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queues

M output  
queues

Queuing Module 
(Building block)

Processing

- Pull from input queues

- Process

- Push to output queues
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Queues are modeled explicitly:
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Our model: Composition of “queuing modules”

… …

Processing

… …

Processing

…

Processing

How do we make it tractable to analyze?

• Abstract time over dequeues

• Bounded time analysis

• Efficient queue encoding

• Optimizing compositions
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                for  consecutive time steps.X

Output: Does not hold. 
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• Workload: Conjunction of constraints on the input

• (Concisely) represents a set of traces 

• More informative

• Indicative of a more prominent problem.

∀t ∈ [1,X] Σq∈{F1,F2} total_ packets(q, t) ≥ t

∧ ∀t ∈ [1,X] total_ packets(F3, t) ≥ 1
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See the paper for

• Details of the search algorithm


• Randomized search 


• Guided by a cost function over workloads


• Generating example traces for the search cost function


• Optimizations for the search and verification process


• Constraining the input search space to the user’s interest


• …
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Case study - Packet scheduling

Priority Round-Robin FQ in  
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

• 11 queuing modules

• Host + NIC scheduling

• Inspired from Loom 

(NSDI’19)
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Priority Round-Robin FQ in  
FQ-CoDel Composition

Property Starvation Fairness Fairness Starvation +

Fairness

Model Size
  # variables 1.5K 2.6K 4.5K 17.9K

  # constraints 7K 13K 21K 94K

The Search Algorithm
# rounds 65 268 769 361

time (sec.) 3 59 223 461

Verifying Candidate Workloads (avg) (sec.) 0.03 0.04 0.10 0.81

Total Time (min.) 0.2 6.2 9.6 18.5

10s of thousands variables 
and constraints

Search time is reasonable          
Example generation is a bottleneck
Workload verification (and model 
analysis) is efficient!

It is possible to synthesize workloads 
in a few minutes



Case study - A (small) leaf-spine network

• Modeled with ~23 queuing modules with 66 queues


• ~twice larger than the packet composition case study


• Asked about properties related to throughput and latency


• Observed similar trends



Case study - A (small) leaf-spine network

Larger network sizes

(Sx-Ly-Hz:  x Spines, y Leaves, z Hosts)

• The trend is (unsurprisingly) exponential

• Modular analysis will be crucial for scale



Concluding remarks

• Our goal: Exploring the transition from reasoning about functional 
correctness to performance properties 

• Our findings: Intriguing implications on modeling and analysis techniques.

• e.g., workloads as opposed to individual counter examples

• We are excited about the possibilities ahead!


• FPerf’s code is available on GitHub: https://github.com/minmit/fperf

• And we are actively looking for more use cases to improve

https://github.com/minmit/fperf

