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Can we achieve network ordering
without serialization?
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Use multiple sequencers concurrently

(Serialization-Free)
✅ Network load balancing ⇒ low latency (e.g., 13x)
✅ Higher scalability beyond a single sequencer
✅ Faster sequencer failover (e.g., 5x)
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Hydra

All request traffic must go through the single sequencer

(Network Serialization)
☒ Network load imbalance ⇒ high latency
☒ Sequencer scalability bottleneck
☒ Prolonged sequencer failover
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4. Evaluation
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• Delivered to the
application layer
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More Discussions

Flush message optimizations 
• Receiver-side solicitation
• In-network aggregation

Adding or removing sequencers

Congestion-aware routing
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Log-scale
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Transactional Database Performance

Experimental Setup
• HydraTxn: transactional key-value store using Hydra

• 15 physical shards (3 replicas per shard), virtual shards

• Limited sequencer switch capacity (details in the paper)

• Workload: YCSB+T *

*Benchmarking cloud serving systems with YCSB [SoCC ‘10]



Scales beyond a single sequencer

Higher throughput by 
reducing server coordination

Serialization approach (Eris) is limited by 
network capacity of the single sequencer

(2 Sequencers)

47% higher
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Throughput 
(txn/s)

Bottleneck: 
Servers

Spanner: Google’s Globally-Distributed Database [OSDI ‘12] 
Granola: Low-Overhead Distributed Transaction Coordination [ATC ‘12] 
Eris: CoordinationFree Consistent Transactions Using In-Network Concurrency Control [SOSP ‘17] 

(Spanner)
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More Evaluations

• Throughput of Hydra scales linearly with the number of sequencers

• Hydra reduces sequencer failover time by 5x

• Performance of Hydra is resilient to moderate levels of                   
packet drops or clock skews across sequencers

• Hydra significantly reduces flush message overhead
using various optimizations

Do not affect system correctness
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Summary

• Existing network ordering approaches pose serious drawbacks, due to 
in-network serialization

• Hydra combines sequence number and physical clock of sequencers 

• Result: serialization-free network ordering with significantly
✅ Better network-level load balancing
✅ Higher sequencer scalability
✅ Faster sequencer failover

Contact:
inhochoi@comp.nus.edu.sg


