

LinkLab 2.0

A Multi-tenant Programmable IoT Testbed for Experimentation with Edge-Cloud Integration

Wei Dong, Borui Li, Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, Yi Gao

College of Computer Science, Zhejiang University, Alibaba-Zhejiang University Joint Institute of Frontier Technologies, China

https://linklab.emnets.cn/

Current IoT Applications

Current IoT Applications

How to Build a Current IoT Application?

So many devices/cloud services to choose from and provision…

How to Build a Current IoT Application?

Why not use an **loT Testbed?**

Testbeds	Targeted Scenario	Edge Support	Cloud Support	Online Compilation	Sensing Capability	Instruction Set Architectures
MoteLab	WSN					
Indriya2	WSN					
FIT IoT Lab	WSN					
EDI Testbed	WSN					
Tutornet	Low-power Wireless					
Smart Santander	City-scale IoT					
COSMOS	Advanced Wireless					

Testbeds	Targeted Scenario	Edge Support	Cloud Support	Online Compilation	Sensing Capability	Instruction Set Architectures
MoteLab	WSN	X	X	X		
Indriya2	WSN	X	X	X		
FIT IoT Lab	WSN	X	√ *	X		
EDI Testbed	WSN	X	X	X		
Tutornet	Low-power Wireless	X	X	X		
Smart Santander	City-scale IoT	X	X	X		
COSMOS	Advanced Wireless	✓	✓	X		

^{*} works with FIT Cloud Lab to provide cloud support

4	Testbeds	Targeted Scenario	Edge Support	Cloud Support	Online Compilation	Sensing Capability	Instruction Set Architectures
	MoteLab	WSN	X	X	X	+	AVR
	Indriya2	WSN	X	X	X	+	ARM32, MSP
	FIT IoT Lab	WSN	X	\ *	X	+	AVR, Xtensa, ARM32, ARM64
	EDI Testbed	WSN	X	X	X	+	MSP, AVR, ARM32
	Tutornet	Low-power Wireless	X	X	X	+	MSP, AVR, ARM32
	Smart Santander	City-scale IoT	X	X	X	++	AVR, x86
	COSMOS	Advanced Wireless	/	✓	X	-	(Not mentioned)

,	Testbeds	Targeted Scenario	Edge Support	Cloud Support	Online Compilation	Sensing Capability	Instruction Set Architectures
	MoteLab	WSN	X	X	X	+	AVR
	Indriya2	WSN	X	X	X	+	ARM32, MSP
	FIT IoT Lab	WSN	X	√ *	X	+	AVR, Xtensa, ARM32, ARM64
	EDI Testbed	WSN	X	X	X	+	MSP, AVR, ARM32
	Tutornet	Low-power Wireless	X	X	X	+	MSP, AVR, ARM32
	Smart Santander	City-scale IoT	X	X	X	++	AVR, x86
	COSMOS	Advanced Wireless	\checkmark	✓	X	-	(Not mentioned)

IoT Testbed with Cloud-Edge Integration

Testbeds	Targeted Scenario	Edge Support	Cloud Support	Online Compilation	Sensing Capability	Instruction Set Architectures
MoteLab	WSN	X	X	X	+	AVR
Indriya2	WSN	X	X	X	+	ARM32, MSP
FIT IoT Lab	WSN	X	\ *	X	+	AVR, Xtensa, ARM32, ARM64
EDI Testbed	WSN	X	X	X	+	MSP, AVR, ARM32
Tutornet	Low-power Wireless	X	X	X	+	MSP, AVR, ARM32
Smart Santander	City-scale IoT	X	X	X	++	AVR, x86
COSMOS	Advanced Wireless	\	/	X	-	(Not mentioned)
LinkLab 2.0	Cloud-Edge-IoT Integration	✓	✓	✓	++	MSP, AVR, Xtensa, ARM32, ARM64, x86, GPU

Design Goals of LinkLab

IoT-Edge-Cloud integration

Design Goals of LinkLab

IoT-Edge-Cloud integration

Why Do We Need Scalability?

LinkLab is publicly available during the COVID-19 pandemic

Scalability of LinkLab

② Scalable to bursty user requests

① Scalable to heterogeneous devices

Scalable to Heterogeneous Devices

Scalable to Heterogeneous Devices

Management Infrastructure

LinkLab Device Center (LDC)

Challenge 1: Heterogeneous devices?

- Connectivity
- Computing capability

Challenge 2: Geographically distributed?

Programmable Devices of LinkLab

Tiered Management of LinkLab

Wired

Channel

Channel

Management Infrastructure

LDC Controller LDC Servers @ Cities

LDC Clients for IoT Devices

- **LDC Controller:** Coordinate LDC Servers
- LDC Server(s): Device assignment, code compilation
- **LDC Client(s):** Interact with heterogeneous devices

Programmable Devices of LinkLab

Scalable to Bursty User Requests

nsdi²³

CPU Bottleneck

Scalable to Bursty User Requests

RAM Bottleneck

CPU Bottleneck

Dealing with compilation CPU bottlenecks

Dealing with compilation CPU bottlenecks

Management Infrastructure

Programmable Devices of LinkLab

Make full use of all (free) devices!

- Heterogeneous container scaling
 - Dynamic image building
- Isolation between scaled services and user tasks
 - Linux cgroup

Design Goals of LinkLab

Why Do We Need Multi-tenancy?

- Require timely execution during
 - Class time, examination, ...
- Potential tenants
 - Other cooperative universities of sub-sites
 - Special user groups of main site and sub-sites

Specifying Tenants with Structured Config.

- Hardware types in multi-tenancy mode
 - Exclusive
 - Shared
- Allowed services and service quota being used by tenant
 - Available services
 - Service concurrency

```
1 TENANT:
2    name: G1@NSDI23
3    user: "University A"
4    hardware_exclusive: "AMega"*80
5    services: "$all"
6    service_quota: # concurrency
7    compiling: 100 # req/s
8    burning: 100 # req/s
9
```

```
1 TENANT:
2    name: G2@NSDI23
3    user: "University B"
4    hardware_exclusive: "AMega"*20
5    services: "$all"
6    service_quota: # concurrency
7    compiling: 100 # req/s
8    burning: 100 # req/s
9
```

Device-involved Multi-tenancy

- For management services
 - Containerized deployment
 - Resource usage audit and restriction
- For programmable devices

Low device usage

Bad user experience

Device-involved Multi-tenancy

Evaluation on Multi-tenancy

Setup

- Tenant G1
 - 80 devices
- Tenant G2
 - 20 devices

Other Design Points

Deployment Timeline: Phase I

- · 2018.12~2019.8
- IoT device testbed
 - ~60 devices
- Key functionality
 - Heterogeneous IoT support
 - Device management
 - Online compilation
 - Web-based IDE

Deployment Timeline: Phase II

- · 2019.8~2020.5
- Integration with cloud/edge
 - ~180 devices
- Key functionality
 - Cloud/Edge support
 - Cloud server
 - Raspberry Pi
 - New IoT devices
 - ESP32

Deployment Timeline: Phase III

- 2020.5~Now
- Cloud-native, Multi-tenancy
 - 500+ devices
- Key functionality
 - Dynamic service scaling
 - Device-involved multi-tenancy
 - Specific deployment scenarios
 - Office-area BLE mesh
 - Lab-scale MoteLab

500+ devices

IoT devices

• **Scale**: 450 devices

• ISAs: MSP, AVR, Xtensa, ARM32, etc.

• Feature: COTS devices supported

Edge devices

- Scale: 80 devices
- ISAs: ARM64, etc.
- Feature: With Al accelerator

Scale: 36-core CPU devices

ISAs: x86, etc.

Feature: CPU+GPU support

Potential Research Domains

Cloud-Edge-IoT integrated application

Industrial Internet of Things

Wireless and embedded experiments

loT networking protocols

FaaS and Serverless computing

Offloading algorithms

Edge Al

Container-based service composition

Outreaches of LinkLab

Educational Institutions

Commercial Cooperations

Online Playground

~150 users

Engineer Certification

~500 users

Third-party Individuals

Self-learners

~1000 users

Outreaches of LinkLab

Online-offline integrated smart elderly care education toolkit

Online programming lesson with 3D visualized scenario

Offline tabletop model (front view)

Offline tabletop model (bottom view)

LinkLab 2.0

https://linklab.emnets.cn/

An integrated, multi-tenant testbed of cloud, edge and IoT:

- 4-year operation, publicly available
- 2100+ users, 17,300+ device hours experiment

Thank you for your attention!

Wei Dong, Borui Li, Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, Yi Gao

If you have any questions, please contact gaoyi@zju.edu.cn

