
Push-Button Reliability Testing for
Cloud-Backed Applications

with Rainmaker

Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang, Tianyin Xu



The emerging cloud-based programming model

1

APP



The emerging cloud-based programming model

2

APP

Cloud-backed 
application

• Azure has over 700 million users
• Azure storage SDK (.NET) has 

~80K daily downloads



Benefits of cloud-based programming

3

APP

Scalability

Availability

Flexibility

Easy deployment



Dark side: new reliability challenges

4

APP

• Diverse fault domains



Dark side: new reliability challenges

5

APP

• Diverse fault domains

• A lack of standards
• No standards such as POSIX

• Inconsistencies
• E.g., AWS S3 SDKs in different 

languages treat “limit exceeded” 
error differently

Server 
busy

Server 
busy

Server 
busy



Dark side: new reliability challenges

• Heterogenous fault domains
• A lack of standards

• No standards such as POSIX
• Inconsistencies

• AWS S3 SDKs in different languages 
treat “limit exceeded” error differently

6

It is challenging for application developers to 
anticipate all faulty scenarios and write

comprehensive error-handling code



Does retry solve all the problems?

7

SDK
Azure Blob

Storage
SDK API call CreateBlob

timeout

Exception

CreateBlob

Blob
Created

Blob
Already
Exists409

BlobAlreadyExists

The request succeeds 
but it leads to an 
unexpected error 

BotBuilder



Does retry solve all the problems?

8

SDK
Azure Queue

Storage

SDK API call Dequeue

timeout
Dequeue

OK
m2

GetQueueMessage()

The API semantic is 
silently violated

m1 m2

m2

Non-idempotent



9

How can applications address the
emerging reliability challenges of

cloud-based programming?



Contribution

• A call for attention of the emerging reliability challenges of cloud
based programming

• A taxonomy of error-handling bugs triggered by transient faults

• Rainmaker: Push-button reliability testing for cloud-backed apps
• Systematically exercise error-handling code under common faults
• Detected 73 new bugs in 11 cloud-backed apps (51 fixed)
• Released at https://github.com/xlab-uiuc/rainmaker

10

https://github.com/xlab-uiuc/rainmaker


Design goals of Rainmaker

• Effective: Detect error-handling bugs of different patterns

• Easy-to-use: Directly applied to existing testing environment

• Efficient: Efficiently finish testing while ensuring coverage

11



Design goals of Rainmaker

• Effective: Detect error-handling bugs of different patterns

• Easy-to-use: Directly applied to existing testing environment

• Efficient: Efficiently finish testing while ensuring coverage

12

What faults to inject? When to inject them?

Fault injection during testing, before production



A taxonomy of error-handling bugs

13

Transient error 
handling bugs

No error 
handling

Buggy error 
handling

Throwing unrelated 
exceptions

Silent semantic 
violations

State 
divergence

Only consider realistic transient
error(s) that occur during one REST 
API call interaction
• Timeout
• Server-busy error



Throwing unrelated exceptions

14

Silent semantic 
violations

State 
divergence

Buggy error 
handling

Throwing unrelated 
exceptions

Key: Mishandling leads 
to a new error unrelated 
to the root cause error

SDK
Azure Blob

Storage
SDK API call CreateBlob

timeout

Exception

CreateBlob

Blob
Created

Blob
Already
Exists409

BlobAlreadyExists

BotBuilder



Silent semantic violations

15

Throwing unrelated 
exceptions

Silent semantic 
violations

State 
divergence

Buggy error 
handling

Key: Mishandling causes 
semantic violations of 

the application

SDK
Azure Queue

Storage

SDK API call Dequeue

timeout
Dequeue

OK
m2

GetQueueMessage()

m1 m2

m2

Non-idempotent



State divergence

16

Throwing unrelated 
exceptions

Silent semantic 
violations

State 
divergence

Buggy error 
handling

Key: Mishandling causes 
divergence between the 

local and the remote state

SDK
Azure Blob

Storage

SDK API call
Create

Container

Create
Container

Exceptioncatch(ex)

containerSet
CreateContainer(c)

Container
Not 

Created

Container
Created

Server 
busy

Server 
busy

BotBuilder
.add(c)



Rainmaker’s fault injection policies

17

Silent semantic 
violations

State 
divergence

Buggy error 
handling

Throwing unrelated 
exceptions

timeout

Application Cloud
service

200 or 4XX

𝑷𝟏: Timeout the
first response

...5XX

5XX

Application Cloud
service

𝑷𝟐: Return 5XX to
all requests

Throwing unrelated 
exceptions

Silent semantic 
violations

State 
divergenceRainmaker has more policies 

to trigger bugs



Design goals of Rainmaker

• Effective: Detect error-handling bugs of different patterns

• Easy-to-use: Directly applied to existing testing environment

• Efficient: Efficiently finish testing while ensuring coverage

18



Rainmaker performs HTTP layer injection

19

Test 
case

Cloud
service

Rainmaker 
HTTP 
proxy

Test 
case

Cloud
service

Rainmaker 
HTTP 
proxy

Intercept 
request

Intercept 
response

Server 
busy

Response 
timeout



Rainmaker reuses existing test oracles

• Naively reusing oracles could lead to false alarms
• Analyze test execution and output to capture only true alarms

20

// test code
fn unit_test() {
// set up set env
SDK.CreateBlob();
...
// call app code
...

}

The test failure does not point to any 
error-handling bug in application code.

Solution: Rainmaker checks the stack trace of the 
exception. If the SDK is directly invoked by test 
code, it does not report an alarm.



Design goals of Rainmaker

• Effective: Detect error-handling bugs of different patterns

• Easy-to-use: Directly applied to existing testing environment

• Efficient: Efficiently finish testing while ensuring coverage

21



Ensure coverage while being efficient

22

Test 1

Test 2

Test n

SDK.API1()
SDK.API2()

...
SDK.API2()
SDK.API3()

...

SDK.API1()
SDK.API3()

...

...

Injecting to every REST call 
takes 588 days to test Orleans!

REST call by 1st invocation
REST call by 2nd invocation
REST call by 3rd invocation
... ~56 hours

Coverage Metric
Cover all combinations of (test case, SDK API*)
Cover all test cases and SDK API respectively
Cover all SDK API
Cover all test cases

Default

Weaker
Faster



Generating test plans

23

A linear optimization problem
Variables: Test cases and SDK APIs
Constraints: Coverage requirements
Objectives: Minimized test running time

• Rainmaker generates the test plan that achieves the coverage with 
minimized test running time for each coverage metric

Test plan

Linear optimization solver



Evaluation

• We applied Rainmaker to 11 popular cloud-backed applications

• Rainmaker finds 73 new bugs with severe consequences

• Rainmaker has a low false-positive rate 1.96%

• Rainmaker reduces on average 64.47% of test runs compared to 
exhaustively injecting to every REST call

24



Finding new bugs

25

Cloud-backed 
application

No Error 
Handling

Unrelated 
Exception

Semantic 
Violation

State 
Divergence

Total

Alpakka 0 0 1 1 2
AttachmentPlugin 0 0 0 2 2
BotBuilder 0 2 0 2 4
DistributedLock 0 2 0 0 2
EF Core 7 0 0 0 7
FHIR Server 11 0 0 0 11
Insights 0 10 0 0 10
IronPigeon 0 1 0 0 1
Orleans 0 5 2 11 18
Sleet 0 2 0 0 2
Storage.NET 11 1 1 1 14
Total 29 23 4 17 73

55 confirmed; 51 fixed

Azure
Storage

Cosmos DB

AWS S3

AWS SQS



Conclusion

• A call for attention of the emerging reliability challenges of cloud
based programming

• A taxonomy of error-handling bugs triggered by transient faults

• Rainmaker: Push-button reliability testing for cloud-backed apps
• Effective, easy-to-use, efficient
• Released at https://github.com/xlab-uiuc/rainmaker

26

https://github.com/xlab-uiuc/rainmaker

