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Squeeze Out the Last Ounce of ML Performance  
(e.g., neural architecture search, ensemble models)

Model TrainingModel Training Model TrainingLarge shared clusters run thousands of training jobs every day.
Can we automatically repurpose trained models for new jobs?
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Opportunity for Saving Training Execution
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• ML model is a graph of tensors; training searches for best weight values
• Weight transformation can jump start training
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Opportunity for Saving Training Execution
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• Large clusters often contain jobs w/ similar architectures[1,2] 

• ~40% models have architecturally similar counterparts

• Automated warmup w/o overhead is a must
• Due to too many jobs, varying user expertise, architectures, etc.

• ML model is a graph of tensors; training searches for best weight values
• Weight transformation can jump start training

[1] “MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters”, HKUST and Alibaba, NSDI’22
[2] “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective”, Facebook, HPCA’18
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Effectiveness of Training Warmup

• Parent model accuracy
• Determine how beneficial to transform

• Model architectural similarity
• Determine how many can transform

Models are heterogeneous (ResNet-101 Example).
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• How to quantify # of transformable weights between two models? 
• Match the structure of tensors at the graph level
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• How to quantify # of transformable weights between two models? 
• Match the structure of tensors at the graph level

Challenge 1: Identify Architecturally Similar Models

Matcher Mapper Zoo Manager

• Models prefer matching prefix tensors
• Model matching can be partial
• Graph matching is NP-Hard

Why challenging? 
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• MATCH: % of transformable weights
• SKIP_CHILD: 0 (transfer 0% weights)
• SKIP_PARENT: -1 (lose 100% weights)

 Operation score
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Challenge 1: Identify Architecturally Similar Models
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• How to achieve similarity-accuracy frontier?
• Bucketing by similarity, then select the high-accuracy model
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Challenge 2: Transform Max. Parent Information

• How to transform in the presence of non-identical architectures?
• Function-preserving width operator, depth operator

Query ModelParent Model
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Challenge 2: Transform Max. Parent Information

Parent Model

Width Opt Depth Opt

Query Model

Copy Weight

• How to transform in the presence of non-identical architectures?
• Function-preserving width operator, depth operator

Matcher Mapper Zoo Manager
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Transform 
Effectively At Scale

• How to identify similar models on the cloud scale?
• Thousands of daily jobs

Matcher Mapper Zoo Manager

Numerous models in the zoo
ModelKeeper

(model is essentially data)

Clustered model zoo
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• How to identify similar models on the cloud scale?
• Two-stage matching using K-medoids clustering

Matcher Mapper Zoo Manager

ModelKeeper
(model is essentially data)

Query model Stage 1:
Match group centers

Stage 2:
Match group member

ModelKeeper responds to user requests in 8s at 
cluster scale (2.5k HuggingFace zoo models). 

Transform 
Effectively At Scale
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• How to identify similar models on the cloud scale?
• Two-stage matching using K-medoids clustering

• How to manage the model zoo s.t. storage capacity?
• Admit and evict models on the fly

• How to avoid low-accuracy models in the zoo?

Matcher Mapper Zoo Manager

ModelKeeper 
(model is essentially data)

Transform 
Effectively At Scale

Please refer to our paper for details
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Evaluation
First automated training 

warmup system supporting

Experiment setting:

• 80-machine cluster
• 1k+ CV, NLP models 
• Months of training

ModelKeeper Training Warmup

Model 
Zoo

 Training Execution



Large GPU Saving & Faster Training Completion (TC)

22



[1] Retiarii: A Deep Learning Exploratory-Training Framework, OSDI’20
[2] Auto-Keras: An Efficient Neural Architecture Search System, KDD’19
[3] MotherNets: Rapid Deep Ensemble Learning, MLSys’20

Task Baseline Workload # of Models GPU Saving TC Improvement

Neural 
Architecture 

Search

Retiarii[1] NASBench 1,000 65.5% 2.9X

AutoKeras[2] Bayesian-
AutoKeras 500 76.7% 4.3X

Ensemble Learning MotherNet[3] V-Ensemble 104 41.2% 1.7X

Image 
Classification Ray w/o 

ModelKeeper

Imgclsmob 389 64.2% 2.8X

Language Modeling HuggingFace 69 44.7% 1.8X

Large GPU Saving & Faster Training Completion (TC)

22

Rely on the lineage of 
model mutation to 
transfer weights 

Model 
evolution
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ModelKeeper
https://github.com/SymbioticLab/ModelKeeper

Reduce training execution via 
automated training warmup

Save training execution{ by identifying a trained model with similar architectures 

by transforming model weights across architectures  
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Thank you!

https://github.com/SymbioticLab/ModelKeeper


24


