
Formal Methods for
Network Performance Analysis

Mina Tahmasbi Arashloo

University of Waterloo

Ryan Beckett

Microsoft

Rachit Agarwal

Cornell University

The shift towards automated formal analysis

“Capturing the state of research on network verification”
Ryan Beckett and Ratul Mahajan, netverify.fun

The shift towards automated formal analysis

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

The shift towards automated formal analysis

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Does property
always hold?

P

The shift towards automated formal analysis

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Does property
always hold?

P

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

The shift towards automated formal analysis

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

e.g., packets entering
the network

Does property
always hold?

P

The shift towards automated formal analysis

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

e.g., packets entering
the network

Does property
always hold?

P

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Existing work focuses on functional correctness

Lots of progress on analyzing functional correctness

Does property
always hold?

P

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Existing work focuses on functional correctness

Lots of progress on analyzing functional correctness

• Is A reachable from B?
• Are there cyclic zone dependencies in DNS configurations?
• Is VLAN X traffic isolated from VLAN Y?
• ...

Does property
always hold?

P

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Existing work focuses on functional correctness

Lots of progress on analyzing functional correctness

• Is A reachable from B?
• Are there cyclic zone dependencies in DNS configurations?
• Is VLAN X traffic isolated from VLAN Y?
• ...

But, what about performance?

Does property
always hold?

P

∀t (dstip(t) = A ∧ at(s1, t)) → at(s2, t + 1)
∀t dstip(t) = B ∧ ∀s ¬at(s, t + 1)
…

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Existing work focuses on functional correctness

Lots of progress on analyzing functional correctness

• Is A reachable from B?
• Are there cyclic zone dependencies in DNS configurations?
• Is VLAN X traffic isolated from VLAN Y?
• ...

But, what about performance?

• Can flow A’s throughput drop below R?
• Can packets in traffic class B experience latency > L?
• Can flow X get a much larger share of the bandwidth than Y?
• ...

Does property
always hold?

P

This work:

Using formal methods to analyze performance properties

Finding the “right” model

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

??

Does property
always hold?

P

!

Specify desired property2

Does property
always hold?

P

Finding the “right” model

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Extensively explored for packet forwarding.

??
A Switch

dstip port

X1 P1

X2 P2

… …
X3 P3

Finding the “right” model

Create a mathematical
model of the network1

!

Specify desired property2

Does property
always hold?

P

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

A Switch

dstip port

X1 P1

X2 P2

… …
X3 P3

For performance analysis, we need more than just forwarding

??

Finding the “right” model

Create a mathematical
model of the network1

!

Specify desired property2

Does property
always hold?

P

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

A Switch

dstip port

X1 P1

X2 P2

… …
X3 P3

For performance analysis, we need more than just forwarding

Queues

??

Finding the “right” model

Create a mathematical
model of the network1

!

Specify desired property2

Does property
always hold?

P

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

A Switch

dstip port

X1 P1

X2 P2

… …
X3 P3

For performance analysis, we need more than just forwarding

Packet sequences
Queues

??

Finding the “right” model

Create a mathematical
model of the network1

!

Specify desired property2

Does property
always hold?

P

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

A Switch

dstip port

X1 P1

X2 P2

… …
X3 P3

For performance analysis, we need more than just forwarding

Timed packet sequences
Queues

t1t2t3t4t5t6

??

Our model: Composition of “queuing modules”

… …

N input
queues

M output
queues

Queuing Module
(Building block)

Processing

- Pull from input queues

- Process

- Push to output queues

Our model: Composition of “queuing modules”

… …

Processing

Our model: Composition of “queuing modules”

… …

Processing

… …

Processing

…

Processing

Our model: Composition of “queuing modules”

… …

Processing

… …

Processing

…

Processing

Queues are modeled explicitly:

 → -th packet in the queue at time q . elem[i][t] i t

Our model: Composition of “queuing modules”

… …

Processing

… …

Processing

…

Processing

How do we make it tractable to analyze?

• Abstract time over dequeues

• Bounded time analysis

• Efficient queue encoding

• Optimizing compositions

Finding the “right” model

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

Does property
always hold?

P

Specifying performance properties of interest

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

??

Specifying performance properties of interest

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

• Pre- or user-defined metrics over queues

• Queue size: queue_size(q, t)
• Number of enqueued packets: total_ packets(q, t)
• Arrival inter-packet gap: inter_ packet_gap(q, t)
• <insert your metric of interest>

??

Specifying performance properties of interest

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

• Properties compare metrics to certain values

??

Specifying performance properties of interest

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

• Properties compare metrics to certain values

… …Processing

… …Processing

…Processing
??

Specifying performance properties of interest

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

• Properties compare metrics to certain values

• inter_ packet_gap(q1, t1) ≥ 10

… …Processing

… …Processing

…Processing
q1

??

Specifying performance properties of interest

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

• Properties compare metrics to certain values

• inter_ packet_gap(q1, t1) ≥ 10

• queue_size(q1, t5) ≤ queue_size(q2, t6)

… …Processing

… …Processing

…Processing

q2

q1

??

Specifying performance properties of interest

Create a mathematical
model of the network1

!

Specify desired property2

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

• Properties compare metrics to certain values

• inter_ packet_gap(q1, t1) ≥ 10

• queue_size(q1, t5) ≤ queue_size(q2, t6)

• Σq∈{u1, ⋯, uk} total_ packets(q, t10) ≥ 20

… …Processing

… …Processing

…Processing

u1, ⋯, uk

q2

q1

??

Specifying performance properties of interest

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

• Model checking

• Symbolic execution

• …

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Analyzing model ∧ ¬property

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

??

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Analyzing model ∧ ¬property

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

??

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

• is a quantifier-free SMT
formula with integer arithmetic

• We use Z3 to analyze its satisfiability.

model ∧ ¬property

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Analyzing model ∧ ¬property

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

Bounded Model
checking with Z3

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

When the property doesn’t hold…

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

Bounded Model
checking with Z3

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

When the property doesn’t hold…

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

Bounded Model
checking with Z3

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

A single trace is not an informative output

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

Time
t1t2t3t4t5

• Timed packet sequences

• Needed in the model

• Not necessarily useful in the output

Output: Does not hold.

 e.g., for this particular input:

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Time
t1t2t3t4t5

• Not all details matter with respect to the property

Output: Does not hold.

 e.g., for this particular input:

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Time
t1t2t3t4t5

• Not all details matter with respect to the property

??

??

Output: Does not hold.

 e.g., for this particular input:

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Time
t1t2t3t4t5

• Not all details matter with respect to the property

• Unclear if it points to an “important” problem
• Note the contrast to functional correctness properties

??

??

A single trace is not an informative output

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

Time
t1t2t3t4t5

Alternative? Conditions on the input

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

 e.g., for these set of conditions on the input:

Alternative? Conditions on the input

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

 e.g., for these set of conditions on the input:

- F1 or F2 have packets for
consecutive time steps

- F3 has at least a packet

X

Alternative? Conditions on the input

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

 e.g., for these set of conditions on the input:

- F1 or F2 have packets for
consecutive time steps

- F3 has at least a packet

X

W
or

kl
oa

d

• Workload: Conjunction of constraints on the input

Alternative? Conditions on the input

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

 e.g., for these set of conditions on the input:

- F1 or F2 have packets for
consecutive time steps

- F3 has at least a packet

X

W
or

kl
oa

d

• Workload: Conjunction of constraints on the input

∀t ∈ [1,X] Σq∈{F1,F2} total_ packets(q, t) ≥ t

∧ ∀t ∈ [1,X] total_ packets(F3, t) ≥ 1

Alternative? Conditions on the input

A Priority
Scheduler

F1

F2

F3

F4

Property: F3 should not be blocked for dequeue (get starved)

 for consecutive time steps.X

Output: Does not hold.

 e.g., for this particular input:

 e.g., for these set of conditions on the input:

- F1 or F2 have packets for
consecutive time steps

- F3 has at least a packet

X

W
or

kl
oa

d

• Workload: Conjunction of constraints on the input

• (Concisely) represents a set of traces

• More informative

• Indicative of a more prominent problem.

∀t ∈ [1,X] Σq∈{F1,F2} total_ packets(q, t) ≥ t

∧ ∀t ∈ [1,X] total_ packets(F3, t) ≥ 1

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Synthesizing workloads

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

Bounded Model
checking with Z3

Prove or disprove the property4

✔ Property always holds

❌ An example input for which

 does not hold

jkjkj

P
P

Composition of
queuing modules

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Synthesizing workloads

Create a mathematical
model of the network1

Automatically analyze
the entire input space.3

Bounded Model
checking with Z3Composition of

queuing modules

Prove or disprove the property4

✔ Property always holds

❌ A workload such that does not
 hold for any trace in

jkjkj

P
wl P

wl

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Automatically analyze the entire
input space.3

Synthesizing workloads

Create a mathematical
model of the network1

Composition of
queuing modules

Syntax-Guided Synthesis

Prove or disprove the property4

✔ Property always holds

❌ A workload such that does not
 hold for any trace in

jkjkj

P
wl P

wl

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Automatically analyze the entire
input space.3

Synthesizing workloads

Create a mathematical
model of the network1

Composition of
queuing modules

Workload SearchSyntax-Guided Synthesis

Prove or disprove the property4

✔ Property always holds

❌ A workload such that does not
 hold for any trace in

jkjkj

P
wl P

wl

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Automatically analyze the entire
input space.3

Synthesizing workloads

Create a mathematical
model of the network1

Composition of
queuing modules

Workload Search

Ca
nd

id
at

e
 W

or
kl

oa
d

wl

Do all the traces in the
workload violate ?P

Syntax-Guided Synthesis

Prove or disprove the property4

✔ Property always holds

❌ A workload such that does not
 hold for any trace in

jkjkj

P
wl P

wl

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Automatically analyze the entire
input space.3

Synthesizing workloads

Create a mathematical
model of the network1

Composition of
queuing modules Bounded Model

checking with Z3

Workload Search

Ca
nd

id
at

e
 W

or
kl

oa
d

wl

Do all the traces in the
workload violate ?P

Syntax-Guided Synthesis

Prove or disprove the property4

✔ Property always holds

❌ A workload such that does not
 hold for any trace in

jkjkj

P
wl P

wl

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

Automatically analyze the entire
input space.3

Synthesizing workloads

Create a mathematical
model of the network1

Composition of
queuing modules Bounded Model

checking with Z3

Workload Search

Ca
nd

id
at

e
 W

or
kl

oa
d

wl Feedback

Do all the traces in the
workload violate ?P

Syntax-Guided Synthesis

Prove or disprove the property4

✔ Property always holds

❌ A workload such that does not
 hold for any trace in

jkjkj

P
wl P

wl

FPerf:
Formal Performance Analyzer

Create a mathematical
model of the network1

Prove or disprove the property4

✔ Property always holds

❌ A workload such that does not
 hold for any trace in

jkjkj

P
wl P

wl

Composition of
queuing modules

Automatically analyze the entire
input space.3

Bounded Model
checking with Z3

Workload Search

Ca
nd

id
at

e
 W

or
kl

oa
d

wl Feedback

!

Specify desired property2

queue_size(q1, t1) ≤ 10
Property :P

See the paper for

• Details of the search algorithm

• Randomized search

• Guided by a cost function over workloads

• Generating example traces for the search cost function

• Optimizations for the search and verification process

• Constraining the input search space to the user’s interest

• …

Case study - Packet scheduling

Property

Priority

Starvation

Round-Robin

Fairness

FQ in
FQ-CoDel

Fairness

Stand-alone packet schedulers

Case study - Packet scheduling

Property

Priority

Starvation

Round-Robin

Fairness

FQ in
FQ-CoDel

Fairness

Composition

Starvation +

Fairness

Stand-alone packet schedulers

Case study - Packet scheduling

Priority Round-Robin FQ in
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

• 11 queuing modules

• Host + NIC scheduling

• Inspired from Loom

(NSDI’19)

Case study - Packet scheduling

Priority Round-Robin FQ in
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

Case study - Packet scheduling

Priority Round-Robin FQ in
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

Model Size
 # variables 1.5K 2.6K 4.5K 17.9K

 # constraints 7K 13K 21K 94K

10s of thousands variables
and constraints

Case study - Packet scheduling

Priority Round-Robin FQ in
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

Model Size
 # variables 1.5K 2.6K 4.5K 17.9K

 # constraints 7K 13K 21K 94K

The Search Algorithm
rounds 65 268 769 361

time (sec.) 3 59 223 461

10s of thousands variables
and constraints

Search time is reasonable
Example generation is a bottleneck

Case study - Packet scheduling

Priority Round-Robin FQ in
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

Model Size
 # variables 1.5K 2.6K 4.5K 17.9K

 # constraints 7K 13K 21K 94K

The Search Algorithm
rounds 65 268 769 361

time (sec.) 3 59 223 461

Verifying Candidate Workloads (avg) (sec.) 0.03 0.04 0.10 0.81

10s of thousands variables
and constraints

Search time is reasonable
Example generation is a bottleneck
Workload verification (and model
analysis) is efficient!

Case study - Packet scheduling

Priority Round-Robin FQ in
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

Model Size
 # variables 1.5K 2.6K 4.5K 17.9K

 # constraints 7K 13K 21K 94K

The Search Algorithm
rounds 65 268 769 361

time (sec.) 3 59 223 461

Verifying Candidate Workloads (avg) (sec.) 0.03 0.04 0.10 0.81

Total Time (min.) 0.2 6.2 9.6 18.5

10s of thousands variables
and constraints

Search time is reasonable
Example generation is a bottleneck
Workload verification (and model
analysis) is efficient!

It is possible to synthesize workloads
in a few minutes

Case study - A (small) leaf-spine network

• Modeled with ~23 queuing modules with 66 queues

• ~twice larger than the packet composition case study

• Asked about properties related to throughput and latency

• Observed similar trends

Case study - A (small) leaf-spine network

Larger network sizes

(Sx-Ly-Hz: x Spines, y Leaves, z Hosts)

• The trend is (unsurprisingly) exponential

• Modular analysis will be crucial for scale

Concluding remarks

• Our goal: Exploring the transition from reasoning about functional
correctness to performance properties

• Our findings: Intriguing implications on modeling and analysis techniques.

• e.g., workloads as opposed to individual counter examples

• We are excited about the possibilities ahead!

• FPerf’s code is available on GitHub: https://github.com/minmit/fperf

• And we are actively looking for more use cases to improve

https://github.com/minmit/fperf

