Unlocking unallocated cloud capacity for long, uninterruptible workloads

Anup Agarwal anupa@cmu.edu

Shadi Noghabi

Inigo Goiri

Srinivasan Seshan

Anirudh Badam

Carnegie Mellon

Cloud has unallocated (or unsold) capacity

- Illusion of elasticity.
- Provisioned for peak demand
- Variations in demand, VM sizes (fragmentation).

- 20-30% hardware unallocated.
- Spot VMs, oversubscription, serverless...

HVMs overcome capacity and cost bottlenecks of large-scale scientific workloads

- Weather, geospatial simulations
- Genome analysis

 Important to society and cloud providers. Billions of dollars market.

Challenge

Uninterruptible = Hard to checkpoint/migrate

- Rely on domain specific libraries
- Large working sets & side-effects

Customer's challenges in using HVMs

Customer's challenges in using HVMs

HVM resource variations slow down long, uninterruptible workloads by 1.5x

Existing techniques are insufficient

- Checkpointing, migration, replication → Prohibitive, Impractical
- Spot VM specific → Do not generalize
- Changes to parallelism changes outputs [Gesall, SIGMOD 17] → Unacceptable

How can customers best use HVMs for long, uninterruptible workloads?

SlackSched Roadmap

1. Characterization to understand the setting

- #1: Harvest VMs
- #2: Workloads

2. Opportunities to use HVMs more efficiently

- #1: Scheduling
- #2: Resource Acquisition

Characterization: Understand interaction between workloads & HVM variations

Harvest VMs

8 production clusters

- Magnitude of changes
- Inter-change-times
- Spatial variation
- Temporal variation

Workloads

Genomics, seismic imaging

- Task resources
- Task runtimes

Other characterization in the paper.

Harvest VMs: Inter-change time

Harvest VMs: Inter-change time

Inter-change time distribution (X): X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8

Obs #1: Inter-change time has high variance. At any time, mix of stable and unstable HVMs.

Obs #2: Task runtimes have high variance. At any time, mix of long and short tasks.

SlackSched Roadmap

1. Characterization to understand the setting

- #1: Harvest VMs → Mix of stable & unstable HVMs.
- #2: Workloads → Mix of short and long tasks.

2. Opportunities to use HVMs more efficiently

- #1: Scheduling → Match longer tasks to more stable HVMs.
- #2: Resource Acquisition → Maintain cluster of stable HVMs.

Challenge. Predict which HVMs will be stable.

Opportunity #1: Scheduling Match longer tasks to more stable HVMs

Inter-change time distribution is stationary over time. We know the distribution of future HVM changes.

Using inter-change time distribution to guide scheduling decisions

Conditional probability HVM changes before task (duration d) finishes.

$$P[X - t \le d \mid X > t] = \frac{0.3}{0.8}$$

More details in the paper.

Likelihood of task preemptions. Prob. of shrink. Task runtimes.

Opportunity #2: Resource Acquisition. Periodically deallocate unstable or most recently changed HVMs

The longer an HVM has stayed stable, the longer it will remain stable

$$E[X - l \mid X > l]$$
>
$$E[X - s \mid X > s]$$

SlackSched: Putting it all together

Scheduling

- Match longer tasks to more stable HVMs.
- Minimize likelihood of task preemption.

Resource Acquisition

- Maintain cluster of stable HVMs.
- Deallocate most recently changed HVMs.

Implementation & Evaluation

Implement within Hadoop YARN.

Evaluate using:

- HVM traces from 8 production clusters (~1000 servers each).
- Workload traces from genomics/seismic domains.

Metrics: Job completion time (JCT) & Cost.

Scheduling reduces mean and p90 JCT by ~27% and 44%

Scheduling and Resource Acquisition complement each other

More evaluation in the paper

Workload parameters

- Task runtime distributions
- Errors in task runtime estimates
- Load, Time varying load

Environment parameters

- HVMs in different clusters
- Different HVM allocation policies
- Comparison with Spot VMs

Empirically compare against checkpointing, migration, replication

Summary: Better use HVMs for long, uninterruptible workloads

Distribution based predictions to guide

- Scheduling. Match tasks to HVMs.
- Resource Acquisition. Maintain cluster of stable HVMs.

- ~27% improvement in mean job completion time.
- ~44% improvement in p90 JCT.
- 75% lower cost than regular VMs.

Backup Slides

Harvest VMs vs. Spot VMs

- 3.6x lower eviction rates
- 2.5-7.5x bigger in capacity
- 35-44% cheaper

Harvest VMs vs. Spot VMs

- 3.6x lower eviction rates
- 2.5-7.5x bigger in capacity
- 35%-44% cheaper

• Spot is 48%-88% cheaper than regular

