
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Scalable Tail Latency Estimation for
Data Center Networks

Kevin Zhao, University of Washington; Prateesh Goyal, Microsoft Research;
Mohammad Alizadeh, MIT CSAIL; Thomas E. Anderson, University of Washington

https://www.usenix.org/conference/nsdi23/presentation/zhao-kevin

Scalable Tail Latency Estimation for Data Center Networks

Kevin Zhao

University of Washington
Prateesh Goyal

Microsoft Research
Mohammad Alizadeh

MIT CSAIL
Thomas E. Anderson

University of Washington

Abstract
In this paper, we consider how to provide fast estimates of

flow-level tail latency performance for very large scale data

center networks. Network tail latency is often a crucialmetric

for cloud application performance that can be affected by a

wide variety of factors, including network load, inter-rack

traffic skew, traffic burstiness, flow size distributions, oversub-

scription, and topology asymmetry. Network simulators such

as ns-3 and OMNeT++ can provide accurate answers, but are

very hard to parallelize, taking hours or days to answer what

if questions for a single configuration at even moderate scale.

Recent work with MimicNet has shown how to use machine

learning to improve simulation performance, but at a cost

of including a long training step per configuration, and with

assumptions about workload and topology uniformity that

typically do not hold in practice.

We address this gap by developing a set of techniques to

provide fast performance estimates for large scale networks

with general traffic matrices and topologies. A key step is

to decompose the problem into a large number of parallel

independent single-link simulations; we carefully combine

these link-level simulations to produce accurate estimates of

end-to-end flow level performance distributions for the entire

network. LikeMimicNet,weexploit symmetrywherepossible

to gain additional speedups, but without relying on machine

learning, so there is no training delay. On a large-scale net-

work where ns-3 takes 11 to 27 hours to simulate five seconds

ofnetworkbehavior, our techniques run inone to twominutes

with accuracy within 9% for tail flow completion times.

1 Introduction
Counterfactual simulation—to answer “what if” questions

about the interaction of network protocols, workloads, topol-

ogy, and switch behavior—has long been used by both re-

searchers and practitioners as a way of quantifying the effect

of design options and operational parameters [2, 16, 21, 23–

26, 36]. As production data center networks have scaled up in

bandwidthandscaledout insize [4, 29],however,networksim-

ulation has failed to keep pace. Although there is ample par-

allelism at a physical level in large scale data center networks,

it has been difficult to realize significant speedupwith packet-

level network simulation [22, 30].As packets flow through the

network, the scheduling decisions at each switch affect the

behavior of every flow traversing that switch, and therefore

the scheduling decisions at every downstream switch, and—

with congestion control—future flow behavior, in a cascading

web of very fine-grained interaction. In our own experiments

using ns-3 [23], for example, simulating a 384-rack, 6,144-host

network on a single thread of amodern desktop CPU took 11

to 27 hours of wall-clock time to advance five seconds of sim-

ulated time. While parallel techniques for discrete event sim-

ulation exist [10], recent work has demonstrated their limited

efficacy for speeding up simulations of highly interconnected

data center networks [34]. As a result, packet-level network

simulation today is mostly used for small scale studies.

The need for faster network simulation has spawned recent

efforts to use machine learning to model how different parts

of the network affect each other [32, 34]. While promising,

these approaches have several limitations.MimicNet requires

hours-long retraining for newworkloads and network con-

figurations, and it only accelerates simulations of uniform

fat trees with uniform traffic among equally-sized clusters of

machines [34]. DeepQueueNet relaxes some of MimicNet’s

restrictions but does notmodel congestion control, which can

be a first-order determiner of performance [32].

This paper aims to address this gap, to develop techniques

for fast approximate simulation of large scale networks with

arbitrary workloads and topologies. Our work involves no

training step, aiming to produce near-real time results even at

scale. In addition to reducing the cost of evaluating new pro-

tocols, another goal is to provide real-time decision support

for network operators, such as warnings of SLO violations if

links fail [17, 20], advice on task placement of communication-

intensive jobs [7], and predicting the performance impact of

planned partial network outages and upgrades [8, 35].

A key observation is that we could achieve high degrees of

parallelism if we could somehow disentangle the interactions

between switch queues, allowing us to study the behavior of

the traffic on each link in isolation. Of course, switch queues

arenot in reality completely disentangled. Thepackets for any

particular flow experience a very specific set of conditions at

each switch, and those conditions are affected by the presence

of upstream bottlenecks which can smooth packet arrivals

for competing flows at downstream switches. The congestion

response for a flow depends on the combination of conditions

at every switch along the path.

However, large scale data center networks are typically

managed with the goal of delivering consistent high perfor-

mance to applications.While congestion events do occur, they

are often chaotic rather than persistent, popping up and then

disappearing in different spots due to the inherent burstiness

and flow size distribution of applications, rather than due to

some long-termmismatch between demand and capacity in

some portion of the network [33]. Further, we are often inter-

ested in aggregate behavior, such as the frequency of poor

flowperformance, rather than the behavior of each individual

packet or flow.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 685

0.80

0.85

0.90

0.95

1.00

CD
F

Smaller than 10 KB 10 KB to 100 KB

2.5 5.0 7.5 10.0
FCT slowdown

0.80

0.85

0.90

0.95

1.00

CD
F

100 KB to 1 MB

2.5 5.0 7.5 10.0
FCT slowdown

Larger than 1 MB

Ground truth model Parsimon

Figure 1. CDF of ns-3 versus Parsimon for flow completion time

(FCT) slowdown across multiple flow size ranges, zoomed into

the tail. While ns-3 took nearly 11 hours to produce these results,

Parsimon took one minute and 19 seconds, end-to-end. Results

were taken on a 6,144-host topology with an industry traffic matrix,

2-to-1 oversubscription, and bursty traffic.

Tomodel aggregate behavior, our hypothesis is thatwe can

approximate the distribution of end-to-end flow performance

for a particular workload running on a large scale network by

modeling the frequency and magnitude of local congestion

events at each link along individual paths. A long flowwill

of course experience multiple congestion events during its

lifetime, but most of these will occur at different points along

the path at different times.Modeling the effect of simultaneous

congestion events, and the response of the congestion algo-

rithm to multiple simultaneous bottlenecks, is second order.

Our hypothesis is related to the concept of product-form

solutions in queuing theory. For certain classes of queueing

networks (e.g., Jackson [12] andBCMPnetworks [6]), the equi-

libriumdistributionofqueue lengths canbewritten inproduct

form, i.e., the state of an individual queue is only dependent

on the traffic it receives and not on the state of the rest of the

network. These results generally require specific assumptions

about job arrival processes (e.g., Poisson), service-time distri-

butions (e.g., Exponential), and queueing/routing disciplines

(e.g., FIFO or processor-sharing queues), and there has been

much theoretical work on identifying classes of queueing

networks that admit product-form solutions [13]. Although

data center networks do not strictly conform to these condi-

tions and the dynamics of each individual queue can be quite

complex (e.g., due to congestion control), our hypothesis is

that product-form solutions are approximately true in most

realistic settings, and therefore we can analyze individual

queues in isolation and combine the results to approximate

end-to-end network behavior.

We built Parsimon to directly test this hypothesis. First,

we deconstruct the network topology into a large number of

simple and fast simulations where each can be run entirely

in parallel by a single hyperthread. Each simulation aims to

collect the distribution of delays that flows of a particular

size would experience through a single link, assuming that

the rest of the network is benign. We then combine these

simulated delay distributions to produce predictions of the

end-to-end delay distribution, again for flows of a given size.

At each step, we make conservative assumptions for how

delays should be computed and combined. In many settings,

researchers and operators are interested in keeping tail behav-

ior well-managed, making a conservative assumption more

appropriate than anoptimistic one. Finally,Parsimon clusters
links with common traffic characteristics, eliminating much

of the overhead of simulating parallel links in the core of the

network as well as edge links used by replicated or parallel

applications, further improving simulation performance.

Because validation against detailed packet-level simulation

at scale is so expensive, we focus our study on a single widely

used transport protocol, DCTCP [2], with FIFO queues with

ECN packet marking at each switch [27]. We also focus on

queue dynamics rather than packet loss; most data center

networks are provisioned and engineered for extremely low

packet loss [28, 29]. We note that these assumptions are not

fundamental to our approach. We show Parsimon general-
izes to two other transport protocols, DCQCN [36] and the

delay-based TIMELY [19]. Validation of other transport pro-

tocols [3, 14, 16, 21], switch queueing disciplines [1, 9, 11, 21],

and packet loss remains future work. We note that modern

data center transport layer protocols are adept at quickly

adapting to the presence and absence of congestion, and so

we caution our results may not extend to older transport

protocols where convergence time is a large factor.

Parsimon speeds up simulations by reasoning about links

independently, which enables massive parallelization, but at

a cost in accuracy. Aswewill see in §3.6, anything that creates
standing congestion both at the core and at the edge, or when

cross traffic is correlated across multiple hops, will result in

less accurate estimates.While ourmethods are designed to fa-

vor overestimating rather than underestimating tail latencies,

this property is only evaluated experimentally (§5). In general
there is no formal guarantee, since factors like congestion

control can in theory behave in arbitrary ways that render

less appropriate the approximation of considering links inde-

pendently. We assume that we can simulate for long enough

for the network to reach equilibrium; studies of short term

transient behavior should not use our approach. We do not

provide predictions at the level of an individual flow, but we

are able to show that Parsimon is accurate for sub-classes of
traffic for mixed workloads. We do not attempt to model end

host scheduling delay of packet processing, even though that

may have a large impact on network performance [14, 15];

we leave addressing that to future work.

To assess accuracy, we compare distributions of flow com-

pletion time (FCT) slowdown, defined as the observed FCT di-

videdby the best achievable FCTonanunloadednetwork, and

we say a flow is completewhen all of its bytes have been deliv-

ered to its destination. Fig. 1 shows a sample of our results for

686 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the 6,144 host networkmentioned above, running a published

industry trafficmatrix [28] andflow size distribution [21], and

with standard settings for burstiness and over-provisioning.

We describe the details of this and other experiments later in

the paper. Depicted are FCT slowdown distributions binned

by flow size. While ns-3 took nearly 11 hours on this con-

figuration, Parsimon was able to match flow-size specific

performance of ns-3 in 79 seconds (a 492 times speedup) on a

single 32-waymulticore server with an error of 9% at the 99th

percentile. Given a small cluster of simulation servers, we

estimate a completion time of 21 seconds using our approach.

In our evaluation, we scan the parameter space to identify

circumstances where our approximations are less accurate.

Link clustering improves performance but hurts accuracy

somewhat; this tradeoff can be avoided by usingmore simula-

tion cores.Without clustering, accuracy suffers when there is

high utilization of links in the core (above 50%), there are high

levels of oversubscription, and a large fraction of network

traffic is due to flows that finish within a single round trip.

Generally, a combination of factors is required for poor accu-

racy. In 85% of the configurations we test, the error relative

to ns-3 is under 10%.

Parsimon source code and evaluation scripts are publicly
available at https://github.com/netiken.

2 ParsimonOverview
This paper describes a set of methods to quickly and scalably

estimate distributions of flow performance in data center

networks. These techniques are implemented in a prototype

called Parsimon, designed to provide the following:

• Fast, scalable estimates.We aim to supply estimates

twoto threeordersofmagnitude faster thanfull-fidelity

simulation. Given enough cores, execution time should

remain bounded regardless of network size.

• Tight latencybounds, including tail performance.
Our approximations bias slightly towards overestima-

tion, but still provide close estimates even for the 95th

or 99th percentile of the distribution for a given flow

length.

• Minimal restrictions on topology andworkload.
Ourmethods are largely independent of both topology

and workload, although some combinations of topol-

ogy and workload will have lower accuracy.

Fig. 2 illustrates the intuition behind its core method, and

Fig. 3 depicts its workflow. The user supplies 1) a description

of the topology, as a set ofnodes and links, and2) theworkload,

as a set of flows and routes. In our implementation, we gen-

erate the flow list by sampling from the traffic matrix and the

flow size distribution, with inter-arrival times determined by

a burstiness parameter. Once inputs are supplied, Parsimon
proceeds in several steps:

Decomposition. To start, flows are assigned to each link

they traverse, e.g., for a fat tree using ECMP. Then, for each

link 𝑙 , Parsimon generates a custom backend simulationwith

a topology selected to determine—as accurately as possible—

the contribution of 𝑙 to the end-to-end flow completion times

(FCTs) of the flows passing through it. Each of these backend

simulations can run in parallel.

Clustering. Depending on the size of the topology, there

may be tens or hundreds of thousands (or more) of link-level

simulations to perform. Fortunately, data center topologies

exhibit notable symmetries, and industry has reported that

the same is true for many of their workloads [28]. Parsimon
can optionally cluster links with similar workloads together.

Only one representative from each cluster need be simulated;

the rest of the link-level simulations are pruned. Clustering

is discussed in more detail in §4.2.
Simulation. The next step is to simulate all cluster repre-

sentatives in parallel. The decomposition step resulted in a

topology and a workload for each link-level simulation, and

we can use any simulation backend. Our prototype supports

two: ns-3 and a custom high-performance link-level simula-

tor (§4.1). This allows us to directly validate our link-level

simulator against ns-3. However, other efficient models, such

as fluid flow [18] or machine learned models could be used

here instead, for different tradeoffs of performance and ac-

curacy. Each link-level simulation produces a distribution of

the delay contributed by that link to the flow completion time

(FCT), bucketed by flow size. Note this is not the link’s propa-

gation delay—we calculate that contribution directly from the

topology. These distributions—described in the next section

(§3)—are organized according to the original input topology,
as depicted in Fig. 2. Recall that only one representative from

each cluster is simulated; every other link is populated with

the distributions of its cluster representative.

Aggregation. The last step is to aggregate the link-level

results into estimates for entire paths through the network.

These estimates are also represented as delay distributions.

Conceptually,Parsimonobtainsadelaydistribution forapath
by convolving together the appropriate distributions from

each of the path’s component links. Since there are multiple

distributions per link and potentially many paths through the

network, we do not compute convolutions up-front. Instead,

convolution is done on-demand via Monte Carlo sampling; a

by-product is that we can efficiently produce estimates for in-

dividual source-destination pairs, virtual networks, or classes

of service (§A). To make a single point prediction for a flow

taking some path through the network, Parsimon uses the
flowsize tofind theappropriatedistribution for each link, sam-

ples a value from each of them, and combines them together.

This process is repeated for each flow.

At a bird’s-eye view, Parsimon’s method is simple: to ac-

celerate FCT estimates, we estimate the effect of each link

independently and inparallel. Then tomakepredictions about

the whole network, we combine the results. However in our

experience, the accuracy of the method hinges tightly on the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 687

https://github.com/netiken

Decomposition & simulation Link-level delay distributions Aggregation

Link-level simulation

Figure 2. Overview of Parsimon. First, for any path, Parsimon estimates the contribution of each component link to delays in flow

completion times, represented as a probability distribution. Parsimon then combines delays along the path using Monte Carlo simulation

(see §3). Further, for added performance, link-level simulations are optimized and redundant simulations (due to e.g., ECMP or symmetries

in workload patterns) are pruned (see §4).

TopologyFlows

Decompose

Link-level
sims (1)

Query

Simulate

Link-level
delays

Aggregate

FCT
distribution

Parsimon

Link-level
sims (2)

Cluster

Generate
flows

Flow size
distribution

Traffic
matrix

Figure 3. An illustration of Parsimon’s workflow. All inputs and
outputs are shown in the top row. Rectangular boxes are inputs

and outputs, rounded boxes are intermediate artifacts, and ovals

are Parsimon’s actions.

quality of the link-level estimates and subsequent aggrega-

tion. For example, when generating the backend simulations,

we have observed that failure to adequately capture perti-

nent features of the network severely degrades the quality

of Parsimon’s estimates. Similarly, link-level results must

be processed and aggregated with care to preserve accuracy

across all flow sizes. §3 describes these techniques in detail.
3 KeyMethods: Decompose and Aggregate
Together, themethods for decomposition and aggregation are

what enables Parsimon’s scaling, and while we later engage
additional techniques for further speed-up, they are a byprod-

uct of—andnot independent from—thesemore essentialmeth-

ods. Decisions made during this step are also the central de-

terminers of accuracy. This section describes these processes

in detail: how link-level topologies are generated, how the

link-level data are post-processed and stored, and finally how

they are aggregated to produce end-to-end estimates.

3.1 Generating Link-LevelWorkloads

To start, Parsimon associates each linkwith the flows passing
through it. Since links are bidirectional, there are two sets

of flows—and consequently two link-level simulations—per

link. Parsimon populates links with flows using flows’ routes.
Then for each link and in each direction, the associated flows

constitute the inputworkload to the link-level simulation.The

sizes and arrival times of the flows pass though unmodified.

3.2 Generating Link-Level Topologies

Once the link-level workloads are in place, we generate the

link-level topologies. In this step, we think of each link as

contributing some amount of delay to end-to-end FCTs. Any

given flow will accrue these delays at each hop, depending

on—for example—howmuch bandwidth is available and how

much queueing is present. Highly-loaded links are expected

to contribute more delay, while rarely utilized links will con-

tribute relatively little.

For each link and in each direction, we generate a topology

and perform a simulation using just the flows traversing that

link. Once the simulation is finished, the delay caused by the

link for a given flow is computed by taking the observed FCT

and removing the ideal FCT for that flow size. (For a flow

of size 𝑠 traversing a link of speed𝐶 and propagation delay

𝑙 , the ideal FCT is 𝑠/𝐶 + 𝑙 .) This intuitively captures all de-

lays incurred due to queueing, congestion control, bandwidth

sharing, and so on at the target link.

In generating a per-link topology, our goal is to isolate and

measure the expected delay contribution of the target link. A

simple but inefficient strategy would be to use the original

topology, but with only the traffic traversing the target link,

without any cross traffic. This would be relatively accurate at

measuring the delay contributed by the target link, albeit a bit

conservative. Upstream cross traffic congestion will slightly

smooth out downstream congestion at the target link, and so

removing cross traffic would make the queue distribution at

the target link slightly worse than in reality.

Although relatively accurate and parallelizable, simulating

every linkon theoriginal network topologywould still be inef-

ficient, as packet-level simulation cost is roughly proportional

to the number of packets simulated times the number of hops

each packet takes through the network. Because we run the

link simulation separately in each direction on every packet

that passes through that link, this would inflate the aggregate

computational cost of the simulationbyamultiplicative factor

of roughlyhalf the averagenetworkpath length—a significant

factor for large-scale networks. Instead, we want to simulate

only a small constant number of hops per target link.

An extreme alternativewould be to simulate only the target

switch queue. This is inaccurate for two reasons. First, we

688 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

3

2

1

0 1 2 3

0

1

2

3

0

1 2

3
A

B

C

A B C

1
1

1 1
3

3

2

2

1

1

3

3

1

Figure 4. An illustration of how Parsimon generates link-level topologies. Simulations are unidirectional, and a different topology is used

for (A) first-hop links, (B) switch-to-switch links, and (C) last-hop links. For illustration purposes, each link in the original topology has

a propagation delay of one. To the left is the original topology; to the right are the corresponding link-level topologies, with new propagation

delays annotated. Bold lines denote links whose bandwidths have been artificially increased during topology generation.

need to preserve end-to-end round trip delays, as these affect

the speed of the congestion control adaptation to congestion

or its absence; hosts closer to the target adapt faster than

those farther away. Second, we need to preserve the spacing

of packets induced by the original topology—a large flowdoes

not immediately dump all of its data into the queue for the

target link; instead, those packets arrive spaced apart by the

edge link capacity. Ignoring this effect would lead to larger

queues andmore delay at the simulated link thanwould occur

at that link in the original network.

Thus, we construct a topology for each link-level simula-

tion that reflects a performance-accuracy tradeoff, attempting

to capture themost important effects for computing the delay

contributed by the target link. Fig. 4 showshow topologies are

minimized. The generated topology takes one of three shapes,

depending on the location and direction of the target link: (i)

a first-hop up-link from a host to a ToR, (ii) a switch-to-switch

link in the middle of the network, or (iii) a last-hop downlink

from a ToR to a host.

Suppose the traffic through the target link originates from

sources 𝑆 and terminates in destinations𝑇 . In case A of Fig. 4,
we connect the target link directly to each host in𝑇 via a ded-

icated link. If the target link is a switch-to-switch link (case

B), we remove intermediate hops and connect the hosts in 𝑆

directly to the input, and the output directly to the hosts in𝑇 .

Lastly, if the target link is a last hop (case C), then the hosts in
𝑆 are connected directly to the input. Rewriting the topology

in thismanner ensures that packets can traverse atmost three

hops, regardless of the size of the original topology.

Modeling round-trip delay. Next, we set the link delays in

each constructed topology to match the round trip delays in

theoriginalnetwork. Forexample, in caseAofFig. 4, the round-
trip time between host 0 and host 2 is 8 in both the original
topology and the generated topology, even though Parsimon
has removed intermediate hops between the switch and host

2. Fig. 4 is meant as illustrative; as with ns-3, Parsimon can
model arbitrary round-trip delays.

In data center networks, congestion controllers play a large

role in determining the extent to which longer flows yield

throughput to benefit the latency of short flows. Most algo-

rithms such as DCTCP [2], DCQCN [36], and TIMELY [19]

are end-to-end in the sense that sources adjust their send-

ing rates based on feedback echoed from destinations [11].

With an end-to-end control loop, a sourcemust wait an entire

round-trip time (RTT) before being able to adapt its sending

rate based on congestion feedback, resulting in longer queue

lengths with higher RTTs. Thus, correctly modeling RTTs is

essential to correctly modeling queue dynamics.

Selecting link bandwidths. In some cases, we artificially

increase the bandwidth of downstream links to ensure that

they do not artificially add congestion. We say such links are

inflated. For example, in cases A and B of Fig. 4, the bandwidths
of the last-hop links are inflated. We want any queueing to be

due to the target link and not the downstream link. By inflat-

ing downstream links, we remove store and forward delay (a

small packet following a large packet would otherwise need

to queue for the downstream link); it also addresses the case

where core links are fatter than downstream links. Queueing

at the downstream link itself is accounted for in case C. By
contrast, we do not inflate first-hop links in cases B and C, as
this would enable a long flow to arrive at the target link at a

higher rate than it would in practice.

A cluster of sources sending simultaneously through an

oversubscribed top-of-rack (ToR) switch in the original net-

workwill be throttled beyondwhat is implied by the edge link

capacity. To improve simulation speed, we ignore this effect

and are therefore slightly conservative in our estimates for

oversubscribed networks.

Correcting for ACK traffic. Since Parsimon only simu-

lates one direction at a time, we must account for the load

induced by acknowledgments due to traffic in the reverse

direction. This is usually small, but can be significant at high

load and where average packet size is small. Instead of model-

ing ACK traffic in detail, we apply a simple rule, mechanically

reducing the forwardbandwidthoneach simulated linkby the

average volume consumed by ACKs for flows in the opposite

direction over the course of the simulation. This correction

is applied to all links but is most necessary for the target link.

Note that Parsimon does not account for extra delay caused
by ACK jitter on the reverse path; this could be an issue when

applying our ideas to networks with bandwidth asymmetry

between forward and reverse paths [5].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 689

3.3 Post-Processing Link-Level Results

Each link-level simulation produces an FCT for each flow in

the link-level workload, and these FCTs are used to compute

delays. Recall from §3.2 that the delay is just the observed

FCTminus the ideal FCT on an unloaded network. For each

flow, we could, theoretically, estimate the end-to-end delay as

some function of the delay contributed by each link for that

flow.We discuss how that function works in Parsimon, along
with its sources of bias, later in this section.

First, we address a different issue. Recall that we cluster

similar links together (§4.2) so thatwe only simulate the flows

through a single representative link for each cluster of links.

Thus, to compute the end-to-end delay for a particular flow,

we take a sample from the delay distributions at each hop in

the path, or from the hop’s standin representative.

In post-processing the link-level results and constructing

these distributions, our primary objective is to support accu-

rate estimates for all flow sizes. It is not enough to produce

the correct FCT distribution across the entire workload; we

must also accurately estimate the FCT distribution for short

flows containing just a few packets as well as for long flows

that last for hundreds of round trips. This extra requirement

necessitates some post-processing before distributions can

be constructed. Here we describe how this is done.

Packet-normalizeddelay. Maintainingaccuracyacross all

flow sizeswould not be possible if we used delays directly. For

example, long flows,whichmay experience variations in their

bandwidth share over time, will almost always experience

more absolute delay than short flows.

As a start, we can address this by normalizing delays by

flow size: after computing the delay for a particular flow, we

can then divide the delay by the flow’s size in packets.We call

the resulting metric the packet-normalized delay, and it has
the intuitive interpretation of summarizing the flow’s aver-

age delay per packet. Link-level distributions are constructed

from packet-normalized delays rather than absolute delays.

We normalize by the number of packets instead of the num-

ber of bytes because flows are discretized into—and therefore

delays are incurred by—packets. Further, normalizing by the

number of bytes loses accuracy for small flows, especially

those smaller than the maximum packet size. For example,

a 10 byte packet would be delayed by the same amount as

would a 100 byte packet if it arrived in the switch queue just

behind a jumbo (9 KB) frame [31].

Bucketing distributions. Even with packet-normalized

delays, we should still expect long flows to have different

delay distributions than short flows. The FCT of a long flow

is mainly determined by the throughput it achieves, while

the FCT of a short flow depends on how much queueing it

encounters. Further, congestion control algorithms trade the

throughput of long flows for the latency of shorter ones to

varying degree. An aggressive congestion control algorithm

could try to keep queues near-empty [16], resulting in smaller

short-flow delay and larger long-flow delay.

To ensure that estimates for different flow sizes are accu-

rate, it is necessary to sample each packet-normalized delay

from the appropriate distribution. We bucket the distribution

of packet-normalized delays by flow size. Buckets need to

contain enough samples to form statistically meaningful dis-

tributions, but they should also be small enough so that the

values come from flowswith similar delay characteristics (i.e.,

similarly-sized flows).

Parsimon uses a simple bucketing algorithm. In brief, we

start with a packet-normalized delay per flow, and we sort

them according to flow size. Then, starting with the short-

est flow, we begin populating buckets. For each bucket 𝑏, let

maxf𝑏 and minf𝑏 be the maximum and minimum flow sizes

associated with 𝑏, respectively, and let 𝑛𝑏 be the number of

elements in 𝑏. Each bucket 𝑏 apart from the last one is locally

subject to two constraints

𝑛𝑏 ≥𝐵 and maxf𝑏 ≥𝑥 ∗minf𝑏,

for some choice of 𝐵 and 𝑥 . Globally, Parsimon also ensures
buckets are contiguous and non-overlapping. For any bucket,

once the two local constraints are satisfied, Parsimon begins
populating the next bucket, and the final bucket is assigned

whatever elements remain.

In practice, we find 𝐵 = 100 and 𝑥 = 2 works well. Data

center workloads have heavy-tailed flow size distributions

in which short flows arrive much more frequently than long

ones. With these parameters, the first buckets will have size

boundaries that are approximately powers of two, and as

flows get larger, buckets will cover larger and larger ranges.

This is the desired behavior. Intuitively, a queueing-sensitive

1 KB flow should not be grouped with a throughput-sensitive

1 GB flow, but a 1 GB flow can be grouped with a 10 GB

flow provided the distribution of throughput is stable on long

timescales. Accuracy across different flow sizes at finer or

coarser resolution can be achieved by modulating 𝑥 . We ex-

amined sensitivity to the number of buckets by decreasing 𝑥

for selected experiments and found no meaningful change in

the predicted distributions.

In summary, each link-level simulation produces FCTs, and

these FCTs are used to construct bucketed distributions of

packet-normalized delay. Since different links have different

workloads, bucketing is performed on a per-link basis. This

means that the links in any given path are likely to have dif-

ferent bucket sizes with different flow size ranges. In the next

subsection (§3.4) we describe how the data are aggregated.

3.4 Aggregating Link-Level Estimates

For any given range of flow sizes, the final distribution of

(packet-normalized) delay for any path through the network

canbe estimatedby selecting an appropriate distribution from

each component link and then performing an n-ary convolu-

tion. However, the efficiency of this step must be considered.

Since there are multiple distributions per link and potentially

690 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5. An illustration of how Parsimon aggregates link-level
results into a path-level point estimate. Parsimon samples a

packet-normalized delay (§3.3) from each link along the path, and

combines these to estimate the end-to-end absolute delay𝐷 .

many paths through the network, performing all convolu-

tions up front and storing one path-level distribution per path,

per flow-size range would be costly in space and in time.

To avoid these costs, Parsimon uses an on-demand sam-

pling strategy to perform the convolution. Recall that the

simulation step resulted in bucketed distributions of packet-

normalized delay per link, organized in a graph isomorphic to

the original topology. Parsimonmakes this graph a queryable

object that is capable of supporting point estimates. Given a

size, a source, and a destination, Parsimon computes a path

from the source to the destination and uses the size to select

a distribution per-link. Then, one packet-normalized delay

is sampled from each distribution and the results are subse-

quently combined into a point estimate. Suppose there are 𝑛

hops and let𝐷∗
1
,𝐷∗

2
,...,𝐷∗𝑛 be the sampled packet-normalized

delays. Then, the end-to-end absolute delay𝐷 is computed as

𝑃

𝑛∑︁
𝑖=1

𝐷∗𝑖 =

𝑛∑︁
𝑖=1

𝐷∗𝑖 𝑃 =

𝑛∑︁
𝑖=1

𝐷𝑖 = 𝐷,

where 𝑃 is the input flow size in packets and𝐷𝑖 is the absolute

delay for hop 𝑖 . Fig. 5 illustrates this process. Finally, to obtain

a distribution of end-to-end delay estimates, we need only

sample enough point estimates for the desired flow size range

and source destination pairs.

3.5 Primary Source of Speedup

Parsimon speeds up large network simulations by consid-

ering the effect of each link in isolation, allowing it to scale

in the size of the simulated network and the number of pro-

cessing cores. Although the link is the unit of decomposition,

Parsimon’s scaling ability is determined not by the total the

number of links, but rather by the fraction of total packets
traversing any link. In other words, Parsimon’s speed-up de-
pends on the number of busy links and howwell the load is

balanced among them. This explains why Parsimon is most

suited for large data center networks, where the total work-

load comprises many source destination pairs with many

paths between them. If a network traffic is heavily skewed

such that most of the workload traverses only a few paths,

the amount of speedup will be limited.

3.6 Primary Sources of Error

To balance accuracy and performance, Parsimon makes a

number of approximations, with some having more of an

effect on accuracy than others. Here we catalog some of the

main sources of error, describing 1) howwe expect the errors

to manifest and 2) what modifications, if any, could be made

to address them.

Bottleneckfan-in. Tosimulateagiventarget link in thenet-

work, Parsimon constructs a topology that connects all of the
source nodes feeding traffic directly into that target. In prac-

tice, of course, there would be multiple stages of fan-in, and

that fan-inwould tend to spreadoutanyburstof arrivingflows

due to upstream bandwidth capacity constraints. Any target

link would experience slightly less queueing and less conges-

tion in reality than in Parsimon. Of course, Parsimon also
simulates the upstream link; because it is closer to the sources,

its traffic and queueing behavior would be a closer model to

what would happen in a full network-wide simulation.

Because Parsimon sums the delay contributed by each hop

along a flow’s path, the lack of fan-inwill tend to slightly over-

estimate the delays caused by downstream links. Put another

way,anydelay inducedbyfan-inconstraints is counted twice—

once whenwe simulate the upstream link and again whenwe

simulate the downstream link. In our evaluation, accuracy is

slightly lower for networks with higher degrees of oversub-

scription, as we would expect. We could potentially remove

this inaccuracy by including the upstream fan-in as part of the

topology for each link simulation. Since simulation time ispro-

portional to the number of hops, this would decrease individ-

ual link simulation efficiency by a small but significant factor.

Lack of traffic smoothing. Similarly, any cross-traffic that

shares a portion of a path with traffic destined for the target

link will tend to smooth out traffic before it reaches the target.

Parsimondoesnot include any cross-traffic in its per-link sim-

ulation, making it slightly overestimate the queueing delay

at the target link. Assuming the simulation is stable—that the

arrival rate does not exceed the service rate for any link—the

target link will experience the correct long-term average rate,

but without as much smoothing as would happen in practice.

We see evidence of this effect in our evaluation, where error

is slightly larger for workloads with a predominance of short

flows which would benefit more from smoothing. Of course,

correctly modeling the effect of cross-traffic on the traffic ar-

riving at a downstream link would be difficult to accomplish

without reverting to a full network simulation.

Link-level independence. Amore fundamental approxi-

mation is that link-level simulationsare treated independently.

This technique enables wholesale parallelization, but its accu-

racy depends on the amount of correlation between the traffic

intensities on the various hops along the path. Themore corre-

lated the traffic, the more error Parsimon’s method produces.

Since Parsimon produces estimates by convolving delay

distributions (adding independent random variables), full ac-

curacy requires the mutual independence of delays among

the links in every path. Consider a single-packet flow that

traverses two hops, both with load 𝑙 . If the delays along the

two hops are independent, the probability that the flowwill

encounter no queueing is simply (1− 𝑙)2. However, if both

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 691

hops tend to have queueing at the same time (i.e., if the traf-

fic intensities and therefore the delays are correlated), then

that probability is closer to 1− 𝑙 . Since Parsimon does not

distinguish between these two scenarios, the difference is not

reflected in its estimates.

In very large networks with thousands of hosts and paths,

and with realistic workloads, we expect the effects of corre-

lation to be small. A basic result of queueing theory is that

under some circumstances it is possible to analyze queues

independently, even when the output of one queue connects

to the input of another, so that queue behaviors are obviously

correlated. One view of our work is that we are empirically

observing that data center networks approximately admit

product-form solutions for their equilibrium state queue dis-

tributions under realistic workloads.

However, somenetworksusePFC [36] to reducepacket loss

due to go-back N error handling in some RDMA network in-

terface cards. Because PFC suffers fromhead-of-line blocking,

PFCcancausecorrelatedcongestionacrossmultiple links, and

so Parsimonwould not be a good choice for modeling such

networks. If correlation is a problem, we could potentially

measure thedegreeofcorrelationandapplyacorrecting factor

during the convolution step, butwe leave that for futurework.

One bottleneck at a time. Estimating the performance of

long flows comes with an additional difficulty which is also

exacerbated by correlated delays. While a single packet flow

can only reside in one queue at a time, a long flow can be back-

logged on multiple links at the same time.Depending on the
specific congestion control mechanism, the throttling back

of a long flow (the delay it experiences) is typically not the
sum of the delays it would experience on individual links (as

Parsimon approximates), but rather only the delay caused by

the true (instantaneous) bottleneck. Since Parsimon sums all

delays, it will overestimate the end-to-end delay for the long

flow that encounters simultaneous cross-traffic congestion

at multiple points along its path. In summary, Parsimon is
more accurate when the congestion is episodic and tempo-

rary, appearing at different links at different times, and less

accurate when congestion is persistent across multiple edge

and core links of a given path.

Congestion on any link (and therefore simultaneous con-

gestion onmultiple links) becomesmore commonwithhigher

network load, and we see this effect in our evaluation. We

can potentially correct for this bias by using a more complex

function for combining link delays when overall network uti-

lization is high. Because network operators are often willing

to over-provision their network hardware to reduce applica-

tion tail latency, this is rare in practice. For example, some

recent end-to-end congestion protocols, such as Homa [21],

simply assume that network congestion predominantly oc-

curs at the last hop of each path. We do not make such an

assumption; we handle congestion equally wherever it might

occur. However, we do assume that congestion events are not

persistent and network wide.

Our approximations are biased toward producing overesti-

mates rather thanunderestimates, becauseweexpectnetwork

operators to be more sensitive to over-promising tail behav-

ior, even if that comes at the cost of being too conservative

with respect to capacity planning. Additional analyses on the

errors induced by these approximations can be found in the

appendix (§C).
4 ComplementaryMethods
The previous section described howwe decompose a single

large network simulation into many small, independent ones

that can be executed in parallel and later combined. This sec-

tion describes additional optimizations that reduce, cluster,

and prune these link-level simulations for better computa-

tional efficiency. These reduce the number of cores needed to

simulate a given network within some time bound, or equiv-

alently, the execution time on a single server machine.

4.1 Fast Link-Level Simulation

By far the largest computational cost in Parsimon are the

link-level simulations. Initially we used ns-3 as our link-level

backend. However, as a general-purpose simulator, ns-3 is

designed to support arbitrary protocols with arbitrary exten-

sions, all the way down to hardware models. This is more

flexible but means that every packet in ns-3 generates events

at everyhost, queue, and link—aswell as throughout thehosts’

modeled network stacks.

Instead, we implemented a custom and minimal simula-

tor optimized for high fidelity single link simulation. This

backend only models the workload, topology, queueing, and

congestion control. For congestion control, our prototype

implements DCTCP’s core algorithm [2] in a few tens of lines

of code. For example, we do not need to model the mecha-

nism for carrying ECN bits from switches back to endpoints.

Switching to a custom simulator speeds up the individual link

simulations by roughly anorder ofmagnitude,withnegligible

loss of accuracy. Reducing the simulation time of the worst

case (most congested) link also reduces the critical path dra-

matically. If more simulation features are needed, Parsimon
can use ns-3 at the cost of using more cores.

4.2 Clustering and Pruning Simulations

Lastly,we recall thatParsimon’s decomposition results in two

simulations per link: one in each direction (§3.1). On a large-
scale 6,144-host topologyweuse for evaluation, there are over

9,000 links, and therefore over 18,000 simulations generated.

Fortunately, data center topologies commonly induce sym-

metries that render some of these simulations redundant. For

example, up-links in the sameECMPgroupingcanbeassumed

to have the same characteristics and traffic patterns. Further-

more, the workloads themselves may also induce symmetries

due to communication patterns and load balancing [28].

We can take advantage of these symmetries by clustering

links that carry similar traffic and only simulating one rep-

resentative from each cluster. Then, in each cluster, all links

692 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1Greedy link clustering
1: unclustered←AllLinks ⊲ links here are unidirectional

2: clusters← [] ⊲ list of list of links

3: while not Empty(unclustered) do
4: members← [] ⊲ new cluster

5: representative← PopFirst(unclustered)

6: Push(members, representative) ⊲with initial member

7: for candidate in unclustered do ⊲ find other members

8: rfeature← Feature(representative)

9: cfeature← Feature(candidate)

10: if IsCloseEnough(rfeature, cfeature) then
11: Push(members, candidate) ⊲ newmember

12: Remove(unclustered, candidate)

13: Push(clusters, members)

14: return clusters

inherit the delay distribution produced by the representa-

tive link. Parsimon’s clustering requirement is quite specific,

which limits the range of popular clustering algorithms that

can be used. Let 𝑙1,𝑙2 ∈ 𝐿 be any two link-level simulations,

and let 𝑑 :𝐿×𝐿→R be a distance function. Ideally,

𝑙1 and 𝑙2 are clustered together⇐⇒ 𝑑 (𝑙1,𝑙2)<𝜖,

where 𝜖 is some bound. The left-to-right direction preserves

accuracy; the right-to-left supports efficiency. Most centroid-

basedanddensity-basedclusteringalgorithmsaren’tdesigned

to provide the left-to-right property. Instead, Parsimon uses
Alg. 1. This algorithm greedily clusters simulations together,

using a distance function that predicts which links will have

similar delay profiles. In our prototype, we check that the

link flow size and inter-arrival time distributions—as well as

their load levels—are close.We find this provides a reasonable

tradeoff between efficiency and accuracy, but users can turn

off the optimization at the cost of using more cores. Further

details about the clustering can be found in the appendix (§D).
5 Evaluation
Parsimon’s goal is to quickly estimate tail latencies for a vari-

etyof largedata centernetworks andworkloads. In evaluating

Parsimon, we would like to assess 1) Parsimon’s accuracy
and performance at the scale of thousands of hosts, and 2)

how accuracy is affected by awide range of variables over the

workload and the topology.

Our strategy is as follows. Using workloads extracted from

industry datasets, we start with a 384-rack, 6144-host topol-

ogy to evaluate Parsimon’s speed and accuracy in one sce-

nario at scale. Then, to evaluate nearly 200 other topology

and workload scenarios, we downsample the workload so

that it can run on a smaller 256-host topology. This allows us

to run enough ns-3 simulations quickly enough to perform

a detailed sensitivity analysis.

To more clearly illustrate sources of error in Parsimon, we
also construct and evaluate Parsimon on syntheticworkloads
on a small-scale parking lot topology in Appendix §C.

Variant Clustering? Link-level backend

Parsimon No custom

Parsimon/C Yes custom

Parsimon/ns-3 No ns-3

Parsimon/inf — custom

Table 1.The Parsimon variants under consideration. Parsimon/inf
is a variant that assumes infinite cores and memory.

5.1 General Setup

Each scenario we consider has six components: 1) a topology

size, 2) an oversubscription factor, 3) a traffic matrix, 4) a flow

size distribution, 5) a burstiness level, and 6) a maximum load

level. Here, we briefly describe how these are specified and

configured.We also discuss which Parsimon variants wewill
assess and howwe establish a baseline.

Topology and oversubscription. To mimic an industry

topology, our topologies are modeled after Meta’s data center

fabric [4]. In brief, there are three layers of switches: hosts

connected to a top-of-rack switch (ToR) with 10 Gbps links

constitute a rack, racks connected to each other via fabric

switches with 40 Gbps links constitute a pod, and pods con-
nected to each other via spine switches with 40 Gbps links

constitute a cluster. Spine switches are organized in planes.
We can modulate the size of a topology (corresponding to a

cluster) by adjusting the number of pods, the number of racks

per pod, and the number of hosts per rack, and we can mod-

ulate the oversubscription factor by adjusting the number of

spines per plane.

Trafficmatrices. The traffic matrices are extracted from

the datasets accompanying Roy et al.’s study of Meta’s data

center network [28]. The data only allow us to construct re-

liable rack-to-rack matrices. When sampling workloads, we

use the matrices to generate rack-to-rack traffic, but once a

rack is chosen, we select its hosts uniformly at random. This

may bear semblance to reality: according to Roy et al., Meta’s

racks typically only contain servers in the same role, and load

balancing is used pervasively. We use traffic matrices from

three different clusters: a database cluster (matrix A), a web

server cluster (matrix B), and a Hadoop cluster (matrix C).

Fig. 6a shows 32-rack samples of the matrices.

Flow sizes and burstiness. We use three flow size distribu-

tions, estimated from published data in Roy et al.’s study [28].
These are reproduced in Fig. 6b. For inter-arrival times,weuse

the log-normal distribution to model bursty traffic, and we

modulate the burstiness by adjusting the log-normal shape

parameter 𝜎 . For low burstiness, we select 𝜎 =1, and for high

burstiness, we choose 𝜎 =2.

Maximumload level. When setting a load level, we ensure

that the offered rate is less than the link capacity for each link

by specifying the maximum load level that any link can have.

Note that a given maximum load level may result in different

link load distributions, depending on the traffic matrix and

the topology. Fig. 6c shows the distribution of normalized link

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 693

Matrix A Matrix B Matrix C

100 104 103 103 105

(a) Traffic matrices (32-rack sample)

100 102 104

Flow size (KB, log scale)

0.0

0.5

1.0

CD
F

CacheFollower
WebServer

Hadoop

(b) Flow size distributions

0.0 0.5 1.0
Normalized load

0.0

0.5

1.0

CD
F

1-to-1 oversubscription

0.0 0.5 1.0
Normalized load

4-to-1 oversubscription
Matrix A Matrix B Matrix C

(c)Normalized link load distributions

Figure 6. In the evaluation, we model workloads using data from Roy et al.’s study of Meta’s data center network [28]. The traffic matrices in

Fig. 6a are extracted from the accompanying dataset, and the flow size distributions in Fig. 6b are estimated from the published data. Lastly, for

a given topology, the distribution of link loads depends on 1) the trafficmatrix and 2) the degree of oversubscription. Fig. 6c shows the link loads

induced by thematrices in Fig. 6a on two 32-rack topologieswith different overprovisioning. The x-axis is normalized to themaximum link load.

Estimator Time Speed-up

ns-3 10h 48m 26s —

Parsimon 4m 13s 154×
Parsimon/C 1m 19s 492×
Parsimon/inf 21s 1864×

Table 2. Running times and speed-up of Parsimon variants

for five seconds of simulated time on a large oversubscribed

network with thousands of hosts. We find that Parsimon estimates

latencies orders of magnitude faster than does ns-3. If there is ample

opportunity for clustering or if there are infinite compute resources,

speed-up is substantially further increased. Measurements were

taken on a 32-core machine.

loads on a 32-rack topologywith the trafficmatrices in Fig. 6a

and two different oversubscription factors. When describing

how loaded a topology is, we will usually specify the average

load of the top 10%most loaded links.

Parsimonvariantsandbaseline. Toestablishabaseline for

Parsimon’s accuracy and performance, we use ns-3 with the

optimized build profile. We also consider several Parsimon
variants, summarized in Table 1. By default, Parsimon uses
the custom link-level backend (§4.1) with clustering turned
off. This expresses a lower bound on Parsimon’s expected
speed-up given a particular machine. Parsimon/C adds clus-

tering to the default variant using the methods described

at the end of §4.2, and Parsimon/ns-3 replaces the default’s
custom backend with ns-3. Lastly, Parsimon/inf provides an
estimate of Parsimon’s performance given infinite cores and

infinite memory, computed by adding the run time of the

longest link-level simulation to the fixed costs of network

setup and convolution sampling. This represents an upper

bound on the Parsimon’s achievable performance. All per-

formance measurements are taken on a 32-core AMD Ryzen

Threadripper 3970X.

5.2 Analysis on a Large-Scale Network

Here we evaluate Parsimon’s accuracy and performance on

a 384-rack, 6144-host topology. The topology has eight pods,

48 racks per pod, and 16 hosts per rack, with 2-to-1 oversub-

scription. For the workload, we use matrix B, theWebServer

flow size distribution, and high burstiness (𝜎 = 2). We set a

maximum link load of about 50%, which gives the 100 most

loaded links an average load of 32%, and the top 10% most

loaded links an average load of about 15%.We configure all

simulations to run for five seconds of simulated time. To es-

tablish a baseline, we first run the scenario in ns-3, then we

run the scenario in Parsimon and Parsimon/C (see Table 1).

Due to memory constraints we omit Parsimon/ns-3 here, but
we include its analysis at smaller scale in §5.3.

Fig. 7 shows the accuracy of Parsimon relative to ns-3

across fourflowsizebins.Wefindthatacrossall bins, bothvari-

ants accurately estimate tail latencies. If we consider all flow

sizes together,wefind thatParsimon andParsimon/C overes-

timate the p99 FCT slowdown by 8.8% and 7.5%, respectively.

Table 2 shows the running time and speed-up for each

estimator, which includes topology generation and convolu-

tion sampling overheads where applicable. While ns-3 took

nearly 11 hours, Parsimonwithout clustering took four min-

utes and 13 seconds, for a speed-up of 154×. If we turn clus-
tering on by using Parsimon/C, the running time is further

reduced to one minute and 19 seconds, for a speed-up of

492×. 1 In this case, only 25% of links were simulated; the rest

were pruned. Lastly, Parsimon/inf estimates Parsimon’s best
possible performance given infinite compute resources. The

longest-running single-link simulation took 11 seconds, and

with the additional 10 seconds required for network setup

and convolution sampling, the fastest projected running time

is 21 seconds.

We chose an oversubscribed topology to slightly disad-

vantage Parsimon’s method, as oversubscription can lower

Parsimon’s accuracy. §5.3 analyzes the effect of oversubscrip-
tion in more detail. We also ran the above experiment on a

topology without oversubscription, which for the same maxi-

mum load setting increased the top 10%average link load from

15% to 25%. We found Parsimon’s p99 accuracy improved

from 9% to about 7%, while Parsimon/C’s accuracy remained

1
We advise caution both in interpreting this number and in generalizing

it to scenarios at large. While our workloads are modeled after industry data,

they are still synthetic. There may be more or less opportunity to cluster and

prune link-level simulations, depending on the structure of real workloads

and the quality of the clustering algorithm.

694 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10
FCT slowdown

0.8

0.9

1.0

CD
F

Smaller than 10 KB

5 10
FCT slowdown

10 KB to 100 KB

2.5 5.0 7.5 10.0
FCT slowdown

100 KB to 1 MB

2 4 6
FCT slowdown

Larger than 1 MB
ns-3 Parsimon Parsimon/C

Figure 7. CDFs of FCT slowdown estimated by ns-3 and two Parsimon variants (note the y-axis). On a large network with 6,144 hosts,

an industry traffic matrix (matrix B), and 2-to-1 oversubscription in the core, Parsimon’s latency estimates are similar to those produced

by full-fidelity simulation. Table 2 shows the performance of each estimator.

Parameter Sample space

Oversubscription 1-to-1, 2-to-1, 4-to-1

Traffic matrix Matrix A, Matrix B, Matrix C

Flow size distribution CacheFollower, WebServer, Hadoop

Burstiness Low (𝜎 =1), High (𝜎 =2)

Max load 26% to 83% (continuous range)

Table 3. The sample space for the sensitivity analysis in §5.3.

0.0 0.1 0.2 0.3 0.4 0.5
Error of p99 FCT slowdown

0.00

0.25

0.50

0.75

1.00

CD
F

Max load range (max top 10% avg load)
26% - 41% (34%)
56% - 83% (68%)

41% - 56% (50%)
all scenarios

Figure 8. CDFs of p99 error between Parsimon and ns-3 across all
scenarios drawn from the sample space in Table 3. The distributions

are binned by maximum load. In parentheses, we give the maximum

value for the top 10% average load in each bin. Under common

conditions of low to moderate load, Parsimon’s estimates for the

p99 FCT slowdown are reliably within 10% of the ground truth.

approximately the same. However, because aggregate load in-

creased, ns-3 took 27 hours for five seconds of simulated time,

and speed-ups for Parsimon, Parsimon/C and Parsimon/inf
were 152×, 872×, and 3487×, respectively. Parsimon/C bene-

fited from the increased number of links in each ECMP group-

ing, allowing it to prune 85% of the link-level simulations.

5.3 Sensitivity Analysis at Small Scale

Next we turn our attention to how different aspects of work-

loads and topologies affect Parsimon’s accuracy. To be able
to simulate enough scenarios in ns-3 for a sensitivity analysis,

we downsample the topologies and trafficmatrices to 32 racks.

The resulting topologies have two pods, 16 racks per pod, and

eight hosts per rack, and the number of spines per plane varies

to accommodate different oversubscription factors.

Our approach is as follows. First, we construct a sample

space over the parameters defining the workload and the

topology (aside from the number of servers, which is fixed).

The sample space is shown in Table 3. Then, we sample 192

scenarios uniformly at random, and we run ns-3 and the de-

fault Parsimon variant on each of them for several seconds

of simulated time. Next, for each scenario, we take the p99

FCT slowdown estimated by both ns-3 and Parsimon, andwe
compute the error between them. If these values are 𝑛 and

𝑝 respectively, then the error is (𝑝 −𝑛)/𝑛. Negative values
indicate that Parsimon produced an underestimate.

Since we have one error value per scenario, the errors give

rise to distributions of error associated with the original sam-

ple space. Nowwhat remains is to determine how the work-

load and topology parameters affect error distributions. To

start, recall from the discussion in §3.6 that the magnitude

of error is expected to be load-dependent, with higher errors

typically manifesting at higher loads, so we begin by exam-

ining the effect of the maximum load setting on Parsimon’s
accuracy.

Maximumload. Fig. 8 shows the error distributions binned

by maximum load. Among all scenarios, Parsimon’s p99 es-
timates are within 10% of ns-3’s estimates 85% of the time At

high load, we observe larger overestimates of up to 52% in

theworst case. In themost highly-loaded group of scenarios—

with maximum link loads between 56% and 83%—Parsimon
is within 10% of ns-3 62% of the time, with an average error

of about 11%. However, this includes scenarios where 10% of

the links have an average load of up to 68%, which is much

higher than what is reported in the literature. For example,

Roy et al. report that in Meta’s data center network, 99% of

host links are less than 10% loaded, and the top 5% of core

links have loads between 23% and 46% [28]. Among scenar-

ios where the maximum link load is between 26% and 41%,

Parsimon is within 10% of ns-3 100% of the time. If we further

include scenarios with maximum link loads between 41% and

56%, that number falls to 96%. Finally, while Parsimon’s tech-
niques tend to overestimate latencies, in 3% of the scenarios,

Parsimon underestimates p99 slowdown by up to 2%.

Other parameters. We next turn to the effects of all other

workload and topology parameters. We start by only consid-

ering scenarios where the maximum link load is less than or

equal to 50%; this will tell us whether any of the parameters

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 695

Matrix A Matrix B Matrix C
Matrix

0.0

0.1

CacheFollower WebServer Hadoop
Flow size distribution

1-to-1 2-to-1 4-to-1
Oversubscription

0.0

0.1

1.0 2.0
Burstiness (log-normal)

Er
ro

r o
f p

99
 F

CT
 sl

ow
do

wn

(a)Max load ≤ 50%

Matrix A Matrix B Matrix C
Matrix

0.0

0.2

0.4

0.6

CacheFollower WebServer Hadoop
Flow size distribution

1-to-1 2-to-1 4-to-1
Oversubscription

0.0

0.2

0.4

0.6

1.0 2.0
Burstiness (log-normal)

Er
ro

r o
f p

99
 F

CT
 sl

ow
do

wn

(b)Max load > 50%

Figure 9.Distributions of p99 error between Parsimon and ns-3, faceted by different workload and topology parameters. For each distribution

we show the median, the quartiles, and a rotated kernel density estimation. We consider the low-load regime (Fig. 9a) and the high-load

regime (Fig. 9b) separately. At low load, the workload and topology parameters only have a modest effect on Parsimon’s accuracy, but at high
load, the conditions leading to the largest errors come into view: high load, high oversubscription, with very short flows. Note the different

y-axes between the two load regimes.

Error Max load Matrix Sizes Oversub 𝜎

51.9% 77.6% A WebServer 4-to-1 1

30.1% 67.3% A WebServer 4-to-1 2

29.6% 67.0% A WebServer 4-to-1 2

25.6% 65.9% A WebServer 4-to-1 1

24.6% 73.2% B WebServer 4-to-1 1

Table 4. The five scenarios with the highest error values from the

sensitivity analysis in §5.3.

have a large effect on accuracy in the low-load regime. Fig. 9a

shows the median error and error distributions as a violin

plot for low-load scenarios grouped by traffic matrix, flow

size distribution, oversubscription, and burstiness. Overall,

changes to these parameters appear only to have a modest

effect. The choice of traffic matrix has the clearest trend, but

load is a confounder here: recall from Fig. 6c that different

traffic matrices yield different link load distributions for the

same maximum load setting.

When we look at the high load regime in Fig. 9b, a clear

picture comes into view. We see much longer tails in error

distributions for matrix A, theWebServer flow size distribu-

tion, and 4-to-1 oversubscription. Together with Fig. 9a, this

suggests that none of these settings has a strong effect on its

own, but coupled together in the high load regime, they have a
pronounced effect on Parsimon’s accuracy. Matrix A induces

higher average load and hasmore cross-rack traffic,making it

more likely for its flows to encounter multiple simultaneous

bottlenecks. The WebServer flow size distribution is domi-

nated by short flows (Fig. 6b), a third of which are smaller

than 1 KB and 80% of which are smaller than 10 KB. Because

more of the traffic completes within a single round trip, there

is more ephemeral congestion and bandwidth smoothing can

have a larger impact.

Finally, oversubscription has an effect at high load: if we

removed all scenarios with 4-to-1 oversubscription, the max-

imum error would only be 20% rather than 52%, even at high

load. In addition to the double counting of delays described in

§3.6, oversubscription can also increase correlations in link
delays. To achieve 4-to-1 oversubscription in topologies as

small as these, there are only four spine switches per plane

forwarding traffic between groups of 16 racks, leaving rel-

atively few paths through the core. Fewer paths can result

in higher degrees of correlation—especially with matrix A,

whose traffic is primarily inter-rack (Fig. 6a). Finally, this

setting combined with the short flows from theWebServer

distributions gives rise to errors of up to 52%.

Table 4 lists the scenarios with the top five highest error

values. Four have matrix A, all have theWebServer distribu-

tion, and all five have 4-to-1 oversubscription. In this group,

the average maximum load is 70.2%. Since we expect the

combination of all-to-all workload, heavily oversubscribed

topology, and persistently high core utilization to occur rela-

tively infrequently, the data suggest thatParsimonmaintains

good accuracy under common conditions.

MixedWorkloads. Wealso use the small topology to study

the Parsimon prediction error for subsets of traffic in hetero-

geneous workloads in Appendix §A.
5.4 Analysis of One Configuration

We pick one representative scenario to examine in more de-

tail, to test if our approach is robust to alternate definitions

of tail latency, congestion control protocol, workload, and

topology. To pick a scenario whose accuracy is somewhat

worse than the average case, we rank-order all scenarios by

error and select the one at the 85
th
percentile. This has matrix

A, the Hadoop flow size distribution, low burstiness, 2-to-1

oversubscription, and amaximum load of 68% (with a top 10%

average load of 56%).

696 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20
FCT slowdown

0.8

0.9

1.0

CD
F

Smaller than 10 KB

0 20
FCT slowdown

10 KB to 1 MB

0 20
FCT slowdown

Larger than 1 MB
ns-3 Parsimon Parsimon/C Parsimon/ns-3

Figure 10. CDFs of FCT slowdown estimated by ns-3 and

Parsimon for the scenario whose error is at the 85th percentile of
the p99 error distribution. Note the y-axis. Even though the accuracy

here is worse than in the common case, Parsimon’s estimates

remain close across most of the tail. Also shown is Parsimon/ns-3.

Protocol Max load Error in p99 FCT slowdown

< 10 KB 10 KB - 1 MB > 1MB

DCTCP 45% 1.4% 9.2% 15.9%

TIMELY 45% 4.0% 17.9% 13.7%

DCQCN 45% 5.9% 11.6% 12.8%

DCTCP 56% 2.8% 9.2% 14.6%

TIMELY 56% 8.1% 20.0% 11.3%

DCQCN 56% 7.6% 14.6% 12.2%

DCTCP 67% 13.8% 11.3% 13.6%

TIMELY 67% 13.3% 18.2% 5.0%

DCQCN 67% 18.0% 15.2% 13.6%

Table 5. Prediction error of Parsimon/ns-3 for estimated p99 FCT

slowdown with three different congestion control protocols for

the sample configuration at different load levels and for different

request sizes.

Tail distribution. Operators may differ in their definitions

of tail latency, e.g., focusing on the 90th or 99.9th percentile,

rather than just the 99th FCT slowdown. Fig. 10 shows the tail

of the cumulative distribution of FCT slowdown for different

flow sizes for the selected configuration, for ns-3 and each of

the Parsimon variants. The prediction error is similar across

the tail of thedistribution for this scenario,with little accuracy

difference between any of the variants.

Transport protocols. We use the sample scenario to test

the generality of Parsimon to two additional congestion con-
trol protocols, DCQCN [36] and TIMELY [19]. DCQCN is

designed for RDMA traffic, while TIMELY uses network de-

lay, rather than ECN signals, to detect congestion. To focus

on prediction error for our approximation methods, we use

the pre-existing ns-3 implementation of the protocols as the

Parsimon link level simulator for this part of the evaluation.

Note that Parsimon and Parsimon/ns-3 exhibit a few percent

difference in p99 error for DCTCP for this configuration. Be-

cause the prediction error for different congestion control

protocols may depend on the amount of congestion, we also

run the experiment at varying load levels.

Table 5 shows the prediction error for Parsimon/ns-3 rela-
tive to ns-3 in the estimated p99 FCT slowdown at three load

levels for the three transport protocols, aggregated by request

size. For this configuration, Parsimon is most accurate for

small flows and low to moderate maximum link utilization,

and that is true for all three congestion control protocols.

DCTCP has somewhat lower error for small and medium size

flows at low to moderate utilization. Relative error is higher

for larger transfers and highermaximum link utilization,with

no clear pattern in the error for different protocols.

Simulated link failures. We also use the sample configu-

ration to examine the prediction accuracy for topologies with

simulated link failures in Appendix §B.
6 Conclusion
In this paper, we propose and evaluate a newmethod for com-

puting a conservative estimate of flow-level tail latency for

large scale data center networks, given an arbitrary trafficma-

trix, topology, flow size distribution, and inter-arrival process.

Our approach decomposes the problem into a large number of

individual link simulations, specially constructed to produce

accurate estimates of the probability distribution of delay

contributed by congestion at each link.We thenmechanically

combine these link-level delay distributions to produce flow-

level estimates. On a large-scale network using a commercial

workload, our approach outperforms ns-3 by a factor of 492

on a single multicore server with a loss of accuracy of less

than 9% in the tail of the latency distribution.

Acknowledgments. We are grateful to Vincent Liu, Jeff

Mogul, our shepherdArpitGupta, and the anonymous review-

ers for their feedback and useful comments. This work was

supported inpartbyNSFgrantsCNS-2006346,CNS-2006827, a

CiscoResearchCenterAward, and aGoogle ResearchAward.

References
[1] A. G. Alcoz, A. Dietmüller, and L. Vanbever. SP-PIFO:

Approximating Push-In First-Out Behaviors using

Strict-Priority Queues. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 59–76, 2020.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.

Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, pages 63–74, 2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,

A. Vahdat, and M. Yasuda. Less Is More: Trading a Little

Bandwidth for Ultra-Low Latency in the Data Center.

In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 253–266, 2012.

[4] A. Andreyev. Introducing Data Center Fabric, the

Next-Generation Facebook Data Center Network.

https://engineering.fb.com/2014/11/14/production-
engineering/introducing-data-center-fabric-the-
next-generation-facebook-data-center-network/, 2014.

[5] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz.

The Effects of Asymmetry on TCP Performance. Mobile

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 697

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

Networks and Applications, 4(3):219–241, 1999.
[6] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios.

Open, Closed, and Mixed Networks of Queues with

Different Classes of Customers. Journal of the ACM
(JACM), 22(2):248–260, 1975.

[7] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and

J. Wilkes. Borg, omega, and kubernetes. ACM Queue,
14:70–93, 2016.

[8] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,

B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.

Docauer, et al. Andromeda: Performance, Isolation, and

Velocity at Scale in Cloud Network Virtualization. In

15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 373–387, 2018.

[9] A.Demers, S.Keshav, andS. Shenker. Analysis andSimu-

lationof a FairQueueingAlgorithm. InProceedings of the
ACM SIGCOMM 1989 Conference, pages 514–528, 2020.

[10] R. M. Fujimoto. Parallel Discrete Event Simulation.

Communications of the ACM, 33(10):30–53, 1990.

[11] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh,

and T. E. Anderson. Backpressure Flow Control. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 779–805, 2022.

[12] J. R. Jackson. Networks of Waiting Lines. Operations
Research, 5(4):518–521, 1957.

[13] F. P. Kelly. Networks of Queues. Advances in Applied
Probability, 8(2):416–432, 1976.

[14] G. Kumar, N. Dukkipati, K. Jang, H. M.Wassel, X. Wu,

B.Montazeri, Y.Wang,K. Springborn,C.Alfeld,M.Ryan,

et al. Swift: Delay is Simple and Effective for Congestion

Control in the Datacenter. In Proceedings of the ACM
SIGCOMM 2020 Conference, pages 514–528, 2020.

[15] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales

of the tail: Hardware, os, and application-level sources

of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, page 1–14, 2014.

[16] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,

Z.Cao,M.Zhang, F.Kelly,M.Alizadeh, andM.Yu. HPCC:

High Precision Congestion Control. In Proceedings of
the ACM SIGCOMM 2019 Conference, page 44–58, 2019.

[17] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.

F10: A Fault-Tolerant Engineered Network. In 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 399–412, 2013.

[18] V. Misra, W.-B. Gong, and D. Towsley. Fluid-Based

Analysis of a Network of AQMRouters Supporting TCP

Flows with an Application to RED. In Proceedings of the
ACM SIGCOMM 2000 Conference, pages 151–160, 2000.

[19] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and

D. Zats. TIMELY: RTT-Based Congestion Control for

the Datacenter. In Proceedings of the ACM SIGCOMM
2015 Conference, page 537–550, 2015.

[20] J. C. Mogul and J. Wilkes. Nines are Not Enough: Mean-

ingfulMetrics forClouds. In Proceedings of theWorkshop
on Hot Topics in Operating Systems, pages 136–141, 2019.

[21] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.

Homa: A Receiver-Driven Low-Latency Transport

Protocol Using Network Priorities. In Proceedings of the
ACM SIGCOMM 2018 Conference, pages 221–235, 2018.

[22] D. Nicol and R. Fujimoto. Parallel Simulation Today.

Annals of Operations Research, 53(1):249–285, 1994.
[23] ns-3 Network Simulator. https://www.nsnam.org, 2020.
[24] OpenSim. OMNeT++. https://www.omnetpp.org, 2018.
[25] OPNET Network Simulator, 2015.

[26] V. Paxson and S. Floyd. WhyWe Don’t Know How to

Simulate the Internet. In Proceedings of the 1997Winter
Simulation Conference, pages 1037–1044, 1997.

[27] K. Ramakrishnan and S. Floyd. A Proposal to Add

Explicit Congestion Notification (ECN) to IP. Technical

report, RFC 2481, January, 1999.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the Social Network’s (Datacenter) Network. In

Proceedings of the ACM SIGCOMM 2015 Conference,
pages 123–137, 2015.

[29] A. Singh, J. Ong,A.Agarwal, G.Anderson,A.Armistead,

R. Bannon, S. Boving, G. Desai, B. Felderman, P. Ger-

mano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,

J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat. Jupiter

Rising: A Decade of Clos Topologies and Centralized

Control in Google’s Datacenter Network. In Proceedings
of the ACM SIGCOMM 2015 Conference, page 183–197,
2015.

[30] B. K. Szymanski, A. Saifee, A. Sastry, Y. Liu, and

K. Madnani. Genesis: A System for Large-scale Parallel

NetworkSimulation. InProceedings of the 16thWorkshop
on Parallel and Distributed Simulation (PADS), 2002.

[31] R. Winter, R. Hernandez, G. Chawla, A. Faustini, C. Sol-

der, T. Scheibe, D. Law, S. Ayandeh, B. Booth, B. Kohl,

C. Lavacchia, S. Krishnamurthy, R. Karthikeyan, E. Mul-

tanen, andM.Wadekar. Ethernet Jumbo Frames. http:
//www.ethernetalliance.org/wp-content/uploads/
2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf, 2009.

[32] Q. Yang, X. Peng, L. Chen, L. Liu, J. Zhang, H. Xu, B. Li,

and G. Zhang. DeepQueueNet: Towards Scalable and

Generalized Network Performance Estimation with

Packet-Level Visibility. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 441–457, 2022.

[33] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-

ResolutionMeasurement ofDataCenterMicrobursts. In

Proceedings of the 2017 Internet Measurement Conference,
pages 78–85, 11 2017.

[34] Q. Zhang, K. K. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu.

MimicNet: Fast Performance Estimates for Data Center

Networks with Machine Learning. In Proceedings of the
ACM SIGCOMM 2021 Conference, pages 287–304, 2021.

698 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.nsnam.org
https://www.omnetpp.org
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf

Name Matrix Sizes Max load 𝜎

W0 A CacheFollower ~20% 2

W1 B WebServer ~20% 2

W2 C Hadoop ~20% 2

Table 6. The three workloads mixed together in §A.

[35] S. Zhao, R. Wang, J. Zhou, J. Ong, J. C. Mogul, and

A. Vahdat. Minimal Rewiring: Efficient Live Expansion

for Clos Data Center Networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 221–234, 2019.

[36] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

M. Zhang. Congestion Control for Large-Scale RDMA

Deployments. In Proceedings of the ACM SIGCOMM
2015 Conference, page 523–536, 2015.

A MixedWorkloads
Parsimon’s methods are designed to estimate performance

distributions rather thanper-flowmetrics.However, it is often

useful to aggregate FCT performance estimates in different

ways. For example, an operator may wish to estimate the

performance of individual virtual networks or individual ser-

vices. In this section,weconduct a simple experiment to assess

Parsimon’s ability to estimate performance for separate ag-

gregates.

We start bymixing three differentworkloads—eachwith its

own traffic matrix and flow size distribution—into one work-

load. Table 6 summarizes their differences. Eachworkload has

a maximum load setting of 20% and a high burstiness setting

(𝜎 =2), and their combination results in a maximum link load

of about 50%. We run the combined workload on the small-

scale topology with 2-to-1 oversubscription from §5.3, and
we observe the accuracy for each workload faceted by flow

size. Fig. 11 shows the cumulative distribution function (CDF)

of FCT slowdown for ns-3 and Parsimon. We observe that

across all workloads and flow size bins, Parsimonmaintains

good accuracy.

B Link Failures
One operational use case for Parsimon is to estimate counter-

factual network performance in the presence of potential

link failures or planned outages. In this section, we use the

sample scenario from §5.4 (matrix A, the Hadoop flow size

distribution, low burstiness, 2-to-1 oversubscription, and a

maximum link load of 68%) to evaluate Parsimon for this

use case. For this configuration, the error in estimated p99

FCT slowdown between ns-3 and Parsimonwas around 10%.
Since link failures increase the load on the remaining links,

we should expect some decreased accuracy for Parsimon in
this case. On the other hand, simulating all possible network

failures in ns-3 would be prohibitively expensive.

0.8

0.9

1.0

CD
F

W0 | Smaller than 10 KB W0 | 10 KB to 1 MB W0 | Larger than 1 MB

0.8

0.9

1.0

CD
F

W1 | Smaller than 10 KB W1 | 10 KB to 1 MB W1 | Larger than 1 MB

0 10 20
FCT slowdown

0.8

0.9

1.0

CD
F

W2 | Smaller than 10 KB

0 10 20
FCT slowdown

W2 | 10 KB to 1 MB

0 10 20
FCT slowdown

W2 | Larger than 1 MB

ns-3 Parsimon

Figure 11. CDFs of FCT slowdown for ns-3 and Parsimon,
bucketed by workload and flow size. Note the y-axes. When mixing

workloads in a single simulation, Parsimon can accurately estimate

performance distributions for individual workloads in addition to

full-network aggregates.

0.10

0.12

0.14

0.16

Er
ro

r o
f p

99
 F

CT
 sl

ow
do

wn

(a) p99 errors

0 10 20 30
FCT slowdown

0.80

0.85

0.90

0.95

1.00

CD
F

ns-3
Parsimon

(b) CDF with the max p99 error (0.144)

Figure 12. Errors between ns-3 and Parsimon in estimated FCT

slowdowns when there is a link failure. Fig. 12a shows the error

distribution for p99 estimates from ten trials—eachwith one random

link failure—with the dashed line showing the error with no link

failure. Fig. 12b shows the CDF of FCT slowdowns for the trial with

the highest p99 error. For the small oversubscribed topology used in

this experiment, a link failure modestly increases estimation error.

In selecting links to fail, we only consider links in ECMP

groupings, such that the failure of one link causes traffic to be

routed to the other links in the group. In Meta’s data center

fabric [4], this corresponds to links between fabric switches

and spine switches and links betweenToR switches and fabric

switches. In the small 32-rack topology used here (§5.3 for
details), there are 96 such links. We run ten trials, each time

picking a randomoneof the links to fail, keeping theworkload

constant. We note that this setting represents a particularly

bad case for Parsimon: in addition to the high link loads, the
scenario uses an all-to-all communication pattern on a small

and oversubscribed topology, which means each link failure

in the core can have an outsized effect on other core links.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 699

0

1

2

3

4

5

6

Figure 13. The parking lot topology used in §C. In this topology,
zero sends to six, one sends to two, three sends to four, and five

sends to six. We refer to the traffic from zero to six asmain traffic
and to all other traffic as cross traffic. The bolded red links contain
both main traffic and cross traffic, and we call them congested links.

1.0 1.5 2.0 2.5
FCT slowdown

0.0

0.5

1.0

CD
F

With cross traffic

1.0 1.1 1.2 1.3
FCT slowdown

Without cross traffic
ns-3 Parsimon

Figure14.CDFsof FCTslowdownestimatedbyns-3 andParsimon
for themain traffic, bothwith andwithout cross traffic.When there is

cross traffic, errors arising from first-hop delays are second-order, as

most delays are cause by queueing on the congested links. However,

when there is no cross traffic, those errors become dominant. The

graph on the right uses the same workload as the one on the left,

except the cross traffic is removed. Note the different x-axes.

Fig. 12a shows the distribution of errors in p99 estimates.

With a single link failure, the errors range from 11% to 14%,

with amedian error of 12%. Fig. 12b shows the estimatedCDFs

of FCT slowdown for the trial with the highest error.

C Studying Error Sources
Recall from §3.6 that Parsimon’s approximations induce er-

rors in its end-to-end estimates. In this appendix, we use

microbenchmarks to study the effects of some pathological

cases on Parsimon’s accuracy. For an initial discussion on

these topics, please refer to §3.6.
Throughout, we use the parking lot topology shown in

Fig. 13 with 40 Gbps links. The flow of traffic through the

topology is shown with arrows and described in the caption.

We refer to the traffic fromnode zero tonode six asmain traffic
and to all other traffic as cross traffic. The bolded red links

contain both main traffic and cross traffic, and we call them

congested links. In all experiments, we set the load of the main

traffic to 25%.When there is cross traffic, its load is also 25%,

yielding a total load of 50% on all three congested links. Lastly,

to isolate the effects on the main path from zero to six, we

measure FCT slowdowndistributions only for themain traffic.

C.1 First-Hop Delays

First, consider the case where all traffic in Fig. 13 originates

from node zero and is destined to node six, and recall that

all links have the same capacity. In a real network, all queue-

ing in this scenario would occur at the first hop. Subsequent

hops would see traffic completely smoothed, and they would

therefore contributing zero queueing delay.

If we re-examine how link-level topologies are constructed

in Fig. 4,we see that this smoothing effect is captured, since all

trafficpasses throughedge linkswith theoriginal edge-linkca-

pacities. However, for the link-level topologies in cases B and

C of Fig. 4, it is possible for first-hop edge links to contribute

delays thatwill be (erroniously) attributed to the target link. In

most cases,weexpect themagnitudeof this error tobe small.A

target linkwill almost always havemultiple sources, and only

the traffic passing through the target link is simulated. Con-

sequently, the first-hop delays in link-level simulation are ex-

pected to be small compared to delays accrued at target links.

The scenario which we first described—in which all traf-

fic on a path originates from a single source—represents the

worst case. Here, all target links (aside from the first hop) con-

tribute no queueing delay, thus magnifying the error induced

by repeatedly counting the first-hop delays for each target

link. Fig. 14 shows this effect. In this experiment, the main

traffic consists of one kilobyte flows, and the cross traffic con-

sists of 10 kilobyte flows. All traffic follows a Poisson arrival

process. With cross traffic, we see from the graph on the left

that Parsimon accurately estimates the FCT slowdown dis-

tribution of the main traffic. However, when we remove the

cross traffic, as done to produce the graph on the right, we see

substantial error in Parsimon’s estimates due to the first-hop

delayspreviouslydescribed.Wenote that this error exists even
when there is cross traffic, but the error contributes so little to
total delays—which are dominated by queueing at congested

links—that Parsimon still maintains good accuracy.

C.2 Correlated and Simultaneous Delays

Next we examine the effect of correlated and simultaneous

delays on Parsimon’s accuracy.We begin by artificially corre-

latingdelays and examining the effect on estimated slowdown

distributions.Note that if thedelays alongapatharepositively

correlated—for example, if the probability of encountering

delay at hop 𝑖+1 is higher given there is delay at hop 𝑖—then
we also expect to see more simultaneous delays along the

path. We create these correlated delays by modulating the

cross traffic. For regular unmodified cross traffic, we use the

same setup as in the previous subsection (§C.1). To artificially
correlate delays,we replicate the exact sequence of flows from

source one on sources three and five in Fig. 13, so that all three

sources of cross traffic send the same flows at the same time.

This produces an extreme case of correlation.

Because short-flow and long-flow estimates have different

sources of error, we separate the two cases when generating

the main traffic. For short flows we use the same one kilobyte

flows as before, and for long flows we generate flows that

are 10 times the maximum bandwidth-delay product, or 400

700 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1.0 1.5 2.0 2.5
FCT slowdown

0.0

0.5

1.0

CD
F

Regular cross traffic

1.0 1.5 2.0 2.5 3.0
FCT slowdown

Identical cross traffic
ns-3 Parsimon

(a) Short flows (1 KB), Poisson cross traffic

5 10
FCT slowdown

0.0

0.5

1.0

CD
F

Regular cross traffic

5 10 15
FCT slowdown

Identical cross traffic
ns-3 Parsimon

(b) Long flows (400 KB), Poisson cross traffic

Figure 15. CDFs of FCT slowdown estimated by ns-3 and

Parsimon for the main traffic with regular or identical cross traffic.

The main traffic consists either of short flows (Fig. 15a) or long

flows (Fig. 15b). When delays are artifically correlated by replicating

the same cross traffic across hosts, accuracy decreases for both

short and long flows, with long flows seeing larger errors. In fact,

long-flow estimates have significant error even when delays are not

explicitly correlated; this is due to the simultaneous delays induced

by the smooth Poisson cross traffic.

5 10 15 20
FCT slowdown

0.0

0.5

1.0

CD
F

Regular cross traffic

0 5 10 15 20
FCT slowdown

Identical cross traffic
ns-3 Parsimon

Figure 16. CDFs of FCT slowdown for the same scenario as in

Fig. 15b, but with bursty cross traffic (log-normal inter-arrival times,

𝜎 =2). When the cross traffic is bursty, long flows experience fewer

simultaneous delays with regular cross traffic. This results in less

error in Parsimon’s estimates.

kilobytes. Fig. 15 shows the effect of correlating delays on

Parsimon’s accuracy for short and long flows.

Short-flowmaintraffic. In the caseof shortflows (Fig. 15a),

a chief effect of increased correlation is to alter the probability

that a flow will encounter queueing. For example, suppose

a short flow traverses only two links at 50% utilization. If

the delays of the two links are independent, we can estimate

the probability that the flow encounters no delay (i.e., no

queueing) as 50% × 50% = 25%. However, if the delays are

perfectly positively correlated, then the probability that the

flowencounters no delay increases to 50%. Parsimon does not
capture this effect because it treats all links independently;

in this experiment, this manifests as slight overestimates in

FCT slowdown distributions.

Long-flowmain traffic. While the total delay for a short

flow can be thought of as the sum of individual link delays,

the same reasoning does not straightforwardly extend to long

flows. Unlike a short flow, a long flow occupies multiple hops

at the same time, and only the bottleneck at each instant con-

tributes to end-to-end delay. Summing link delays is therefore

onlyappropriate if differenthops contribute significantdelays

at largely different times. However, Parsimon always aggre-
gates individual link contributions by adding them, regardless

of whether a link was the bottleneck when the delay was in-

curred.Whenwe turnour attention to Fig. 15b,we see that not

only is the effect of identical cross trafficmore severe, but also

there is significant error evenwith regular cross traffic. This is

because the cross traffic is smooth (recall that it uses uniform

flowsizes andaPoissonarrival process). Smooth traffic results

in small but frequent delays at congested links, increasing the

chance that long flows will experience simultaneous delays.

In Fig. 16, we duplicate the scenario in Fig. 15b, except we

make the cross traffic bursty by using a log-normal inter-

arrival time distribution with shape parameter 𝜎 =2. Because

the cross traffic is bursty, there is less simultaneous delay

in the regular case, and the induced error is less dominant.

Consequently, Parsimon’s estimates are closer to the ground

truth in the graph on the left. Identical cross traffic still in-

duces large and frequent simultaneous delays, so the errors

remain in the graph on the right.

D Clustering Details
Here we briefly describe the distance function and the thresh-

olding critera we use in the evaluation (§5) for clustering link-
level simulations. First, recall from §4.2 that the link features
we extract are 1) the average load, 2) the flow size distribution,

3) the inter-arrival time distribution. For any two links, we

compute distances between their features, and we cluster the

links together if the distances are under some threshold.

Distance functions. To compute a distance between link

loads, we compute the error. If𝑎 and𝑏 are two link loads, error

𝑒 is computed as

𝑒 =
|𝑎−𝑏 |
𝑎

.

To compare distributions, there are many options. We opt for

a function that is 1) easily interpretable, 2) scale-independent,

and 3) adequately captures differences in the tail. To com-

pute a distance between two distributions, we extract 1,000

percentiles from each of them, and we compute a weighted

mean absolute percentage error (WMAPE) between them.

Suppose𝐴 and 𝐵 are the sequences of extracted percentiles.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 701

Then, WMAPE is computed as

WMAPE =

∑𝑛
𝑖=1 |𝐴𝑖−𝐵𝑖 |∑𝑛

𝑖=1 |𝐴𝑖 |
.

For our purpose,𝐴𝑖 and 𝐵𝑖 are non-negative for all 𝑖 . We note

it is a bit counterintuitive for our distance functions not to

commute. However, we have found that it is easy to set thresh-

olds for these metrics, and they produce adequate clustering

for the workloads under study.

Distance thresholds. Recall that we only want to cluster

two links together if we expect their simulation outputs to be

similar. Consequently, when setting a threshold for link loads

we must consider the network and the workload being as-

sessed. At high load, small differences in link loads can yield

large differences in the tails of FCT distributions; in these

cases, we typically set tighter thresholds to preserve accuracy

(as usual, this is subject to a speed-accuracy trade-off). For

highly-loaded networks, we commonly require 𝑒 <0.001 or

𝑒 <0.002 for links to be clustered together. Ideally, this deci-

sion would be made on a link-by-link basis, so that tighter

thresholds would be set only for high-load links—doing so

may allow for more liberal clustering of the low-load links

contributing little delay, resulting in more pruned simula-

tions. However, the current prototype sets a single threshold

per simulation. To set a threshold between distributions, we

typically requireWMAPE<0.1.

702 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Abstract
	1 Introduction
	2 Parsimon Overview
	3 Key Methods: Decompose and Aggregate
	3.1 Generating Link-Level Workloads
	3.2 Generating Link-Level Topologies
	3.3 Post-Processing Link-Level Results
	3.4 Aggregating Link-Level Estimates
	3.5 Primary Source of Speedup
	3.6 Primary Sources of Error

	4 Complementary Methods
	4.1 Fast Link-Level Simulation
	4.2 Clustering and Pruning Simulations

	5 Evaluation
	5.1 General Setup
	5.2 Analysis on a Large-Scale Network
	5.3 Sensitivity Analysis at Small Scale
	5.4 Analysis of One Configuration

	6 Conclusion
	References
	A Mixed Workloads
	B Link Failures
	C Studying Error Sources
	C.1 First-Hop Delays
	C.2 Correlated and Simultaneous Delays

	D Clustering Details

