LeakyScatter: A Frequency-Agile Directional Backscatter Network above 100 GHz

Atsutse Kludze and Yasaman Ghasempour

USENIX NSDI 2023

4/17/2023

Low-Power Communication

Can be enabled by Backscattering

Atsutse Kludze 1. LUETH, K. L. State of the IoT 2020: 12 billion IoT Connections, Surpassing Non-IoT for the First Time. Available at https://iot-an alytics.com/state-of-the-iot-2020-12-billion-iot-con nections-surpassing-non-iot-for-the-firsttime/, 2020.

Backscattering is a Promising Candidate for Low-Power Communication

Atsutse Kludze

Today's Backscattering

Total Number of Low-Power nodes expected to increase to <u>41.2 billion</u>!¹

Current backscattering technology is limited in the total number of users it can support

Towards Backscattering Above 100 GHz

- Wideband Orthogonal Frequency Division Multiple Access
- Directionality Spectral reuse with spatial separation

^{100 GHz} Frequency (GHz)

How do we enable backscattering above 100 GHz?

Key Goals

- 1. Enabling highly directional, retrodirective links
- 2. Enabling <u>frequency-agile operation</u> above 100 GHz
- 3. Enabling <u>ultra-wide bandwidth</u> (GHz-Scale)

Prior Work: Phase Arrays

Prior Work: Van Atta Arrays

Atsutse Kludze

Presenting LeakyScatter: The first frequency-agile sub-THz Backscatter Architecture

Key Idea: Create a New PHY-Layer Architecture based on Leaky Wave Antennas (LWAs)

Key Idea: Design a new PHYlayer architecture that supports directionality at low-power cost and is ultra-wideband

Method: Using Leaky Wave Antennas (LWAs) as the foundational architecture

Primer: Leaky Wave Antennas (LWAs)

- LWAs are traveling wave structures
- Injected signal will leak out into free-space in a **specific angle**

Atsutse Kludze 2. Yasaman Ghasempour, Rabi Shrestha, Aaron Charous, Edward Knightly, and Daniel M. Mittleman. 2020. Single-Shot Link Discovery for Terahertz Wireless Networks. Nature Communication 11, 1 (2020), 2017. 3. Hooman Saeidi, Suresh Venkatesh, Xuyang Lu, and Kaushik Sengupta. 2021. 22.1 THz Prism: One-Shot Simultaneous Multi-Node Angular Localization Using Spectrum-to-Space Mapping with 360-to-400GHz Broadband Transceiver and Dual-Port Integrated Leaky-Wave Antennas. In 2021 IEEE International SolidState Circuits Conference (ISSCC), Vol. 64. 314–316

3 mm

Reciprocal Properties of a Leaky Wave Antenna

Atsutse Kludze

Dual Slit Architecture

Frequency Agile and Wideband Operation

- Angle-dependent center frequency and bandwidth
- Bandwidth always on a GHz-scale

Recap of Key Goals with LWA Architecture

Atsutse Kludze

Aperture-Based Data Modulation for AM

- Backscattered power ∝ aperture size
- Changing guided waves' trajectory \rightarrow changing aperture

Scaling to Multi-Users

Fabricated LeakyScatter

• Trapezoidal shape slits used to increase coupling efficiency

Experimental Platform

Experimental Platform

Highly Directional Retrodirective Links

 We observe an increase in errors and fluctuations at higher impinging angles

LeakyScatter is Frequency-Agile

- Frequency-Agile achieve across 100 GHz
- GHz-Scale bandwidth achieved across space

ASK Demonstrated across 100 GHz !

- Bit stream successful demonstrated up to 314GHz
- Data rate limited by mechanical components and data acquisition rate of our broadband detection
- Ongoing work: Achieving higher order schemes (i.e. QAM) and higher data rate (using electronic components)

Summary and Contributions

- A novel architecture for backscattering above 100 GHz
- Scaling backscattering to multiple users by frequencyspace division multiple access
- First work that experimentally demonstrate backscattering above 100 GHz

