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• Exogenous trace assumption: 
Simulated interventions would not 
affect the replayed trace.

Collected Trace
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The Puffer dataset

• The Puffer Randomized Control Trial  [Yan et al. NSDI 2020]
• July 2020 – June 2021
• 5 ABR algorithms
• 56M downloaded chunks over 230K streaming sessions
• 3.5 years worth of streamed video

Task: Given the traces for all except one ABR algorithm, 
simulate the held out algorithm on the same paths
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simulated bitrate
(counterfactual)

𝑚! = 𝑓(𝑎!, 𝑢!))𝑎!𝑓 𝑢!*𝑚!
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Learning goal 
• Fit observed data
• Fool discriminator

Discriminator goal
• Predict source algorithm
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Exploiting the RCT property
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• Can we use CausalSim to improve algorithms?
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qIdentified Exogenous Trace Assumption as a key source of bias in trace-driven 
simulation.

qProposed CausalSim for eliminating bias, by modeling the effect of 
interventions on the trace.

qDemonstrated CausalSim’s impact by a real-world ABR algorithm design and 
deployment.

Contributions

23🔗causalsim.csail.mit.edu


