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Unprecedented amount of 
video camera footage

After-the-fact analysis
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Retail Analysis Traffic Analysis

Sports Analysis Audits/Investigations

Retrospective Video Analytics



Challenge: High Compute Overheads

…
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Model Output

Retrospective Video Analytics Pipeline
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! Querying is Expensive & Slow
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Preprocessing Query Execution
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Querying Behavior
Previously Today

Time
Implication:  
preprocessing model = query model

Implication:  
preprocessing model ≠ query model
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Models Behave Differently
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Query: Counting # of cars per frame  
Accuracy: avg(100%, 0%, 100%) = 66%

Preprocessing Model: Model 2 
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Discrepancies Across Real Models
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Query accuracy of preprocessing with YOLO model 
trained on the COCO dataset but querying with 
FRCNN model trained on the COCO dataset is 32.8%
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Discrepancies Across Real Models

Preprocessing Model

Qu
ery

 M
od

el

Query: Counting # Cars per Frame

Query accuracy of preprocessing with YOLO model 
trained on the COCO dataset but querying with 
FRCNN model trained on the COCO dataset is 32.8%

Accuracy of Full Dataset Analysis 
Counting Queries: 16-92% 
Bounding Box Queries: 6-54%
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How do you preprocess video data to 
accelerate retrospective querying with 
diverse models?

Boggart baa " grt



Preprocessing Requirements
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Preprocessing Requirements

Relatively cheap to perform1

General-purpose and comprehensive2

Provide a way to link information across frames3
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Preprocessing
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Preprocessing

Frame ID Trajectory ID x1 y1 x2 y2
1 1 100 200 100 300
1 2 200 600 300 500
1 3 80 120 90 230
2 1 105 205 105 305
… … … … … …

Trajectories of Blobs

Need to tune CV techniques conservatively to comprehensively extract information$

Blob 
Extraction
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Query Execution
Idea: run model on as few frames as possible and use trajectories to 
propagate model results to the remaining frames
Challenge: misalignment of blobs with ML model output

Imprecise blob 
bounding boxes

Inconsistent 
model outputs

ML Model

Preprocessing Blobs
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Query Execution: New Techniques

Cluster similar video segments and 
profile a small portion of each cluster

#
# of frames on which to run the model 
is influenced by video dynamism

Identify the smallest set of frames on 
which to run the model1

Correct imprecisions during model result 
propagation across the remaining frames2
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Query Execution: New Techniques

Relative position between an object’s keypoints 
and its bounding boxes remain stable over time

(xk, yk)(x1, y1)

(x2, y2)
Search for blob coordinates that 
maximally preserve these relationships

(axk, ayk) = (x2 − xk

x2 − x1
, y2 − yk

y2 − y1 )
K′ 

∑
k′ 

[(x2 − xk′ 

x2 − x1
− axk)

2
+ (y2 − yk′ 

y2 − y1
− ayk)

2

]

Identify the smallest set of frames on 
which to run the model1

Correct imprecisions during model result 
propagation across the remaining frames2
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Evaluation Methodology

96 hours of publicly available camera footage

Objects of interest: cars & people

Accuracy Targets: 80%, 90%, 95%

Query Models: 3 architectures, 
each trained on 2 datasets

Query Types: binary classification, 
counting, bounding box detection
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Query Execution Speedups Baseline: run query model on every frame

Query: 
- Model: YOLOv3+COCO 
- Accuracy Target: 90% 
- Query Type: Binary Classification

Result: Boggart returned results that 
achieved an accuracy of 93% while 
requiring the query model to be run 
on only 5% of the total frames
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Query Execution Speedups

Query Model

Accuracy Target: 90%

Query Model

Accuracy Target: 95%

Query Model

Accuracy Target: 80%

Boggart consistently meets specified accuracy targets while requiring a fraction of the compute$

Baseline: run query model on every frame
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Query Execution Speedups

Query Model Query Model Query Model

Accuracy Target: 90% Accuracy Target: 95%Accuracy Target: 80%

Finer-grained queries and higher accuracy targets -> Run query model on more frames

Baseline: run query model on every frame
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Different Object Types  — People vs. Cars

Querying for people requires more model inference than querying for cars.
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Comparison to Model-Specific Preprocessing
Focus (OSDI ’18) leverages model-specific preprocessing to 
accelerate binary classification queries.

Model: YOLOv3+COCO, 
Accuracy Target: 90%

Query Execution

Low cost for generalization
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Comparison to Model-Specific Preprocessing
Focus (OSDI ’18) leverages model-specific preprocessing to 
accelerate binary classification queries.

Preprocessing

Low cost for generalization



Evaluation Axes
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# Query-execution speedups 
# Comparison to existing systems 
# Performance on downsampled video 
# Resource scaling 
# Storage costs 
# Parameter sensitivity 
# Generalizability 



# A general-purpose accelerator for retrospective 
querying with diverse user-provided models 
# Leverages model-agnostic computer vision 

techniques to generate trajectories of areas of motion 
# Despite its generality, its speedups match (and most 

often, exceed) existing approaches   

Boggart

Source code available at github.com/neilsagarwal/boggart
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