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» Key source of bias in trace-driven simulation

» How to do unbiased trace-driven simulation?
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Exogenous trace assumption in trace-driven simulation

. Rest of
. the system
4 Collected Trace )
\ j S ———————————————————————————————— °
* Exogenous trace assumption: _
. . . Simulate
Simulated interventions would not

affect the replayed trace.



Exogenous trace assumption does not hold for many real-world traces
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... hurts accuracy, can lead to completely wrong conclusions
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Trace-driven simulation for ABR

* ExpertSim
* [Yin et al. SIGCOMM’15][Mao et al. SIGCOMM’17]

chunk size (The new

algorithm’s choice) \

layback buffer At
Py —)bt+1=maX(bt__,O)+T

(in sec) / m,
achieved throughput

(from the replayed trace)
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 The Puffer Randomized Control Trial [Yan et al. NSDI 2020]
* July 2020 — June 2021
* 5 ABR algorithms
* 56M downloaded chunks over 230K streaming sessions
e 3.5 years worth of streamed video



The Puffer dataset

 The Puffer Randomized Control Trial [Yan et al. NSDI 2020]
* July 2020 — June 2021
* 5 ABR algorithms
* 56M downloaded chunks over 230K streaming sessions
* 3.5 years worth of streamed video

Task: Given the traces for all except one ABR algorithm,
simulate the held out algorithm on the same paths
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How accurate is trace-driven simulation?

e Source data: The Puffer Dataset with 5 algorithms

» Target algorithm (unseen): BBA,

Exogenous trace assumption
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How accurate is trace-driven simulation?

e Source data: The Puffer Dataset with 5 algorithms

» Target algorithm (unseen): BBA, , BOLA2
O Ground Truth V ExpertSim
15.6 1 o)
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Bitrates chosen by the ABR > 154 7
algorithm affect the achieved % 5o v
throughput. 5 Better
> /
< 15.0 -
| 1 1 1 .
8 6 4 2

Time Spent Stalled (%)

10



CDF (%)

A

ABR algorithms affect throughput

1 2 3 4 5
Observed Throughput (Mbps)
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Achieved Throughput Bitrate Latent Network Conditions

\ 1/
me = f(ag ur)

Both u; and f(+) are unknown
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Towards a solution

* If u and f(-) were known...

m; = f (A, Ug)
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A learning approach
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RCT to the rescuel

RCT property: Distribution of latent network conditions is
the same in trajectories assigned to different algorithmes.

|_) Latent network condition is independent of the source
algorithm (used for trace collection).

|_) Latent network condition does not give any
information about the source algorithm.
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Discriminator goal
* Predict source algorithm

RCT to the rescuel

RCT property: Distribution of latent network conditions is
the same in trajectories assigned to different algorithms.

P(z|u)

Policy
«Discriminator,

15



Exploiting the RCT property
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RCT property is sufficient for unbiased simulation

Theorem: The RCT property (independence of u and the algorithm) is
sufficient for estimating the counterfactual trace if
1. (Invertibility) Va: m = f(a, u) is invertible.
2. (Low-rank factorization) Matrix representation of { has rank r,
and r < dim(trace).
3. Traces are collected using sufficient number of diverse
algorithms (See the paper for the precise statement).



Fulfilling the initial promise



Fulfilling the initial promise

» Key source of bias
» Exogenous Trace Assumption

18



Fulfilling the initial promise

» Key source of bias
» Exogenous Trace Assumption

> How to do unbiased trace-driven simulation?
» CausalSim
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e Can we use CausalSim to improve algorithms?
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Case study: CausalSim in the wild

Which one?
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Case study: CausalSim in the wild

@® BBA (Aug’22-Dec’22) @® BOLAI1-CausalSim (Aug’22-Dec’22)
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* Deployment: 1.4x less stalling than BBA
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Contributions

dldentified Exogenous Trace Assumption as a key source of bias in trace-driven
simulation.

JProposed CausalSim for eliminating bias, by modeling the effect of
interventions on the trace.

(dDemonstrated CausalSim’s impact by a real-world ABR algorithm design and
deployment.

@causalsim.csail.mit.edu .




