ARK: GPU-driven Code Execution for Distributed Deep Learning

Changho Hwang¹, ², KyoungSoo Park¹, Ran Shu², Xinyuan Qu², Peng Cheng², and Yongqiang Xiong²

¹KAIST, ²Microsoft Research

Talk in NSDI’23
Modern AI Systems at Scale

• Increasingly large model size (\(> 10s\) of trillions of parameters)

• More co-operating accelerators (GPUs in this work)

• **Inter-GPU communication** as a key component of AI systems
1. Small data transfer (down to ~10s KB)
 - Model architecture
 - Multi-stage collective communication (ring, tree, hierarchical, ...)
 - Large-scale: more stages, smaller size per transfer

 » **Control plane overhead:** event handling between small data transfers

 ![Graph](image-url)

 - Avg. Latency (us)
 - Message Size (Bytes)
 - Latency Overhead of CPU-based Event Handling (cudaEvent)
 (2x A100+NVLink)

 ~80us delay (see breakdown in our paper)
2. Overlapping computation and communication
 • Data-/pipeline-parallelism
 • Substantial slowdown by interference
 • E.g., NCCL use GPU threads for data I/O

→ Data plane overhead: I/O interference to parallel computation

Average NCCL v2.11 AllReduce throughput during BERT-Large data-parallel training (8x V100+PCIe)
Existing Systems: Overview

• Existing systems tackle only one aspect, but not both

• **CPU-controlled vs. GPU-controlled** communication
 • Handle communication events on CPU vs. GPU

<table>
<thead>
<tr>
<th></th>
<th>Control Plane: Event Handling</th>
<th>Data Plane: I/O Interference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-controlled comm.</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>GPU-controlled comm.</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>This work</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

(details in following slides)
CPU-control vs. GPU-control

CPU-controlled Communication

1. Data ready
2. Poll events for data ready
3. Initiate DMA engine (e.g., call cudaMemcpy)
4. DMA copy

- + Minimize I/O overhead on GPU
- - Long latency from CPU intervention

GPU-controlled Communication (e.g., NCCL)

1. Create mmap to the destination
2. Data ready
3. Copy into mmap

- + Low latency w/o CPU enrollment
- - Substantial I/O overhead on GPU

Neither tackles both latency and I/O overhead at the same time!
ARK: A *GPU-driven System* – Key Design

Design 1. GPU-controlled DMA

- Let GPU threads initiate DMA directly
 - Fast event handling
 - Control plane on GPU
 - Minimal I/O overhead
 - Offload I/O to HW DMA engines

Design 2. Autonomous GPU Execution Control

- All GPU tasks in a single GPU kernel (*loop kernel*)
 - Fast event handling
 - No external control signal
 - Efficient computation
 - Fine-grained, software-defined GPU task scheduling
Design 1. GPU-controlled DMA

GPU-controlled DMA Design

- Initiate the DMA engine by GPU threads

Using Memory Map (e.g., NCCL)

1. Create mmap to the destination
2. Data ready
3. Copy into mmap

Initiating the DMA Engine (proposed)

1. Data ready
2. DMA Copy

Not supported by GPU HW
External DMA Engines

• Two implementations
 • SW engine: easy to deploy
 • HW engine (prototype): improved latency & throughput

Design 1. GPU-controlled DMA
Design 1. GPU-controlled DMA

DMA Engine Microbenchmark

• One-way latency & throughput comparison
 • C-Drv: CPU-controlled (baseline)
 • G-Drv-S/H: GPU-controlled SW/HW engine

Used 2x NVIDIA V100 GPUs (PCIe v3.0, PIX linked) + Intel Xeon Gold 6240R CPU @ 2.40GHz
Design 2. Autonomous GPU Execution Control

GPU-driven System Architecture

- **Benefits**
 - GPU-controlled DMA
 - Fine-grained & software-defined GPU task scheduling
 - Holistic optimization with global view

Operational Graph
- Offline Operator Scheduler
- GPU Loop Kernel
- GPU HW
- NIC

GPU Loop Kernel
- DL Model
- Computation OPs (GeMM, etc.)
- Send/Recv OPs
- Collective OPs
- GPU-controlled DMA Interface

NVIDIA CUDA / AMD ROCm
Virtual CTA (Cooperative Thread Array)

- Software-defined GPU task scheduler: *how does it work?*

1. Abstract all GPU operators into a set of *virtual CTAs (vCTAs)*
Scheduling vCTAs to SMs

• Software-defined GPU task scheduler: *how does it work?*

2. Analyze the operator graph to grep dependencies between vCTAs
3. Schedule vCTAs across SMs considering their orders & dependencies
Design 2. Autonomous GPU Execution Control

Code Generation & Compilation

- Software-defined GPU task scheduler: *how does it work?*

4. Generate loop kernel code according to the scheduling

![SM Scheduling Diagram]

See more details on the scheduler & loop kernel implementation in our paper
Single-GPU Microbenchmark

- Compare inference latency of 1-GPU models
- GPU-driven system achieves comparable or better perf than baselines
 - 1.1x ~ 3.5x faster than TensorRT
Evaluation: Data-parallel Training

- Data-parallel training
 - BERT-Large: **2.1x** faster than PT-TRT (PyTorch+TensorRT+NCCL) using 8x V100
 - 64% of the gain comes from removing the I/O interference
 - GPT-2 XL: **1.7x** faster than SuperBench (PyTorch+NCCL) using 32x A100

Used 8x NVIDIA V100 GPUs (PCIe Gen3, single NUMA domain), mixed-precision, sequence length 384, per-GPU batch size 10

Used 4x Azure NDv4 SKUs (8x NVIDIA A100-NVLink GPUs per node), mixed-precision, sequence length 384, per-GPU batch size 4
Evaluation: Tensor-parallel Inference

- Mixture-of-Experts model inference (2 GPUs, 1 expert/GPU)
 - BERT-Large, GPT-3 XL, T5 3B, and M4
- ARK vs. TF-XLA: overall \(1.2x \sim 2.3x\) faster
 - \(1.7x \sim 3.3x\) faster communication

Used 2x NVIDIA V100 GPUs (PCIe Gen3, PIX linked) + Intel Xeon Gold 6240R CPU @ 2.40GHz, mixed-precision, batch size 1
Evaluation: Pipeline-parallel Training

• GPT-3 6.7B model training
 • Each GPU runs 4 Transformer layers
 • Pipeline 5 stages & each stage batch size 1

• Most improvement comes from computational gain due to large message sizes

![Diagram of pipeline-parallel training with 8 GPUs and 5 stages]

Used 8x NVIDIA V100 GPUs (PCIe Gen3, single NUMA domain) + Intel Xeon Gold 6240R CPU @ 2.40GHz, mixed-precision, sequence length 2048
Conclusion

• Tackle control overhead on CPU and I/O overhead on GPU

• GPU-controlled DMA and GPU-driven system design

• Outperforms in various distributed DL scenarios

ARK is going to be open source: https://github.com/microsoft/ark

WE ARE HIRING! Please contact me offline or changhohwang@microsoft.com