
Skyplane: Optimizing Transfer Cost and Throughput Using Cloud-Aware Overlays

Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and Ion Stoica

NSDI 2023 at Boston, MA

Working with data in the cloud is painful

The problem of "data gravity"

1. Slow transfers lock in data

ubuntu@ip-172-31-82-174: ~

(base) ubuntu@ip-172-31-82-174:~\$ aws s3 cp --recursive s3://skyplane-us-east-1/ s3://exps-paras-skylark-us-east-2/_ copy: s3://skyplane-us-east-1/00300.bin to s3://exps-paras-skylark-us-east-2/_/00300.bin copy: s3://skyplane-us-east-1/00302.bin to s3://exps-paras-skylark-us-east-2/_/00302.bin copy: s3://skyplane-us-east-1/00301.bin to s3://exps-paras-skylark-us-east-2/_/00301.bin copy: s3://skyplane-us-east-1/00301.bin to s3://exps-paras-skylark-us-east-2/_/00305.bin copy: s3://skyplane-us-east-1/00304.bin to s3://exps-paras-skylark-us-east-2/_/00305.bin copy: s3://skyplane-us-east-1/00304.bin to s3://exps-paras-skylark-us-east-2/_/00305.bin copy: s3://skyplane-us-east-1/00304.bin to s3://exps-paras-skylark-us-east-2/_/00304.bin copy: s3://skyplane-us-east-1/00304.bin to s3://exps-paras-skylark-us-east-2/_/00304.bin copy: s3://skyplane-us-east-1/00304.bin to s3://exps-paras-skylark-us-east-2/_/00304.bin

70GiB dataset at 21MiB/s = 1 hour

2. High egress fees = \$\$\$

CLOUDFLARE	The Cloudflan	e Blog		Subsc Email Address	ribe to receive notifications	of new posts: Subscribe		
Product News Spe	eed & Reliability Secu	nty Serverless	Zero Trust De	evelopers Deep Dive	Life @Cloudflare	Q		
	AWS's	Egregio	us Egre	SS				
	Data Transfe	r OUT From A	mazon EC2					
	First 10 TB /	Month	Cost to move 70GB datase					
				= rı	unnir	ng	34 instances (m5.xlarge)	

The problem of "data gravity"

How to solve data gravity?

2. High egress fees = \$\$\$

Slow transfer speeds
 High egress fees

s Egregious Egress
nsfer OUT From Amazon EC2 T
Cost to move 70GB dat
= running **34 instances** (r

What is Skyplane?

Problem: Managing data across regions and across clouds is **<u>slow</u>** and **<u>expensive</u>**

What is Skyplane?

Problem: Managing data across regions and across clouds is **<u>slow</u>** and **<u>expensive</u>**

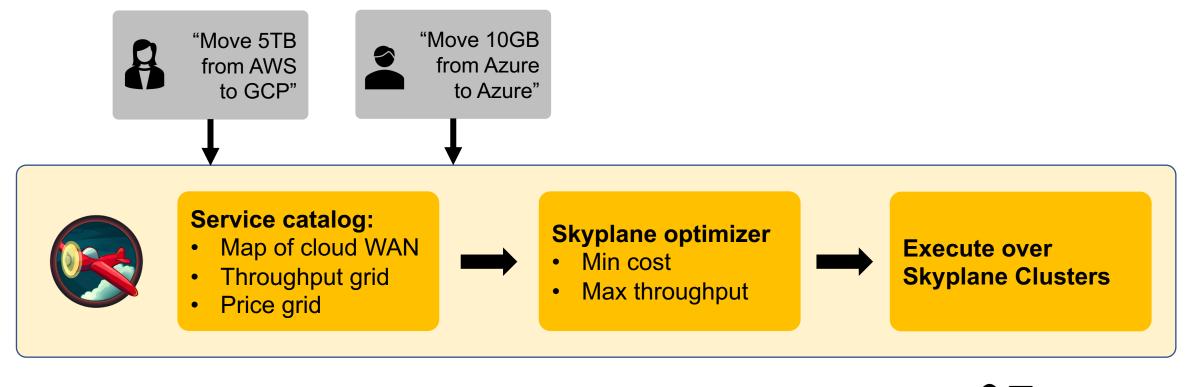
Skyplane is a system for fast, low-cost transfers between object stores.

skyplane cp {s3,gs,az}://... {s3,gs,az}://...

What is Skyplane?

Problem: Managing data across regions and across clouds is **<u>slow</u>** and **<u>expensive</u>**

Skyplane is a system for fast, low-cost transfers between object stores.


skyplane cp {s3,gs,az}://... {s3,gs,az}://...

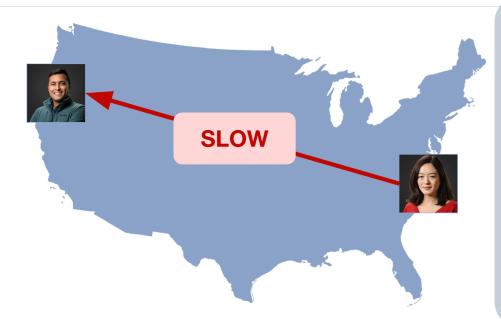
How does it work?

- **1. Profiling:** Probe cloud network throughput
- 2. Planning: Centralized LP planner finds optimal transfer path
- **3. Execution:** Provision ephemeral gateway VMs from plan

Sky computing: Intercloud Broker for data transfer

IBM Cloud

On prem



This paper: high speed, low cost data transfers with the Skyplane transfer broker

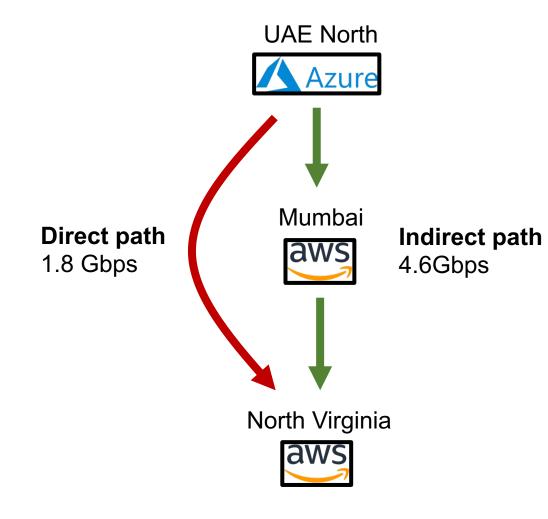
		⇔ bash [paras@P	Paras-M1-Mac.local]	て#2
	⇒ ip-172-31-82-174	રો <mark>સ</mark> #1	⇒ ip-172-31-82-174	#2 +
(base)	ubuntu@in-172-31-82-174·~/sky]ark\$	skyplane cp s3.	//exps-paras-skylark-us-east-1/fake_imaaenet	/ s3·//skvnlan

e-demo-us-east-1/imagenet

Direct internet path between clouds are often slow

Reasons for slow transfers

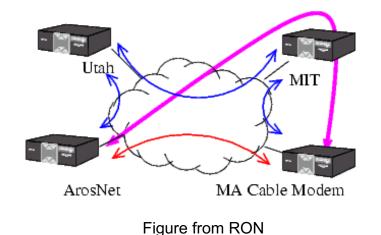
Congestion along direct path
 Poor peering between providers
 Packet loss from the physical layer
 (surprising) Throttling from cloud providers



Insight #1: overlay routing to circumvent slow links

UAE North Azure **Direct path** 1.8 Gbps North Virginia

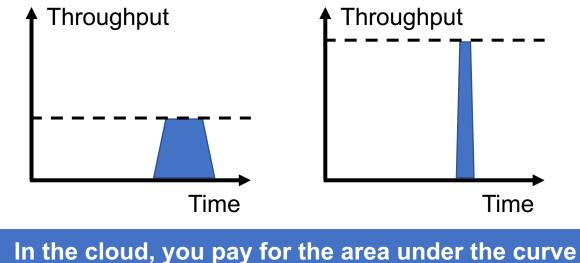
Insight #1: overlay routing to circumvent slow links



Insight #1: <u>overlay routing</u> to circumvent slow links

Overlay routing is a classic method

RON [SOSP 2001] Chord [SIGCOMM 2001] Bullet [SOSP 2003] Akamai [SIGOPS 2010] Baidu BDS [EuroSys 2018] and countless others...



Insight #1: classic overlay routing is not designed in the cloud

Overlay routing is a classic method

RON [SOSP 2001] Chord [SIGCOMM 2001] Bullet [SOSP 2003] Akamai [SIGOPS 2010] Baidu BDS [EuroSys 2018] and countless others...

Novel problem space: network + VM pricing

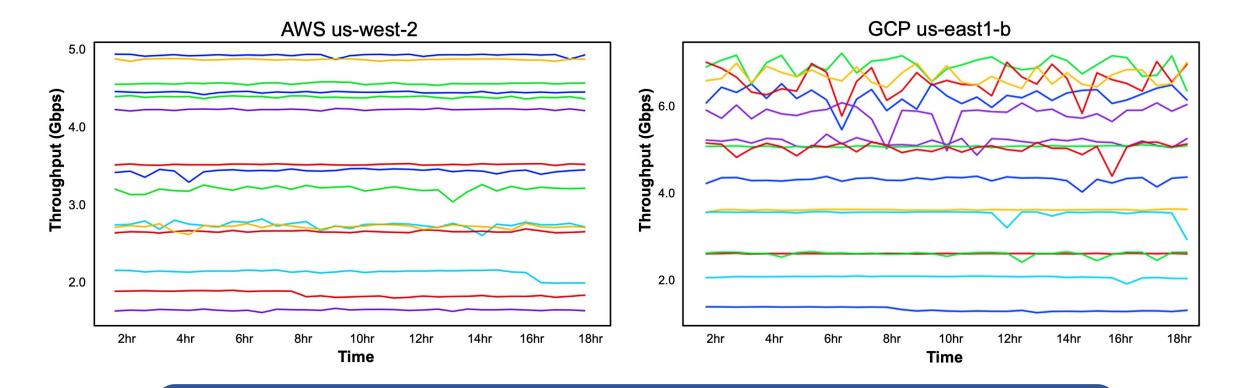
1Mbps for 40 days = 1Gbps for 1 hour

Insight #1: classic overlay routing is not designed in the cloud

Overlay routing is a classic method

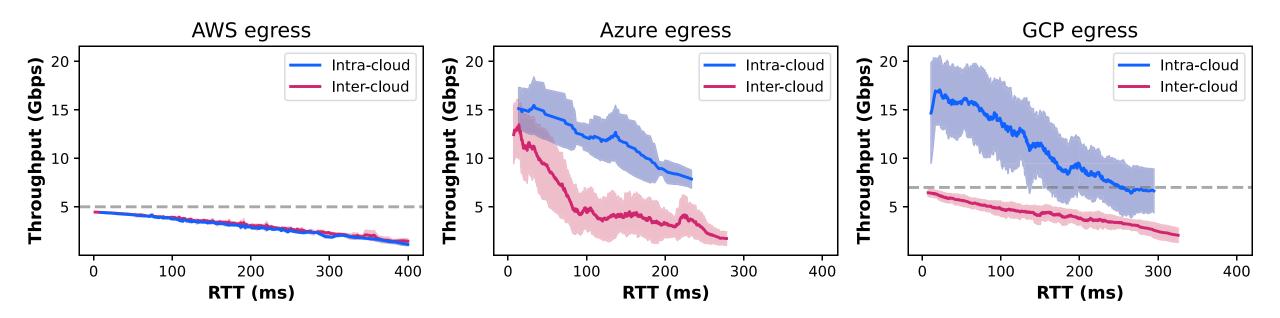
RON [SOSP 2001] Chord [SIGCOMM 2001] Bullet [SOSP 2003] Akamai [SIGOPS 2010] Baidu BDS [EuroSys 2018] and countless others...

Novel problem space: network + VM pricing


- Classic assumption: networks are free or priced by throughput
- Cloud is priced per unit volume (\$ per GB transferred)

Novel solution space: elasticity

- Classic assumption: fixed overlay locations each without parallelism
- Cloud supports elasticity in location and # of VMs


Insight #1: Applying optimization to search the cost-throughput tradeoff space

Egress speeds in the cloud are stable over a 24 hour period \rightarrow Centralized planning is feasible

Insight #2: parallel VMs per region to avoid provider throttling

Clouds throttle egress speeds!

Insight #2: parallel VMs per region to avoid provider throttling

Azure Mumbai aws North Virginia aws

UAE North

Overlay routing

Longer indirect paths are worthwhile for slow links

of VMs per region

Access throughput beyond NIC, AWS and GCP throttle egress

Before: throttled to 5Gbps

After: transfer at up to 20Gbps

Insight #3: parallel TCP connections to improve goodput

Overlay routing

Longer indirect paths are worthwhile for slow links

of VMs per region

Access throughput beyond NIC, AWS and GCP throttle egress

of parallel TCP connections

Inspired by GridFTP, but must consider VM and NIC limits

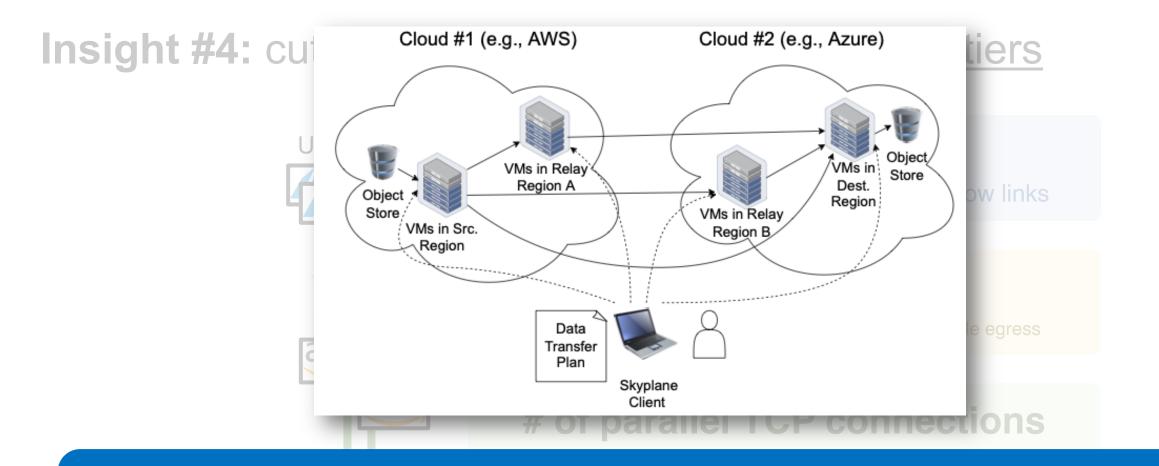
Insight #4: cut cost with compression + network tiers

Overlay routing

Longer indirect paths are worthwhile for slow links

of VMs per region

Access throughput beyond NIC, AWS and GCP throttle egress

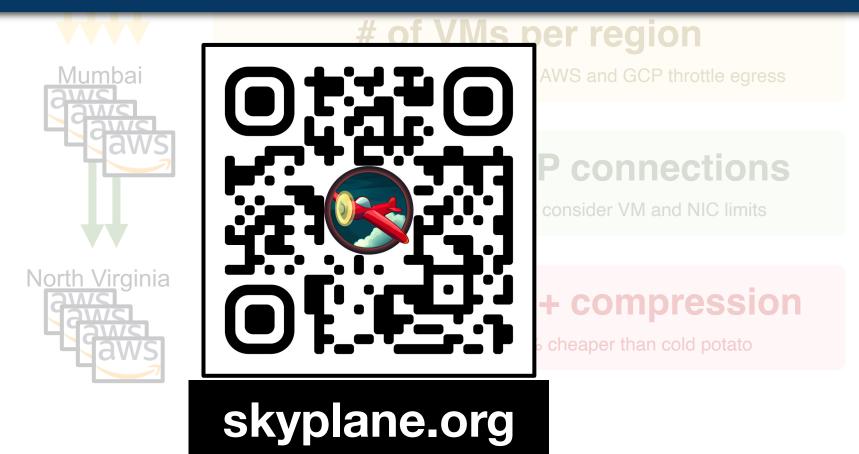

of parallel TCP connections

Inspired by GridFTP, but must consider VM and NIC limits

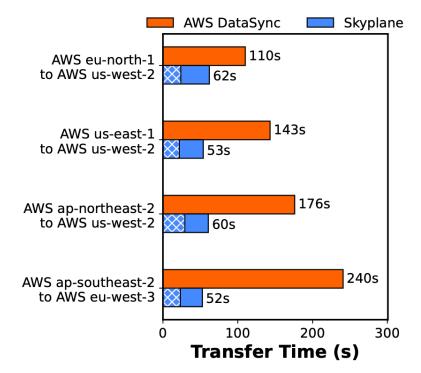
Network tiering + compression

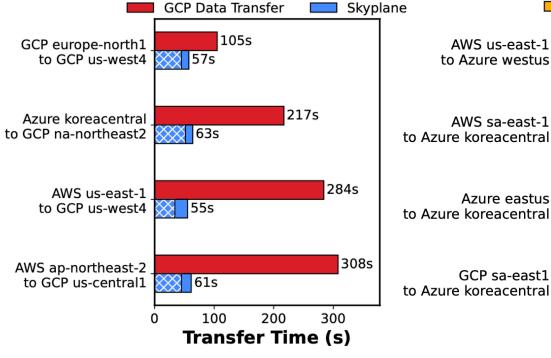
Hot potato routing up to 40% cheaper than cold potato

No cooperation required from clouds!


Skyplane only uses public APIs + runs in your cloud VPC

Insight #4: cut cost with compression + network tiers


Open source project!


\$ pip install skyplane[aws]

Evaluation: End-to-end comparison against cloud providers

19s to Azure westus 40s AWS sa-east-1 to Azure koreacentral 30s 40s Azure eastus to Azure koreacentral 38s 55s GCP sa-east1 to Azure koreacentral 30s 20 40 60 Transfer Time (s)

Azure AzCopy

29s

Versus AWS Datasync:

- Up to 4.6x faster for AWS-AWS
- DataSync did not support intercloud

Versus GCP Data Transfer:

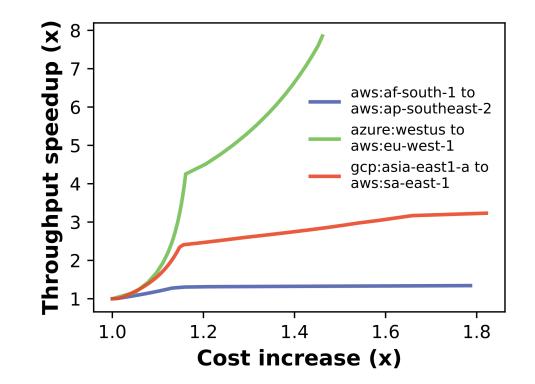
- Up to 1.8x faster for GCP-GCP
- Up to 5.0x faster for AWS to GCP
- GCP egress not supported

Versus Azure AzCopy

- Similar speeds for Azure-Azure
- Up to 1.8x faster for GCP to Azure
- Why? AzCopy leverages compute inside Azure Blob

Skyplane

Evaluation: Comparison to Resilient Overlay Networks


Method	Time	Throughput	Cost
Skyplane w/ RON routes (4 VMs) [8]	21s	6.02 Gbps	\$2.27
Skyplane (throughput optimized, 4 VMs)			

To compare with RON, we implemented the route from RON's optimizer in Skyplane

- 16GB transfer from Azure East US to AWS ap-northeast-1
- Compression + tiering disabled for these experiments
- **Result:** 1.3x speedup at 30% lower cost than RON

Evaluation: Visualizing the cost-throughput space

Skyplane can achieve substantial improvements in transfer speeds with minimal cost increases

4x throughput improvement for a 20% premium

Try out Skyplane's optimizer

	nizer		O Star 743
Visualize Sk	yplane plans		
Source region	Destination region	Number of instances	
azure:canadacentral	▼ gcp:asia-northeast1-a	₹ 2	- +
Direct replication p	hath		
Path chosen: azure:canadacent Throughput: 12.34 Gbps Cost: \$0.087/GB (USD)			

https://optimizer.skyplane.org/

Open-source adoption

Skyplane-project / skyplane Public

Apache 2.0 licensed project https://github.com/skyplane-project/skyplane

Approaching ½ PiB transferred!

and many more users + contributors!

Skyplane team A big team effort at UC Berkeley Sky computing

Shu Liu

Sam Kumar

Daniel Kang

Sarah Wooders

Joey Gonzalez

Vincent Liu

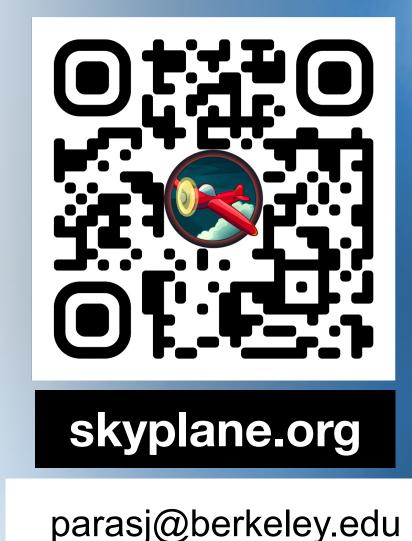
Jason Ding Anton Zabreyko Asim Biswal

Hailey Jang

Simon Mo

Shishir Patil

Skyplane


Optimizing Transfer Cost and Throughput Using Cloud-Aware Overlays

Problem: cross-region and cross-cloud transfers are <u>slow</u> and <u>expensive</u>

Skyplane accelerates cloud transfers while reducing egress costs

Open-source tool – please share feedback, use cases or collaborations!

- \$ pip install skyplane[aws,azure,gcp]
- \$ skyplane init
- \$ skyplane cp -r s3://... gcs://...

