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Adjust concurrency limit of disk 
(#background tasks that can 
simultaneously access disk)

CPU utilization, 
disk latency,
network loss,
….

EXO Workload 
Manager
Schedules background jobs 
on Substrate machines

Thousands of lines of code implementing the 
scheduler heuristics

Hundreds of configuration 
parameters tweaked by experts.

(for different forests, machine types, 
resource types, job types, etc.)
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CPU utilization, 
memory utilization,
pod evictions
…

Thousands of lines of code implementing the 
control plane heuristics

Hundreds of configuration parameters
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memory utilization

https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/main.go



Configuring cluster managers
• Domain expertise, (limited) empirical evaluations; can be sub-optimal
• Global, static configuration of cluster managers; can be sub-optimal

• What works for one cluster need not work for another
• What works for one cluster today may not work next week, as workload patterns drift or 

hardware is replaced



https://github.com/kubernetes/autoscaler/issues/3684



Configuring cluster managers
• Domain expertise, (limited) empirical evaluations; can be sub-optimal
• Global, static configuration of cluster managers; can be sub-optimal

• What works for one cluster need not work for another
• What works for one cluster today may not work next week, as workload patterns drift or 

hardware is replaced

• Options for developers/infrastructure team:
• Create and manage multiple configuration files for different environments 
• Use hyperparameter search/sampling/simulation mechanisms [CherryPick ‘17, 

BestConfig ’17, Metis ‘18, MLOS ’20, …]

None of these options is satisfactory
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1. params = selfTune.Predict()

// re-configure Kubernetes with params

2. selfTune.SetReward (numPodEvictionsDaily)

SelfTune: A framework to seamlessly tune

Developer specifies just what is needed to drive the system towards desired states.



SelfTune Framework: API + Learner
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Cluster management is classic RL setting: observe health, deploy action, and repeat.
We can piggyback on this set up to tune the underlying parameters.



Key Features
• (Almost) zero engineering overhead
• integration, computational

• “Implicit context” – developers choose the granularity at which 
parameters need to be tuned
• Machine-level? Cluster-level?
• Application-level? Workload-level?

• Minimal assumptions
State-of-the-art RL systems for parameter tuning 

[Decima ‘19, CDBTune ’19, MS Decision Service ’16]
feature engineering, complexity, categorical parameters



Environments, rewards, optimal configs vary 
with time

• Online tuning of parameters
• Sample complexity (# rounds it takes for the algorithm to catch 

up with an oracle) needs to be small

Bayesian Optimization common but not ideal in our setting 

We use a simple and intuitive state-of-the-art algorithm for “continuous bandits”

Optimal regret algorithm for Pseudo-1d Bandit Convex Optimization. 
A Saha, N Natarajan, P Jain, P Netrapalli. ICML 2021.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZBkUp20AAAAJ&sortby=pubdate&citation_for_view=ZBkUp20AAAAJ:URolC5Kub84C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZBkUp20AAAAJ&sortby=pubdate&citation_for_view=ZBkUp20AAAAJ:URolC5Kub84C


Evaluation: Three cluster management 
settings
• Kubernetes

• Focus: optimal latency for containerized applications
• Results on DeathStar benchmark with a social networking application

• EXO Workload Manager
• Focus: optimal cluster resource utilization & throughput for workloads
• Results from months of deployment in LAM, NAM, APAC forests

• Azure Functions (“FaaS”)
• Focus: optimal latency for the cloud users and save costs for Azure
• Results on full set of Azure traces (2M applications, >10M daily invocations, 4 

months)
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100 real-valued/discrete 
parameters

1. params = SelfTune.Predict()

2. SelfTune.SetReward (P95latency)

Revisiting the Kubernetes example

Workload: HTTP requests to service endpoint
Implicit context: Workload-level tuning

p95 latency

Metric SelfTune BO eps-greedy Default
P95 latency (ms) 19.5 19.9 20.0 31.1

# Samples 8 41 30 -
P50 iter. cost (ms) 20.5 23.3 29.2 -
P75 iter. cost (ms) 21.1 33.0 33.2 -
P95 iter. cost (ms) 28.3 76541.9 67640.3 -
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resource concurrency 

1. params = SelfTune.Predict()

2. SelfTune.SetReward (GrantRatio)

EXO Workload Manager

Workload: Live production scheduling workloads
Implicit context: Machine-level tuning

grant ratio
HUP

EXO 
Workload Manager

Cluster Reward
Metric Improvement

Res Utilization Throughput
P25 P50 P75 P25 P50 P75

1 Throughput SI SI SI 214% 178% 169%
2 Throughput SI SI SI 34% 37% 25%
3 Res Utilization 2% 1% 3% 18% 18% 20%
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Azure Function-as-a-Service



Azure Function-as-a-Service



Hybrid Histogram Policy

Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider. M Shahrad, R 
Fonseca, Í Goiri, G Chaudhry, P Batum, J Cooke, E Laureano, C Tresness, M Russinovich, R Bianchini. ATC 2020.
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Evict function,
Load function

Memory utilization,
Cold starts

1. pw, ka = SelfTune.Predict()

// re-configure hybrid histogram policy with 
params

2. SelfTune.SetReward (memoryWastage)

App-specific tuning of policy parameters 
with SelfTune

Parameters: Prewarm and Keepalive
Workload: Azure Function traces
Implicit context: Application-level tuning
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About 10%-12% reduction in mem wastage over 3 months of Azure traces, compared to ka=99, pw=5



Summary

• Minimal engineering overhead

• Online tuning with small sample complexity

• Versatile – implicit context

• Success on production workloads


