
Hydra:
Serialization-Free Network Ordering for

Strongly Consistent Distributed Applications

Inho Choi1, Ellis Michael2, Yunfan Li1, Dan R. K. Ports3, and Jialin Li1

1National University of Singapore, 2University of Washington, 3Microsoft Research

1

Scalability by Sharding
Fault Tolerance by Replication

Sharding
Replication

2

Shard 1

Shard 2

Shard 3

Shard 1

Shard 2

Shard 3

2

Replication Protocol (Paxos)

Replication Protocol (Paxos)

Replication Protocol (Paxos)

Transaction
Protocol

(2PC)

Scalability by Sharding
Fault Tolerance by Replication

Sharding
ReplicationIt requires

extensive coordination
for strong consistency…

Shard 1

Shard 2

Shard 3

3

Sequencer
(e.g., Programmable Switch)

Network

Consistent Ordering

Replication Protocol (Paxos)

Replication Protocol (Paxos)

Replication Protocol (Paxos)

Transaction
Protocol

(2PC)

Network Ordering
to Eliminate Coordination

Related Works:
NOPaxos [OSDI ‘16], Eris [SOSP ‘17]

Network Ordering
to Eliminate Coordination

4

ReceiversSenders

Counter
0

Sequencer

A

B

C

Network Ordering
to Eliminate Coordination

4

Senders

Counter
1

1
Sequencer

A

B

C

Receivers

Network Ordering
to Eliminate Coordination

4

Senders

Counter
1

111
Multicast!

Sequencer

A

B

C

Receivers

Network Ordering
to Eliminate Coordination

4

Senders

Counter
2

1

1

12
Sequencer

A

B

C

Receivers

Network Ordering
to Eliminate Coordination

4

Senders

Counter
2

222
Multicast!

Sequencer

1

1

1

A

B

C

Receivers

Network Ordering
to Eliminate Coordination

4

Senders

Counter
3

2

2

23
Sequencer

1

1

1

A

B

C

Receivers

Network Ordering
to Eliminate Coordination

4

Senders

Counter
3

333
Multicast!

Drop Detection• Partial ordering across shards
• Total ordering across replicas

Guarantees
Sequencer Consistent Ordering

2

2

2

1

1

1

A

B

C

Receivers

Network Ordering
to Eliminate Coordination

Drop

4

Sequencer Consistent Ordering

Drop Detection

Guarantees
2

2

2

1

1

1

A

B

C

3

3

3

2
Receivers

Network Ordering
to Eliminate Coordination

5

…

Drawbacks due to the Single Sequencer

…

…

Sequencer

All request traffic
must go through the single sequencer

(Network Serialization)

☒ Network load imbalance ⇒ high latency
☒ Sequencer scalability bottleneck
☒ Prolonged sequencer failover

5

…

Drawbacks due to the Single Sequencer

…

…

Sequencer

All request traffic
must go through the single sequencer

(Network Serialization)

☒ Network load imbalance ⇒ high latency
☒ Sequencer scalability bottleneck
☒ Prolonged sequencer failover

5

…

Drawbacks due to the Single Sequencer

…

…

All request traffic
must go through the single sequencer

(Network Serialization)

☒ Network load imbalance ⇒ high latency
☒ Sequencer scalability bottleneck
☒ Prolonged sequencer failover

Sequencer

Can we achieve network ordering
without serialization?

6

Use multiple sequencers concurrently

(Serialization-Free)
✅ Network load balancing ⇒ low latency (e.g., 13x)
✅ Higher scalability beyond a single sequencer
✅ Faster sequencer failover (e.g., 5x)

7

Hydra

All request traffic must go through the single sequencer

(Network Serialization)
☒ Network load imbalance ⇒ high latency
☒ Sequencer scalability bottleneck
☒ Prolonged sequencer failover

8

Outline

1. Introduction

2. Hydra Network Primitive

3. Handling Network Anomalies

4. Evaluation

9

Consistent Ordering

Drop Detection

Guarantees

A

B

C

Multi-Sequencer Challenge:
Provide the same guarantees

Counter
0

Counter
0

Sequencer ①

Sequencer ②

9

Consistent Ordering

Drop Detection

Guarantees

Counter
0

Counter
1

Sequencer ①

Sequencer ②

1
1

1

1

A

B

C

Multi-Sequencer Challenge:
Provide the same guarantees

Multicast!

9

Consistent Ordering

Drop Detection

Guarantees

Counter
0

Counter
1

Sequencer ①

Sequencer ②

1

1

1

A

B

C

Multi-Sequencer Challenge:
Provide the same guarantees

9

Consistent Ordering

Drop Detection

Guarantees

Counter
1

Counter
1

Sequencer ①

Sequencer ②

1

1

1

A

B

C 1

1

1

1

Multi-Sequencer Challenge:
Provide the same guarantees

Multicast!

9

Consistent Ordering

Drop Detection

Guarantees

Counter
1

Counter
1

Sequencer ①

Sequencer ②

1

1

1

1

1

1

A

B

C

Multi-Sequencer Challenge:
Provide the same guarantees

9

Consistent Ordering

Drop Detection

Guarantees

Counter
1

Counter
2

Sequencer ①

Sequencer ②

2
2

1

1

1

1

A

B

C

2

2

2

1

Multi-Sequencer Challenge:
Provide the same guarantees

1
Naively using multiple sequencers does not work!

Multicast!

10

• Consistent across receivers
• Strictly monotonically increasing
• Physical clocks can be (loosely)

synchronized across sequencers

1 3

21

2
Drop

…

Solution: Combine sequence number
with physical clock

Physical Clock
Timestamp

Consistent Ordering

Sequence
Number

Drop Detection

Physical Clock
Timestamp

10

…

• Consistent across receivers
• Strictly monotonically increasing
• Physical clocks can be (loosely)

synchronized across sequencers

1
12

3
51

2
37

1
25

2
Drop

1
12

1
25

2
37

3
51

Ordering

Solution: Combine sequence number
with physical clock

Physical Clock
Timestamp

Physical Clock
Timestamp

Consistent Ordering

Sequence
Number

Drop Detection

11

A

B

C

Sequencer ①

Sequencer ②

Hydra Network Primitive - Sequencers

: 03
Counter: 0

: 00
Counter: 0

11

A

B

C

Sequencer ①

Sequencer ②

Hydra Network Primitive - Sequencers

: 12
Counter: 0

: 9
Counter: 0

11

A

B

C

Sequencer ①

Sequencer ②

Hydra Network Primitive - Sequencers

: 12
Counter: 1

: 9
Counter: 0

1
12

1
12

1
12

1
12

Multicast!

11

A

B

C

Sequencer ①

Sequencer ②

Hydra Network Primitive - Sequencers

: 22
Counter: 1

: 19
Counter: 0

1
12

1
12

1
12

11

A

B

C

Sequencer ①

Sequencer ②

Hydra Network Primitive - Sequencers

: 22
Counter: 1

: 19
Counter: 1

1
19

1
12

1
12

1
12

1
19

1
19

1
19

Multicast!

A

B

C

Sequencer ①

Sequencer ②

Hydra Network Primitive - Sequencers

: 22
Counter: 1

: 19
Counter: 1

1
12

1
12

1
12

1
19

1
19

1
19

11

• Delivered to the
application layer

Timestamp

Message Buffer

12

2
23

2
25

1
12

1
19

Hydra Network Primitive - Receivers

1
12

1
19

Ordering

Received
From

Sequencer
①

Sequencer
②

Q: When can a message be delivered?

Timestamp

13

Sequencer
①

Sequencer
②

2
25

1
12

1
19

1
12

1
19

Safe to be ordered

All messages from ①

All messages from ②

Message Buffer
Received

From

A: Once ALL messages with
lower timestamp have been received

No sequence number gap up to 2 è
Subsequent timestamps > 25

Barrier of ①

Barrier of ②

Ordering

Timestamp

Sequencer
①

Sequencer
②

14

2
23

2
25

1
12

1
19

3
30

1
12

Barrier of ①

Barrier of ②Barrier of ②

Barrier of ①

1
19

2
23

Barrier of ②

2
25

Message Buffer
Received

From

Ordering

Deliver messages up to
the minimum barrier

15

Outline

1. Introduction

2. Hydra Network Primitive

3. Handling Network Anomalies

4. Evaluation

• Recover from others
• Globally drop

1
19 Timestamp

Sequencer
①

Sequencer
②

16

2
25

3
30

Barrier of ②

Barrier of ①

1
12

1
19

Barrier of ②

How to handle messages drops?

2
25

Message Buffer
Received

From

Ordering Drop 2
Drop

1
12

1
12

1
15

Timestamp

Sequencer
①

Sequencer
②

17

What happens if a sequencer is idle?

2
21

3
25

4
31

5
38

1
12

1
15

Barrier of ①

Barrier of ②

Barrier of ①

Cannot make progress …

Message Buffer
Received

From

Ordering

Does not receive any messages for a while

1
12

1
15

Timestamp

Sequencer
①

Sequencer
②

18

Flush Message from Sequencers

1
45

Flush

2
21

3
25

4
31

5
38

Barrier of ②

No more messages
until 45

Barrier of ②

Barrier of ①

Message Buffer
Received

From

Ordering

1
12

1
15

2
21

3
25

4
31

5
38

Timestamp

Sequencer
①

Sequencer
②

18

1
45

Flush

2
21

3
25

4
31

5
38

Barrier of ②

Barrier of ①

Message Buffer
Received

From

Ordering

Flush Message from Sequencers

19

More Discussions

Flush message optimizations
• Receiver-side solicitation
• In-network aggregation

Adding or removing sequencers

Congestion-aware routing

20

Outline

1. Introduction

2. Hydra Network Primitive

3. Handling Network Anomalies

4. Evaluation

16x higher

Avg.
Latency (μs)

21

Log-scale

Low Latency through
Network Load Balancing

Hydra

22

Transactional Database Performance

Experimental Setup
• HydraTxn: transactional key-value store using Hydra

• 15 physical shards (3 replicas per shard), virtual shards

• Limited sequencer switch capacity (details in the paper)

• Workload: YCSB+T *

*Benchmarking cloud serving systems with YCSB [SoCC ‘10]

Scales beyond a single sequencer

Higher throughput by
reducing server coordination

Serialization approach (Eris) is limited by
network capacity of the single sequencer

(2 Sequencers)

47% higher

23

Throughput
(txn/s)

Bottleneck:
Servers

Spanner: Google’s Globally-Distributed Database [OSDI ‘12]
Granola: Low-Overhead Distributed Transaction Coordination [ATC ‘12]
Eris: CoordinationFree Consistent Transactions Using In-Network Concurrency Control [SOSP ‘17]

(Spanner)

24

More Evaluations

• Throughput of Hydra scales linearly with the number of sequencers

• Hydra reduces sequencer failover time by 5x

• Performance of Hydra is resilient to moderate levels of
packet drops or clock skews across sequencers

• Hydra significantly reduces flush message overhead
using various optimizations

Do not affect system correctness

25

Summary

• Existing network ordering approaches pose serious drawbacks, due to
in-network serialization

• Hydra combines sequence number and physical clock of sequencers

• Result: serialization-free network ordering with significantly
✅ Better network-level load balancing
✅ Higher sequencer scalability
✅ Faster sequencer failover

Contact:
inhochoi@comp.nus.edu.sg

