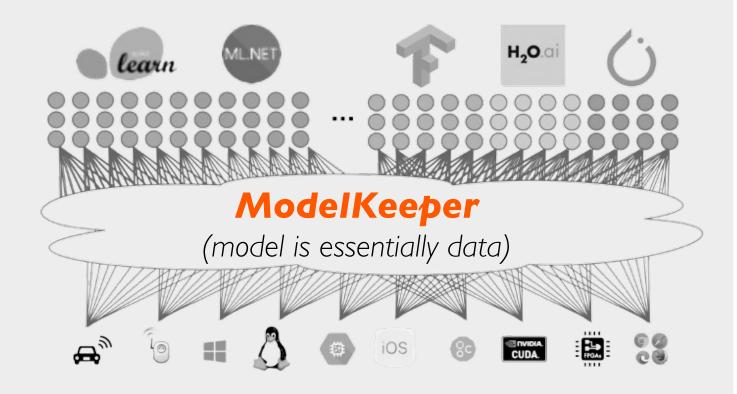


• How to identify similar models on the cloud scale? Thousands of daily jobs

Matcher

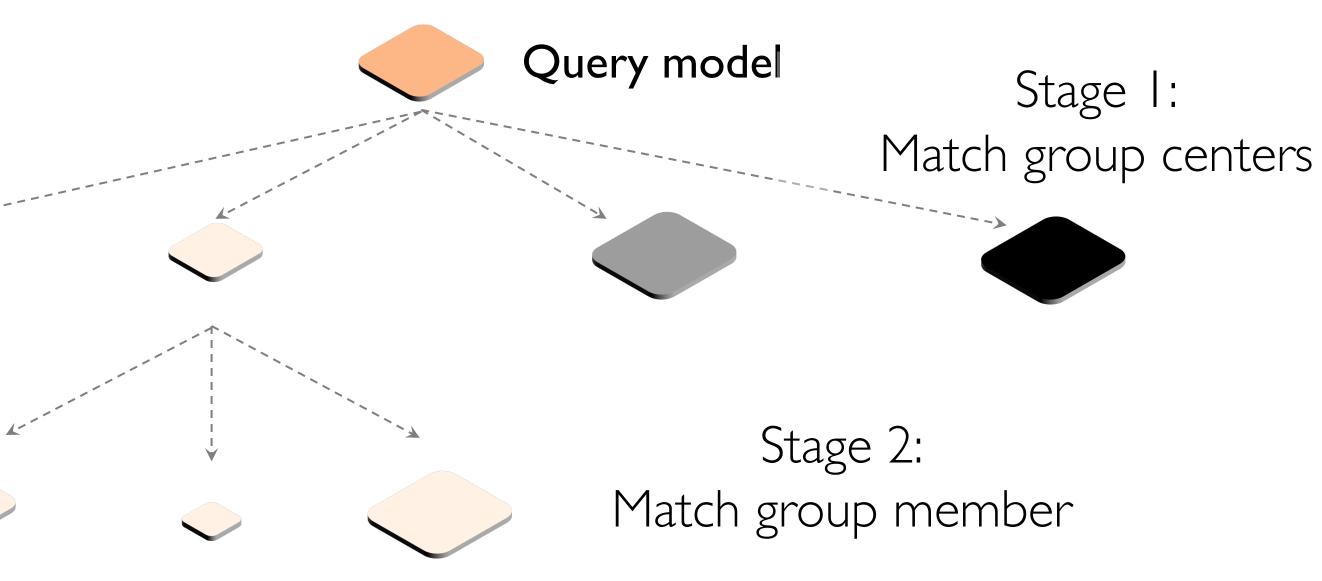


Transform Effectively At Scale



• How to identify similar models on the cloud scale? Two-stage matching using K-medoids clustering

Matcher



ModelKeeper responds to user requests in <u>8s</u> at cluster scale (2.5k HuggingFace zoo models).

Transform Effectively At Scale



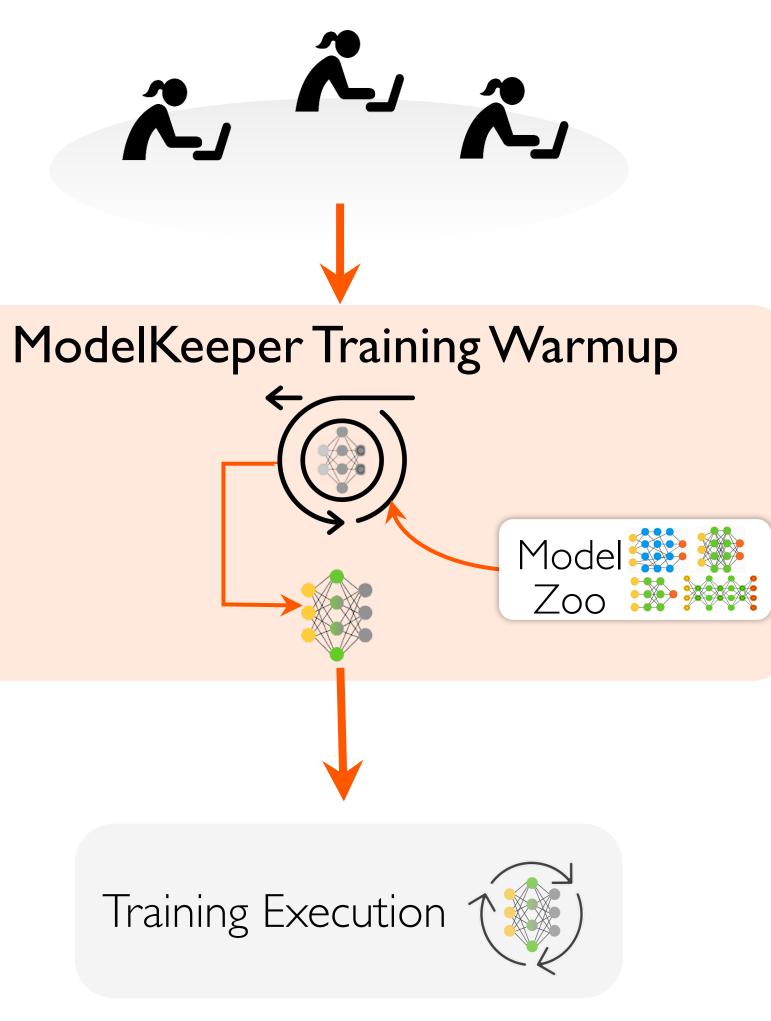
- How to identify similar models on the cloud scale? • Two-stage matching using K-medoids clustering
- How to manage the model zoo s.t. storage capacity? Admit and evict models on the fly
- How to avoid low-accuracy models in the zoo?

Matcher

Please refer to our paper for details

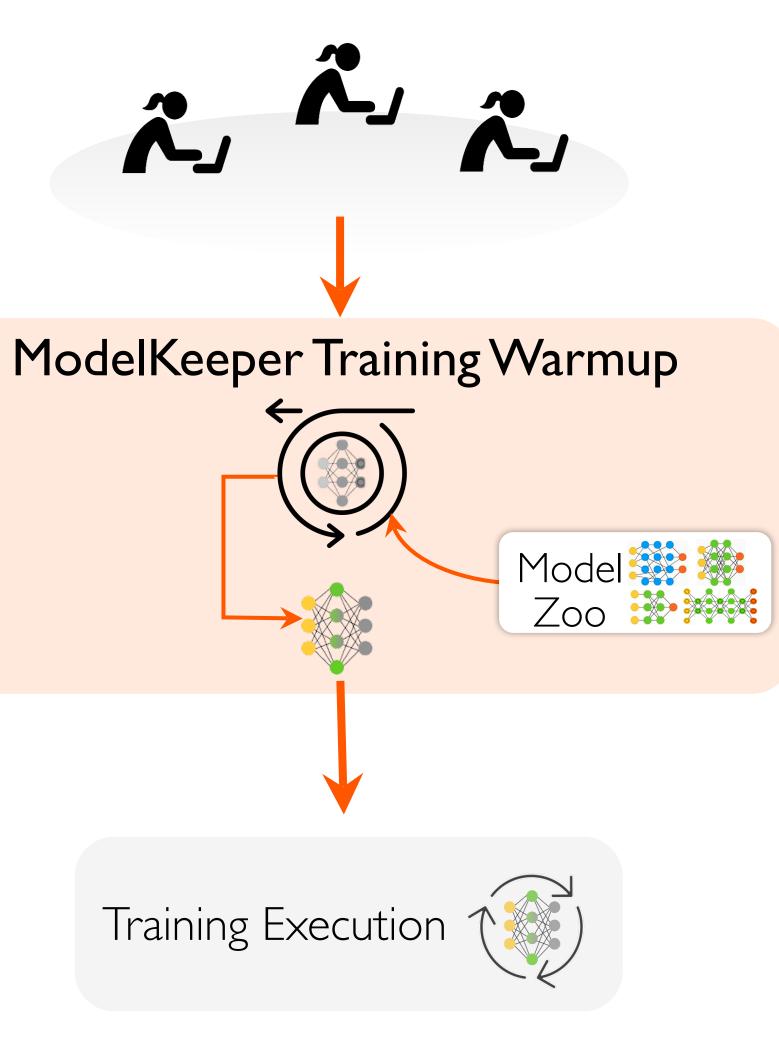
Evaluation

First automated training warmup system supporting



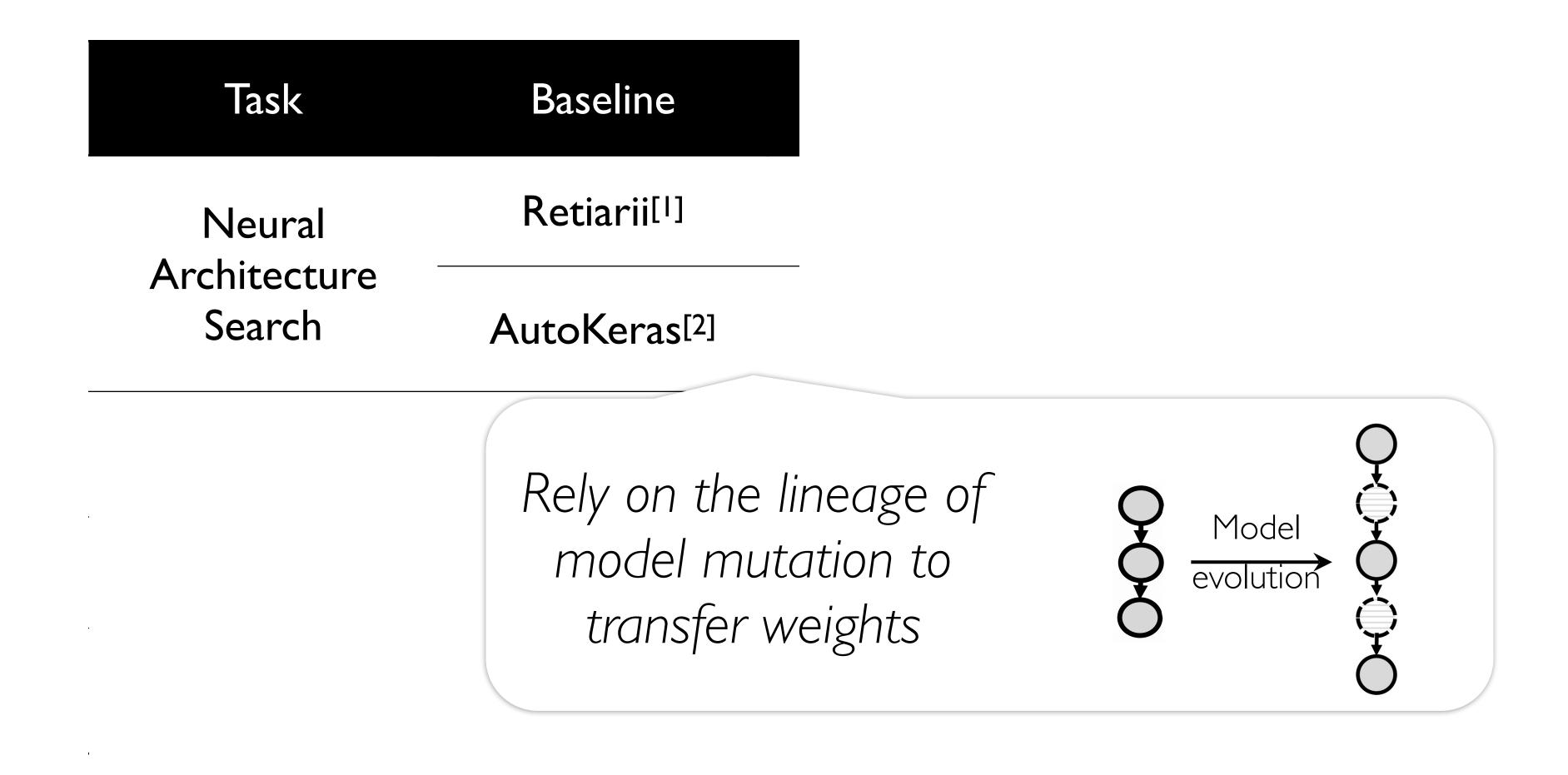
Evaluation

First automated training warmup system supporting



Experiment setting:

- 80-machine cluster
- Ik+ CV, NLP models
- Months of training



[1] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI'20
 [2] Auto-Keras: An Efficient Neural Architecture Search System, KDD'19

Task	Baseline	Workload	# of Models	GPU Saving
Neural	Retiarii[1]	NASBench	I,000	65.5%
Architecture Search	AutoKeras ^[2]	Bayesian- AutoKeras	500	76.7%
	model mu	Rely on the lineage of model mutation to transfer weights		

[1] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI'20 [2] Auto-Keras: An Efficient Neural Architecture Search System, KDD'19

	Task	Baseline	Workload	# of Models	GPU Saving	TC Improvement
	Neural Architecture Search	Retiarii ^[1]	NASBench	I,000	65.5%	2.9X
		AutoKeras ^[2]	Bayesian- AutoKeras	500	76.7%	4.3X
- - - -		Rely on the lineage of model mutation to transfer weights		Model evolution		

[1] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI'20 [2] Auto-Keras: An Efficient Neural Architecture Search System, KDD'19

Task	Baseline	Workload	# of Models	GPU Saving	TC Improvement
Neural Architecture Search	Retiarii ^[1]	NASBench	I,000	65.5%	2.9X
	AutoKeras ^[2]	Bayesian- AutoKeras	500	76.7%	4.3X
Ensemble Learning	MotherNet ^[3]	V-Ensemble	104	41.2%	1.7X
Image Classification	Ray w/o ModelKeeper	Imgclsmob	389	64.2%	2.8X
Language Modeling		HuggingFace	69	44.7%	1.8X

[1] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI'20
[2] Auto-Keras: An Efficient Neural Architecture Search System, KDD'19
[3] MotherNets: Rapid Deep Ensemble Learning, MLSys'20

Task	Baseline	Workload	# of Models	GPU Saving	TC Improvement
Neural Architecture Search	Retiarii ^[1]	NASBench	I,000	65.5%	2.9X
	AutoKeras ^[2]	Bayesian- AutoKeras	500	76.7%	4.3X
Ensemble Learning	MotherNet ^[3]	V-Ensemble	104	41.2%	1.7X
Image Classification	Ray w/o ModelKeeper	Imgclsmob	389	64.2%	2.8X
Language Modeling		HuggingFace	69	44.7%	1.8X

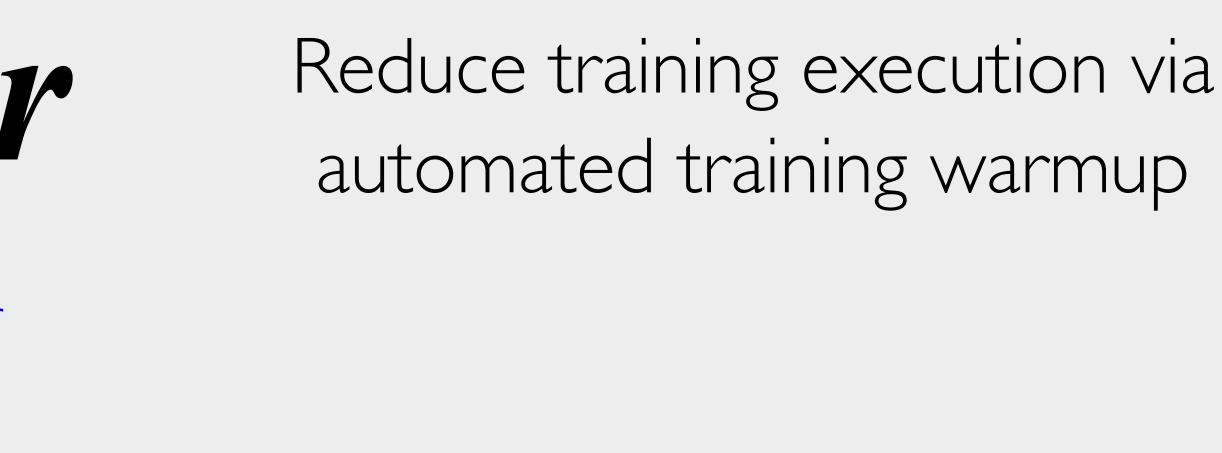
[1] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI'20
[2] Auto-Keras: An Efficient Neural Architecture Search System, KDD'19
[3] MotherNets: Rapid Deep Ensemble Learning, MLSys'20

ModelKeeper

https://github.com/SymbioticLab/ModelKeeper

Save training execution by transfo

Thank you!



by identifying a trained model with similar architectures

by transforming model weights across architectures

