0 g

Push-Button Reliability Testing for
Cloud-Backed Applications
with Rainmaker

Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang, Tianyin Xu

UNIVERSITY OF .

ILLINOIS g~ Microsoft

The emerging cloud-based programming model

——EXxtZl ExtZl Ext

File System File System File System

(APPE _.

g PostgreSQL. PostgreSQL. PostgreSQL

. .1;) .1;) .1;)

TensorFlow TensorFlow TensorFlow

The emerging cloud-based programming model

+

[% « Azure has over 700 million users

« Azure storage SDK (.NET) has
~80K daily downloads

A Azure.Storage.Blobs

& Prefix Reserved

.NET 6.0 | .NET Standard 2.0

Downloads

APP

Total 114.0M

Current version 69.5K

Cloud-backed
application

Per day average 79.7K

Benefits of cloud-based programming

+ Scalability
" Availability
" Flexibility

 Easy deployment

Dark side: new reliability challenges

4. 7
—-@;’ e Diverse fault domains
w I

Dark side: new reliability challenges

*
(% o Diverse fault domains
busy A

e A lack of standards
* No standards such as POSIX

 Inconsistencies

« E.g., AWS S3 SDKs in different
languages treat “limit exceeded”
error differently

Dark side: new reliability challenges

It is challenging for application developers to
anticipate all faulty scenarios and write
comprehensive error-handling code

GO gle Cloud Overview Solutions Products Pric > @ English ~ Console

Cloud Storage Overview Guides Reference

s s -« EITOF FEEries and exponential backoff in AWS

Retry Strategy PDF Learn / Azure / Architecture / Best Practices /

This page describes iow Cloud Retry guidance for Azure services

also describes considerations fc Numerous components on a
Article « 03/12/2023 « 36 contributors & Feedback

error responses in a network

Most Azure services and client SDKs include a retry mechanism. However, these differ because each service has different
characteristics and requirements, and so each retry mechanism is tuned to a specific service. This guide summarizes the

retry mechanism features for most Azure services, and includes information to help you use, adapt, or extend the retry

mechanism for that service.

Does retry solve all the problems?

Azure Blob
<’ °) BotBuilder SDK Storage (&)

SDK AP] ca]
Blob
Created

Blob

The request succeeds
but it leads to an
unexpected error

Already
Exists

Does retry solve all the problems?

Azure Queue
0 Orleans SDK Storage)
SDK Non-idempot
GetQueueMessage() API ca]] Dequ eu% ent

The API semantic is

silently violated

How can applications address the
emerging reliability challenges of
cloud-based programming?

Contribution

» A call for attention of the emerging reliability challenges of cloud
based programming

A taxonomy of error-handling bugs triggered by transient faults

« Rainmaker: Push-button reliability testing for cloud-backed apps
 Systematically exercise error-handling code under common faults
 Detected 73 new bugs in 11 cloud-backed apps (51 fixed)

* Released at https://github.com/xlab-uiuc/rainmaker O

PY

GitHub

https://github.com/xlab-uiuc/rainmaker

Design goals of Rainmaker

« Effective: Detect error-handling bugs of different patterns
- Easy-to-use: Directly applied to existing testing environment

 Efficient: Efficiently finish testing while ensuring coverage

Design goals of Rainmaker

« Effective: Detect error-handling bugs of different patterns

Fault injection during testing, before production

What faults to inject? When to inject them?

12

A taxonomy of error-handling bugs

{ Thranglifent error] Only consider realistic transient
andiing bugs error(s) that occur during one REST

/\ API call interaction

No error Buggy error e Timeout
handling handling « Server-busy error

Throwing unrelated State
exceptions divergence
v

Silent semantic
violations

Throwing unrelated exceptions

Busey orror ‘Azure Blob
{ hirgl}:iling } <’ ° BotBuilder SDK Storage (&)
SDK A |
/ PI call CreateB]o}p
Throwing unrelated mg| Blob
exceptions ‘X Created
meott
Key: Mishandling leads CreateB]o}
to a new error unrelated —>
to the root cause error
| 409d st
TxceptO” [0y pAlred Y

e

14

Silent semantic violations

|

Bueey eITOr Azure Queue
h&glrgl}éling } 0 Orleans SDK | Storage@
N 3
GetQueueMessage () | SDKAPI caj O%égﬁggéowm

\ 4

|

Silent semantic
violations

Key: Mishandling causes

semantic violations of
the application

‘bé-

mi

ma2

Am

DequeUe
\ J

m2

/40/
m2

15

State divergence
Azure Blob

<' °) BotBuilder SDK Storage (&)
Buggy error . o
{ handling containerSet.add(c) SDK AP] Create
\ CreateContainer(c) call COHtainer Server
[y State] [Create busy
ivergence
COntainer Server
Key: Mishandling causes B
. . : usy
divergence between the catch(ex) | Exception
local and the remote state

Container

Container
Created

Not
Created

16

Rainmaker’s fault injection policies

Buggy error N - Cloud Application | CIOl.ld
{ handling } Application service service
o
Throwing unrelated State timeot
exceptions divergence B \A*
v oo K ey
{ Slleptls?[mantlc } P: Timeout the P,: Return 5XX to
violations first response all requests
4)
Throwing unrelated { State }
. . . exceptions divergence
Rainmaker has more policies P
3 4 N
to trigger bugs Silent semantic
violations

Design goals of Rainmaker

- Easy-to-use: Directly applied to existing testing environment

Rainmaker performs HTTP layer injection

Intercept J

request
(Test] iRai}??r%{e Cloud
g Casej Server | proxy service
pusy Intercept J
response
(Test \ iRai}?;{lr%{e > (Cloud
X Casej Response | proxy j service

timeout

19

Rainmaker reuses existing test oracles

 Naively reusing oracles could lead to false alarms
 Analyze test execution and output to capture only true alarms

FnunIE et O n The test fail}lre does. not pqint to any
// set up set env error-handling bug in application code.
SDK.CreateBlob() ;*

e Solution: Rainmaker checks the stack trace of the
// call app code exception. If the SDK is directly invoked by test
e code, it does not report an alarm.

Design goals of Rainmaker

 Efficient: Efficiently finish testing while ensuring coverage

Ensure coverage while being efficient

i . . Injecting to every REST call
. REST call by 1St invocation J & Iy
SDK.API1
 SpK ./ PIz(()) | REST call by 2™ invocation takes 588 days to test Orleans!

Test 1 REST call by 3™ invocation ‘
i ~56 hours
—SDK.API2()

Test2 - SPK.API3() Coverage Metric

| Cover all combinations of (test case, SDK API*) | Default

SDK.API1() | Cover all test cases and SDK API respectively
{SDK-APBO Cover all SDK API

Cover all test cases

—

Weaker
Faster

Testn

22

Generating test plans

« Rainmaker generates the test plan that achieves the coverage with
minimized test running time for each coverage metric

A linear optimization problem
Variables: Test cases and SDK APIs G
Constraints: Coverage requirements
Objectives: Minimized test running time

Linear optimization solver

[& |Test plan

e 23
| ——

Evaluation

« We applied Rainmaker to 11 popular cloud-backed applications
- Rainmaker finds 73 new bugs with severe consequences
« Rainmaker has a low false-positive rate 1.96%

« Rainmaker reduces on average 64.47% of test runs compared to
exhaustively injecting to every REST call

Finding new bugs

&
Azure
Storage

9,

Cosmos DB

AWS S3

-

AWS SQS

Cloud-backed
application

No Error
Handling

Unrelated

Exception

55 confirmed; 51 fixed

Total

Semantic
Violation

State
Divergence

Alpakka
AttachmentPlugin
BotBuilder
DistributedLock
EF Core

FHIR Server
Insights
IronPigeon
Orleans

Sleet
Storage.NET
Total

11
29

23

A = O N O O ©O ©O O O O

17

Conclusion

» A call for attention of the emerging reliability challenges of cloud
based programming

A taxonomy of error-handling bugs triggered by transient faults

« Rainmaker: Push-button reliability testing for cloud-backed apps
- Effective, easy-to-use, efficient
» Released at https://github.com/xlab-uiuc/rainmaker

https://github.com/xlab-uiuc/rainmaker

