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Abstract
The breakthroughs in deep learning enable unstructured data
to be represented as high-dimensional feature vectors for serv-
ing a wide range of applications. Processing vector queries
(i.e., finding the nearest neighbor vectors for an input vector)
for large unstructured datasets (with billions of items) is chal-
lenging, especially for applications with strict service level
objectives (SLOs). Existing solutions trade query accuracy for
latency, but without any guarantees, causing SLO violations.

This paper presents Auncel, a vector query engine for large
unstructured datasets that provides bounded query errors and
bounded query latencies. The core idea of Auncel is to exploit
local geometric properties of individual query vectors to build
a precise error-latency profile (ELP) for each query. This
profile enables Auncel to sample the right amount of data
to process a given query while satisfying its error or latency
requirements. Auncel is a distributed solution that can scale
out with multiple workers. We evaluate Auncel with a variety
of benchmarking datasets. The experimental results show that
Auncel outperforms state-of-the-art approximate solutions by
up to 10× on query latency with the same error bound (≤
10%). In particular, Auncel only takes 25 ms to process a
vector query on the DEEP1B dataset that contains one billion
items with four c5.metal EC2 instances.

1 Introduction
Vector query engines for unstructured datasets (e.g., images,
videos and texts) are a key building block for modern applica-
tions including recommendation [1–4], recognition [5–8] and
biological information retrieval [9–11]. This is enabled by the
breakthroughs in deep learning [12] that allow unstructured
data to be represented as high-dimensional feature vectors. A
vector query is to find the top-k nearest neighbor vectors in a
dataset for an input vector.

With the explosive growth of unstructured data [13, 14],
a central challenge for vector query processing is to satisfy
strict service level objectives (SLOs) for applications on large
unstructured datasets that contain millions and even billions
of items. For instance, a face recognition task is to match a
human face from an input image against a database of faces.
With deep convolutional neural networks [6], each face im-
age is converted into an embedding vector. Consequently, the

recognition task becomes a top-k nearest neighbor (KNN)
search problem, i.e., finding the nearest neighbor vector of
the query vector among the database vectors. The person cor-
responding to the nearest neighbor vector is the recognition
result. Performing exact KNN search (e.g., through pairwise
comparison between query vector and each stored vector)
is costly in terms of computation resources, and more im-
portantly, is hard to achieve low query latency. As a result,
approximate top-k nearest neighbor (ANN) search [15–18] is
widely used by vector query engines to tradeoff query accu-
racy for latency. The basic idea of ANN search is to sample a
subset of the dataset for finding the top-k, and the sampling
size affects the query accuracy and latency.

A key requirement for approximate query processing
is to provide performance guarantees in order to meet
SLOs [19–21]. Performance guarantees are defined in terms
of error bounds (e.g., ≤10% query error) or latency bounds
(e.g., ≤25 ms query latency). Existing systems [22–29] ex-
ploit various ANN algorithms [15–18] and system optimiza-
tions to optimize query accuracy and latency. However, these
systems do not provide any performance guarantees.

Faiss [22] and AnalyticDB-V [24] are widely-used open-
source and commercial vector query engines, respectively.
Unfortunately, they do not provide any performance (error or
latency) bounds. They build a profile to map query errors to
sampling sizes for a given dataset. It is possible to leverage the
profile to pick an appropriate sampling size to meet an error
bound. But the problem is that the profile is query-agnostic:
it ignores the characteristics of individual query vectors, and
uses a fixed sampling size for all query vectors under the
same error bound. Consequently, the sampling size is too
pessimistic—the maximum sampling size among all query
vectors has to be used to meet the error bound. This leads to
excessive redundant computation.

Learned Adaptive Early Termination (LAET) [30] is a re-
cent work that leverages machine learning to optimize vector
query processing. It trains a gradient boosting decision tree
model to predict when to stop searching for a given query
in order to reduce query latency. It focuses on average query
accuracy, and does not provide any error or latency bounds.
LAET includes a heuristic to adapt the decision tree model by
multiplying a hyperparameter to the prediction result to meet
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a given error bound. But the model treats the entire structured
ANN index as a blackbox, which performs poorly on query
latency for bounded errors.

More importantly, existing systems focus on a single-node
setup and use a single worker to process each query. Dis-
tributed processing is critical for vector queries over large
unstructured datasets with billions of items. Conceivably, one
can replicate a dataset to multiple workers, and process multi-
ple queries in parallel—one query by each worker. This naive
solution has high memory footprint for billion-scale datasets
(e.g., 360 GB for DEEP1B [31] dataset). Moreover, it cannot
reduce query latency with more workers, making it hard to
achieve latency bounds for billion-scale datasets.

We present Auncel, a vector query engine for large un-
structured datasets with performance guarantees. Different
from existing systems, Auncel allows users to specify an er-
ror bound or latency bound for an input vector. The core of
Auncel is a query-aware and error-aware error-latency pro-
file (ELP) that enables Auncel to minimize the query latency
for an error bound and maximize the query accuracy for a
latency bound. Auncel is a distributed solution that can re-
duce the query latency with more workers. To the best of our
knowledge, Auncel is the first distributed vector engine that
provides bounded errors and bounded latencies.

There are two primary challenges in realizing Auncel. The
first challenge is to decide the appropriate sampling size for
an individual query vector under a particular error or latency
bound. Auncel uses a whitebox approach that exploits the
geometric properties in the high-dimensional space to explic-
itly model the relationship between sampling sizes and query
errors. This enables Auncel to build more accurate ELPs
than existing query-agnostic or blackbox approaches. Auncel
immediately terminates the search process when the error
bound can be guaranteed based on the ELP to minimize query
latency. In terms of the latency bound, Auncel exploits the na-
ture of vector query processing and uses a runtime approach
to maximize query accuracy.

The second challenge is to scale Auncel out to multiple
workers in order to reduce query latency. A natural approach
is to shard a dataset among workers and aggregate workers’
results for query processing. The nuance is to correctly set
the local error bound for each worker. Naively setting the
local error bound to be the target error bound would magnify
the global error after aggregation. Auncel applies probability
theory to calibrate the local error bound for each worker in
order to bound the global error. We theoretically prove that
Auncel is able to bound the global error with high probability.

We implement a prototype of Auncel, and extensively eval-
uate it with a variety of benchmarking datasets. The results
show that Auncel outperforms Faiss [22] by 1.3–10× and
LAET [30] by 1.4–3.6× on the single-node setup. For the
distributed setup, Auncel is able to process a vector query
under 25 ms for the DEEP1B dataset which contains one bil-
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Figure 1: IVF workflow.

lion vectors of 96 dimensions with 128 workers (using four
c5.metal EC2 instances).

In summary, we make the following contributions.
• We present Auncel, to the best of our knowledge, the first

distributed vector query engine that provides bounded query
errors and bounded query latencies.

• We propose a whitebox approach that leverages high-
dimensional geometry to build accurate ELPs, and apply
probability theory to calibrate each worker to scale out.

• We implement an Auncel prototype. The evaluation shows
that Auncel outperforms Faiss by up to 10× and LAET by
up to 3.6×, and processes a vector query within 25 ms for
billion-scale datasets with 128 workers.

2 Background and Motivation
In this section, we begin by introducing the background of
vector queries on unstructured datasets. We then describe cur-
rent solutions and their limitations to support vector queries
on large unstructured datasets, which motivates the design of
Auncel. Finally, we describe the challenge to scale out vector
query processing.

2.1 Vector Queries on Unstructured Datasets

The common practice for managing and querying unstruc-
tured datasets is to use deep neural networks (DNNs) to pro-
cess each item and represent each item as a high-dimensional
feature vector [32–34]. A vector query on an unstructured
dataset is to find the top-k vectors in the dataset that are most
similar to the query vector. The most widely-used similarity
metrics between two vectors are Euclidean distance and An-
gular distance. KNN search returns the top-k most similar
vectors (i.e., nearest neighbors), and ANN search returns the
approximate top-k nearest neighbors. KNN becomes imprac-
tical for large datasets with millions or billions of items due
to long query latency. ANN trades off accuracy for latency,
and is the de facto solution for vector query processing on
large unstructured datasets. Another reason for the wide adop-
tion of ANN is that it is unnecessary to output the exact top-k
items for many vector query processing tasks, as DNN models
themselves are not perfect when generating these vectors.

The basic idea of ANN search is to use an indexing struc-
ture to sample a subset of the dataset to find the top-k neigh-
bors. Inverted file index (IVF) [15, 25, 35] is a state-of-the-art
ANN algorithm. While IVF has many variants, it has the fol-
lowing general workflow. It trains a list of cluster centroids by
k-means clustering [36] offline. These cluster centroids form
the index of the dataset; each vector is assigned to the closest
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Figure 2: Redundant computation in Faiss.

cluster. Given a query vector, IVF first computes the distance
between each centroid and the query vector. Then it chooses
the top-n nearest centroids, and processes the corresponding
clusters of these centroids one by one. It maintains a sorted ar-
ray of size k, and updates the array after performing pairwise
distance calculation in each cluster as Figure 1. The k vectors
remained in the array at the end are returned as the query
result. The vectors in the array are called intermediate result
during the processing. In this figure, each value in the array
represents the vector’s index in the ground truth result of ex-
act search. The vectors in the top-n clusters are the sampling
vectors. n determines the sampling size, and thus controls the
tradeoff between accuracy and latency.

2.2 Bounding Performance for Vector Queries

Providing bounded performance for query processing is a key
requirement for meeting SLOs of applications [19–21]. There
are two typical types of performance bounds: error bounds
and latency bounds. The query processing engine is expected
to minimize query latency when given an error bound, and
maximize query accuracy when given a latency bound.

Limitations of existing solutions. Existing systems [22–29]
do not provide bounded performance, and leave the choice of
the sampling size to users. While it is possible to adapt the
mechanisms in existing systems to provide bounded perfor-
mance, simply doing so yields undesirable results. Faiss [22]
and AnalyticDB-V [24] build a profile by sampling some
queries to map query errors to different n values (exponential
power of two in practice to save the map building time) after
building an IVF index for a dataset. To guarantee bounded
errors, they use the n whose worst-case error is no bigger than
the bound. This pessimistic choice of n has poor performance,
because it is query-agnostic. It ignores the characteristics of
individual queries and uses a fixed n for all queries under a
given error bound. Some queries may use a smaller n (and
thus achieve better latency) without violating the error bound.

To illustrate the problem, we randomly select six query
vectors in DEEP10M [31] and assign them the same error
bound (10%). In Figure 2, the optimal bars are the minimal
values of n to reach the error bound for each query vector,
and they are calculated through grid search of parameter n for
the six queries respectively. Since Faiss uses the same value
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Figure 3: Redundant computation in LAET.

of n for all queries, the value is dominated by query-2; other
queries do not need such a large n to meet the error bound.
A larger n means searching more clusters, i.e., longer query
latency. The naive solution of using a query-agnostic fixed
value for n has a 10× gap from the optimal for some queries
in this example.

To alleviate this problem, LAET [30] leverages machine
learning to adaptively decide n among different query vectors.
However, LAET is designed to reduce latency under average
query error and is incapable to guarantee bounded error. It
trains a decision tree model with LightBGM [37] and treats
IVF index as a blackbox. The model takes the query vector,
the intermediate result and some features of the clusters as
input and outputs n for a given query. Due to the overhead of
running a machine learning model for each query, LAET can-
not use complex models and it also simplifies the model input.
For instance, it only considers a small portion of intermedi-
ate result and cluster centroids. Therefore, the model cannot
accurately predict n with blackbox fitting. To guarantee an
error bound, LAET includes a heuristic to adapt the model
by multiplying a hyperparameter to the prediction result—a
tighter bound requires a larger hyperparameter. However, ap-
plying such a hyperparameter to all queries given the same
error bound induces severely redundant computation with the
inaccurate model. This is because this inaccurate blackbox
model needs a very large hyperparameter to guarantee the er-
ror bound for all queries, but most queries only require a small
one. Consequently, the values of n generated by LAET are
also far from the optimal. Besides, tuning the hyperparameter
for different error bounds is error-agnostic.

We continue with the previous DEEP10M example to show
the problem of LAET. As shown in Figure 3, the bars of
LAET-plain are lower than those of the optimal, indicat-
ing that the plain LAET solution with blackbox fitting is
inaccurate to predict top-n and cannot provide bounded er-
rors. LAET-hyper, which is LAET with the aforementioned
heuristic, sets the hyperparameter large enough to ensure the
bounded error for all the six queries. The hyperparameter is
dominated by query-6; other queries can use a smaller hyper-
parameter, i.e., just enough to match the optimal. Therefore,
LAET has the similar problem as Faiss and AnalyticDB-V.
The inaccurate blackbox model introduces a 5× gap from the
optimal for some queries in this example.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    997



Sub
Data 1

KNN ANN
33.3%

33.3%

33.3%

67%

Sub
Data 2

Sub
Data 3

1 4 7

2 5 8

3 6 9

1 2 3

4 7 10

5 8 11

3 6 12

3 4 5

Figure 4: Problem when scaling error bounds.

Opportunity: Geometric structures in ANN indexes. The
key to address the problem is building an accurate, light-
weight ELP. Our core idea is to exploit the geometric struc-
ture and computation pattern of ANN indexes to establish the
relationship between sampling sizes and query errors with
high-dimensional geometry. The geometric intuition is that
a query vector needs a large value of n if the vector is lo-
cated at the boundary of clusters. Similarly, searching a small
number of clusters, i.e., a small value of n, is sufficient, if the
query vector falls close to a centroid. Thus, we can formu-
late the entire search procedure with geometric formulas, and
use whitebox approach to explicitly model the relationship
between sampling sizes and query errors.

2.3 Applying to Distributed Settings

Existing systems focus on a single-node setup and use a sin-
gle worker to process each query. Replicating the dataset
to each worker and processing multiple queries in parallel
only increases throughput. It does not help with per-query
latency, and has high memory footprint for each worker, both
of which are undesirable for billion-scale datasets. A com-
mon approach is sharding, i.e., partitioning the dataset among
multiple workers. Each worker finds the local top-k in its own
shard (i.e., a map operation), and then a leader aggregates the
local results to the global top-k (i.e., a reduce operation). This
works well for exact search (KNN), as the aggregated result is
identical to the ground truth. However, for approximate search
(ANN), the error of the aggregated result is not bounded, even
if the error of the local top-k on each worker is bounded.

To see why this is the case, consider the example in Figure 4.
The example includes three workers, the value of k is 3, and
the error bound is 35%. We show the local top-k at each
worker and the aggregated global top-k. Each value represents
the corresponding top-k vector’s index in the global ground
truth result of exact search. The results of KNN is on the left
and that of ANN is on the right. In KNN, each worker returns
the exact local top-k, and the aggregated top-k vectors are the
true top-k (i.e., the ground truth). In ANN, the error of the
local top-k at each worker is 33.3%, which satisfies the error
bound. However, after aggregating the local top-k, the error
of the global top-k is 66.7%; only one vector (with index 3)
is in the true global top-k vectors.

To address the problem, we need to calibrate the local error
bounds when finding the local top-k at each worker; we cannot
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Figure 5: Auncel architecture.

directly use the global error bound. We apply probability
theory to calibrate the local error bounds to ensure that the
global error is bounded with high probability.

3 Auncel Overview
We present Auncel, a vector query processing engine for large
unstructured datasets with performance guarantees. Auncel
exploits the geometric properties of ANN index structures to
build accurate, lightweight ELPs. Such ELPs enable Auncel
to sample just enough data to answer vector queries within
their error or latency bounds. To scale out vector query pro-
cessing for large datasets with billions of items, Auncel adopts
map-reduce style dataflow operations, and applies probability
theory to calibrate the local error bounds at each worker. Fig-
ure 5 shows the overall architecture of Auncel. We provide a
brief overview of Auncel in this section.

User interface. Auncel allows users to tradeoff between ac-
curacy and latency with user-defined performance bounds ¸.
Specially, a user can specify an error bound or a latency bound
for a query vector and a value of k (i.e., how many nearest
neighbors to return) as follows.
• Error bound ε. The user specifies an error bound ε, and

Auncel returns a result within ε error as soon as possible.
• Time bound t. The user gives a time bound t, and Auncel

returns the most accurate result within t time.

Offline. Similar to all query processing engines for unstruc-
tured datasets, Auncel first uses IVF to build an ANN index
for a given dataset offline ¶. IVF divides the vectors in the
database into a few clusters with k-means clustering. It main-
tains the centroids of each cluster; each vector in the dataset is
assigned to the closest cluster. In addition to the ANN index,
Auncel samples synthetic or example queries to build an ELP
for the dataset ·. ELP building techniques include fitting
geometric formulas and substituting some complex operators
with pre-calculated key-value pairs to reduce overhead.

Online. At runtime, vector queries are issued to Auncel for
processing. Each query includes a vector, a value of k, and
an error/time bound. To process an incoming query, Auncel
first evaluates the distance between the query vector and each
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Symbol Description

q Query vector
t Latency bound
ε Error bound
l Number of clusters
Ci The ith closest cluster to q (a hyper polyhedron)
εi Error after processing {C1...Ci}
S Set of database vectors
Si Intermediate result after processing {C1...Ci}
Sgt Ground truth result of exact search (Sgt = Sl)
j∗ |Si∩Sgt | after processing {C1...Ci}
ϕi( j) Scaling factor of the jth element in Si
λi( j) Distance between q and the jth element in Si
B(r) Sphere (Ball) with center q and radius r
Pj(m) B(λi( j))∩Cm
N j(m) Number of the vectors within

⋃m
η=1 Pj(η)

V (G) Volume of geometric body G

Table 1: Key notations in problem formulation.

centroid, and then sorts the clusters by distance in ascending
order ¹. According to the sorted clusters, Auncel performs
pairwise distance calculation between the query vector and
each stored vector cluster by cluster, and updates the sorted
array (i.e., the intermediate result) º. After processing each
cluster, Auncel uses the intermediate result and the centroids
to predict the current error based on the ELP ». If the error
or time bound can be satisfied, Auncel terminates the search
process in º, and returns the vectors in the array as the result.

4 Auncel Design
In this section, we present the design of Auncel. We first
describe the problem formulation (§4.1) and the key ideas
(§4.2). Then we show how to build error profiles (§4.3) and
latency profiles (§4.4). Finally, we describe how to apply our
solution to distributed settings (§4.5). Some key notations in
the design are listed in Table 1.

4.1 Problem Formulation

We first mathematically formulate the problem of vector query
processing on unstructured datasets. Let S = {v1,v2, ...vN} ∈
Rd , where S is an unstructured dataset, N is the number of
vectors in S, and vi is a d-dimensional vector in S. Let q ∈Rd

be a query vector. Given a value k ∈ N+ and k ≤ N, a vector
query with q is to find the top-k nearest neighbors of q in
S, according to a pairwise distance function d(q,vi). The
distance function typically computes Euclidean distance or
Angular distance between two vectors. The ground truth of
the top-k nearest neighbors Sgt is obtained when searching in
the entire dataset S. Sgt are often sorted according to d(q,v).

Sgt = argmink
v∈S d(q,v) (1)

Finding the exact top-k nearest neighbors has high query
latency for large datasets, which may violate latency SLOs
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Figure 6: Example to show key idea and workflow of Auncel.

for applications. To trade query accuracy for query latency, a
subset Sa ⊂ S can be sampled to find the approximate top-k
nearest neighbors Sr for lower latency.

Sr = argmink
v∈Sa

d(q,v). (2)

The accuracy (recall) and error of Sr are defined as follows.

Accuracy ,
|Sgt ∩Sr|

k
(3)

Error , 1−Accuracy (4)

4.2 Workflow and Key Idea

Auncel allows users to specify an error bound or a latency
bound for a query. When an error bound is given, Auncel
minimizes query latency; when a latency bound is given,
Auncel maximizes query accuracy. As we have described in
§2, the basic approach for processing a vector query with an
ANN index is to first compute the distances between the query
vector and the centroids of the clusters in the index and then
search cluster by cluster based on the ascending order of the
distances. The key idea of Auncel is to build an accurate ELP
so that after searching each cluster, Auncel can consult the
ELP to decide whether to terminate the search.

Workflow of Auncel. We use a concrete example in Figure 6
to illustrate the workflow of Auncel. In this example, the ANN
index partitions the dataset into three clusters. Each cluster
(Ci) is a polyhedron in d-dimensional space. The value of k
in top-k is 5, and the error bound is 20%. The three clusters
are sorted in ascending order by their centroids’ distances to
the query vector. Auncel searches the three clusters based on
the order one by one. The three clusters may have different
numbers of vectors due to the imbalance property of k-means.
It does not impact the error profile since Auncel terminates
the search as soon as the current error is guaranteed. However,
the imbalance property leads to inaccurate latency profile that
we will discuss later in §4.4.

After processing C1, Auncel updates the intermediate result
(a sorted array) which represents the query vector’s top-k
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Algorithm 1 Error Profile
1: ε← Error Bound, i← 1
2: while i <= l do
3: Perform search computation in cluster Ci
4: geometric properties← Si , cluster centroids
5: εi← ELP (geometric properties)
6: if εi ≤ ε then
7: break
8: i← i+1
9: Return intermediate result

nearest neighbors in C1. Each element in the sorted array is a
pair of a database vector’s index and its distance to the query
vector. For simplicity, the figure only shows the element’s
index in ground truth result. Auncel uses the intermediate
result as the input of the ELP to predict the current error, and
decides whether to terminate the search. The ground truth
vectors have top-k indexes [1, 2, 3, 4, 5] in this example,
which is obtained after searching all three clusters. As the
intermediate result after searching C1 is [1, 4, 7, 8, 9], only two
vectors in the intermediate result (the two with indexes 1 and
4) belong to the true top-k. Therefore, the current error is 60%,
which is still above the error bound 20%. Auncel continues to
search C2. The intermediate result after searching C2 contains
four vectors in the true top-k (the four with indexes 1, 3, 4
and 5), and the current error decreases to 20%, which satisfies
the error bound. Therefore, it is safe for Auncel to terminate
the search and return the sorted array as the query result.

The workflow is summarized in Algorithm 1. Predicting
the error with ELP in line 5 is the key to guarantee bounded
errors and minimize query latency. If the predicted error is
smaller than the actual error, the system terminates search too
early, and fails to meet the error bound; if the predicted error is
larger than the actual error, the system unnecessarily continues
to search more clusters, which increases query latency. Thus,
the main challenge is to build an accurate ELP to accurately
predict the current error after searching each cluster.

Key idea of Auncel. To understand how Auncel addresses
this challenge, consider the intermediate result after searching
C1. The first element in the intermediate result (1) is also
the first element in ground truth (sorted array after searching
all three clusters). But, the second element (4) is the fourth
element in ground truth, and the the third element (7) is not in
the top-k (k=5). We define the scaling factor of the jth element
in the intermediate result after processing Ci as follows, where
indexgt is the element’s index in ground truth.

ϕi( j), indexgt/ j (≥ 1) (5)

If ϕi( j) is known, then the current error of the intermediate
result after searching Ci can be calculated. Specifically, we
compute j∗ such that

j∗ = argmax j{ j ·ϕi( j)≤ k}. (6)

The elements from 1 to j∗ in the intermediate result belong
to the true top-k. j∗ is often calculated through binary search.
The current error εi after processing Ci is

εi = 1− j∗/k (7)

For any j, ϕi( j) converges to 1 when i increases to the num-
ber of clusters (l). Correspondingly, j∗ converges to k and
εi converges to 0. When searching the clusters one by one,
Auncel terminates the process immediately when εi becomes
no bigger than the error bound.

Therefore, we convert the problem of building an accurate
ELP to accurately estimating ϕi( j). We exploit the geomet-
ric properties of ANN indexes in high-dimensional space to
estimate ϕi( j). Since Auncel is designed to provide bounded
errors, it is sufficient to estimate the upper bound of scaling
factor ϕi( j), which we describe next.

4.3 Handling Error Bounds

Auncel minimizes query latency under a given error bound us-
ing scaling factors in the ith error prediction (ϕi). We perform
a detailed analysis of ϕi( j) from a geometric perspective, and
design a formula to calculate the upper bound of ϕi( j) under
the two most prevalent distance metrics.

4.3.1 Scaling Factor under Euclidean Distance

We first focus on Euclidean distance, the most widely-used
and intuitive distance metric, which measures the length of
the line segment between two anchor vectors in geometry.

We have two key insights. Our first insight is to leverage
the geometric structure of the IVF index. IVF shards the en-
tire dataset into l clusters (C) by k-means clustering, and the
clusters are sorted as C = {C1,C2...Cl}. Due to the rule of
k-means, Ci is a d-dimensional polyhedron and the boundary
between Ci and C j is the (d− 1)-dimensional mid-vertical
plane of the line segment connecting the two clusters’ cen-
troids. Thus, we can divide the entire space into several parts
based on these boundaries. Our second insight is to exploit the
local geometric properties of q which belongs to C1. The top-
k ground truth vectors gather around q and form a sphere,
B(λl(k)) with radius λl(k) and center q in d-dimensional
space. For any vector within B(λl(k)), it is a member of Sgt .
For instance, if B(λl(k)) locates within C1, it is sufficient to
search in the first cluster to get ground truth.

The combination of these two insights allows us to com-
pute ϕi( j) with high-dimensional geometry. We know that
the k ground truth vectors are distributed in sphere B(λl(k)),
and the sphere is divided into many parts by the boundaries
between C1 and other clusters. For example, we have three
clusters in total and query vector q in Figure 7. The sorted
clusters are {C1,C2,C3}, and all vectors within the sphere be-
long to Sgt . This sphere is cut into three parts—P1,P2,P3—by
the two boundaries, and Ni is the number of database vectors
in the scope of

⋃
{P1...Pi} (i = 1,2,3). In Figure 7, the num-

bers of the vectors within the shaded areas are N1 and N2,
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Figure 7: Geometric demo for calculating scaling factor.

respectively. In Figure 7(a), scaling factor ϕ1(N1) =
k

N1
since

the N1th element in S1 is the kth element in Sgt . Figure 7(b)
shows the scaling factor ϕ2(N2) =

k
N2

. To extend to general
settings, we define Pj(m) as the intersection of B(λi( j)) and
Cm after processing Ci. Consequently, N j(m) is the number
of vectors within

⋃m
η=1 Pj(η) which gives that:

ϕi( j) = N j(l)/N j(i). (8)

l is the number of clusters and i represents the current cluster.
We observe that the vectors of real-world datasets conform

to local uniform distribution, and k in most query workloads
is no bigger than 100, which means the vectors within the
scope of B(λl(k)) nearly conform to uniform distribution.
We provide a measurement in Appendix A.1 to confirm this
observation. Let den represents the local density of B(λl(k)).
We get that N j(m)≈V (

⋃m
η=1 Pj(η))×den. Hence,

ϕi( j) =V (B(λi( j)))/V (
i⋃

m=1

Pj(m)). (9)

V is the volume function. Since Pj(1) has different geometric
meaning with Pj(m) (m≥ 2) (spherical cap) and is complex
to calculate, we use the following inequation:

ϕi( j) =
1

1− V (
⋃l

m=i+1 Pj(m))

V (B(λi( j)))

≤ 1

1− ∑
l
m=i+1 V (Pj(m))

V (B(λi( j)))

≤ 1
b−a×U

. (10)

Different spherical caps (e.g., P1, P2 in Figure 7) may inter-
sect with each other. The union of all spherical caps has a
smaller volume than the sum of the volumes of all spherical
caps, which leads to the first ≤. We apply b−a×U to substi-
tute such complicated volume calculation in d-dimensional
space, where a,b are parameters to fit offline and a×U is the
geometric upper bound of the volume ratio. Appendix A.2
contains the detailed analysis of a×U , and we conclude one
of the upper bound functions is

U =
l

∑
m=i+1

arccos(xm) (0≤ xm ≤ 1). (11)

Algorithm 2 Latency Profile
1: t← Time Bound, i← 1
2: t0←CurrentTime()
3: while i≤ l do
4: Perform search computation in cluster Ci
5: tc←CurrentTime()
6: if tc− t0 ≥ t−δ then
7: break
8: i← i+1
9: Return intermediate result

where xm = dbm
λi( j) and dbm is the distance between query vector

and the boundary of C1, Cm. We do not consider the circum-
stance when xm > 1.

In Formula 11, the time complexity of calculating the upper
bound of ϕi( j) is O(l) since arccos(xm) only costs constant
time. We use binary search to calculate j∗ with Formula 6,
which concludes that the time complexity to predict εi is
O(l× log(k)) while the space complexity is O(1).

4.3.2 Scaling Factor under Angular Distance

Another widely-used vector distance metric is Angular dis-
tance, which evaluates the angle between two anchor vectors.
Its geometric meaning allows us to transform Angular dis-
tance into Euclidean distance. Specifically, we project all
database vectors onto the unit sphere in d-dimensional space
through vector normalization, while maintaining the Angu-
lar distance between any vectors. Thus, we substitute angle
with the line segment on such unit sphere, and the theoretical
analysis in §4.3.1 holds under Angular distance.

4.4 Handling Latency Bounds

Given a latency bound, Auncel maximizes query accuracy for
a query vector. Conceivably, one can build a latency profile
to capture the relationship between sampling sizes (i.e., the
number of clusters to search) and query latencies. Then Aun-
cel can consult the latency profile to get how many clusters
to search based on a given latency bound. However, building
such a profile is difficult, because the clusters have different
sizes and the order of the set of clusters to search vary between
different query vectors.

We design a runtime solution that exploits the monotonicity
property of vector query processing to handle latency bounds,
obviating the need of building a latency profile offline. Specif-
ically, vector query processing searches the clusters in the
ANN index one by one. The search is based on ascending
order of the distances between the clusters’ centroids and
the query vector. The accuracy of the intermediate result in-
creases when searching more clusters. As such, Auncel tracks
the used time when searching the clusters, and terminates
the search when the used time is close to the time bound.
This ensures that Auncel uses as much time as possible in
processing to maximize query accuracy. Algorithm 2 shows
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Figure 8: Auncel runtime with map-reduce.

the pseudocode of processing vector queries under latency
bounds. To guarantee the search terminates before the time
bound, the algorithm stops the search when the used time
is a (configurable) δ before the time bound. δ is influenced
by the first cluster after Auncel terminates the search, i.e.,
Ci if the termination condition is triggered after processing
Ci−1. The larger δ is required if Ci has more vectors and costs
more time to process. To guarantee the latency bounds in any
circumstances, δ is tuned according to the cluster with the
largest number of vectors.

4.5 Applying to Distributed Settings

We emphasize that the distributed solutions mentioned in
§2.3 either cannot reduce query latency (i.e., only improve
throughput) or leads to error amplification. To scale out, Aun-
cel uses map-reduce style processing to process vector queries
with multiple workers while preserving the error and latency
bound. Auncel divides distributed vector processing into two
phases—a map phase and a reduce phase. As shown in Fig-
ure 8, Auncel randomly and uniformly shards the dataset
into multiple partitions. Each worker owns one partition, and
builds a local ANN index and a local ELP. One of the work-
ers is elected as the leader, which controls the global query
processing.

When a vector query with an error/time bound (which we
call global bound) comes, the leader calibrates the bound to
get an error/time bound to be used by each worker (which
we call local bound). In the map phase, each worker uses its
local ANN index and ELP to process the query on its own
partition. In the reduce phase, the leader collects the local
results from the workers, and performs exact top-k search on
these collected results to produce the final result.

Calibration of error/latency bounds. As we have shown in
§2.3, the local errors can be amplified in the reduce phase
when the local results are aggregated to the final result. Di-
rectly using the global error bound as the local error bound
in the map phase would cause the final error obtained by the
reduce phase to be larger than the global error bound. To
address this problem, we design an error bound calibration
mechanism based on probability theory. The leader calibrates
the local error bound before distributing the work to the work-
ers in the map phase.

𝒌×𝒘 (𝟓×𝟐)

𝒘𝟏

𝒘𝟐

Reduce

Requestd Error = 40%

Calibrated Error = 20%

: Hit Element

: Miss Element

1 4 7 9 11

3 6 8 10 12

1 3 4 6 7

Figure 9: Error calibration of Auncel.

Figure 9 shows an example with two workers to illustrate
the calibration mechanism. The global error bound ε is 40%,
and the local error bound after calibration εc is 20%. Hit
elements are the intersection of Sr and Sgt . The map phase
is done by the workers individually, and the local error at
each worker is 20%, which meets the local error bound εc.
The reduce phase aggregates the local results and the global
error is 40%. While the global error is bigger than 20%, it
still meets the global error bound (ε = 40%). The probability
of the example in the figure is:

(5
3

)
∗
(5

5

)
/
(10

8

)
= 2

9 , where
(n

m

)
means the combination number. From classical models of
probability, it means the probability of the random event that
selects eight hit elements of all ten ground truth vectors and
three elements are situated in the first five ground truth.

Formally, we define the number of hit elements of the first n
elements in the ground truth as Hn. The worst case is Hk×w =
k×w× (1− εc), which means each worker just meets the
local error bound. The global error can be represented by
1−Hk/k. The probability of a random event Hk = i is

P(Hk = i) =

(k
i

)
×
( k×(w−1)

k×w×(1−εc)−i

)( k×w
k×w×(1−εc)

) . (12)

Thus, the probability of the random event to meet the global
error bound is calculated by:

P(Hk ≥ (k× (1− ε))) =
k

∑
i=k×(1−ε)

P(Hk = i). (13)

For instance in Figure 9, P(Hk ≥ (k× (1− ε))) = P(3) +
P(4)+P(5) = 2

9 +
5
9 +

2
9 = 1, which means the calibrated

local error bound (20%) can guarantee the global error (40%)
under any circumstances. Auncel starts calibrating εc from
ε and decreases εc by 1

k each time. We choose 1
k as the loop

decrement because the error, which is defined in Formula 3, is
a multiple of 1

k . The probability to guarantee the global error
bound ε is calculated through Formula 13. If the probability is
greater than γ (99.9% used in our prototype), Auncel stops the
calibration and distributes the εc to each worker. Therefore,
the probability of failing to guarantee the error bound is less
than 1-γ (<0.1% when γ = 99.9%), i.e., Auncel guarantees
the error bound with high probability. As for the convergence
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time of the calibration algorithm, the calculation time of For-
mula 12 is constant since the values of combinatorial numbers
are pre-calculated offline. The time complexity of Formula 13
is O(k×ε). Consequently, the convergence time of calibration
is O((k× ε)2). Since k in real query workloads is not large,
the time to calibrate the error bound is relatively small.

Calibrating the latency bound is straightforward since the
overhead of the reduce phase is negligible compared to the
map phase. We slightly enlarge δ to include the reduce over-
head as the latency calibration.

5 Implementation
We have implemented a system prototype of Auncel with
∼3000 lines of code in C++ based on Faiss. We use Faiss for
building IVF indexes and similarity search, and extend Faiss
with building and applying ELPs for performance bounds. Be-
cause Faiss does not support distributed processing, we also
implement data sharding, and map-reduce operations for dis-
tributed query processing. In theory, Auncel can be integrated
with any vector query processing engines. We choose Faiss
because it is a widely-used open-source vector query process-
ing engine, and is adopted in production like Meta/Facebook.
The code of Auncel is open-source and is publicly available
at https://github.com/pkusys/Auncel.

ELP & Distributed setting. We implement the ELP compo-
nent of Auncel with C++ Standard Library (STL) and Intel
oneMKL [38]. ELP works in the query process and is treated
as the process controller (monitor). For the distributed set-
ting, Auncel spawns a worker process for each CPU core,
and a server machine contains multiple workers. The entire
dataset is sharded among the workers, and each worker pro-
cesses queries on its own shard. Auncel randomly chooses
a machine to spawn a leader process to receive the query
and distribute the query with calibrated configurations (§4.5)
to each worker. After all workers finishing their own query
processing, the leader aggregates local results and returns the
final results to the user. Each machine contains a daemon
process that manages the local workers on the machine and
communicates with the leader using TCP sockets. For lead-
ers, Auncel handles query failures by re-executing the query.
When receiving a local result from a worker, the leader creates
a consistent backup of the result. Users are able to resume the
query with the existing backup files, which is similar with the
ideas of traditional primary-backup mechanisms [39, 40].

System optimizations. The ELP component imposes com-
putation overhead to the system because of the complex ge-
ometric operations for high-dimensional vectors. We follow
Faiss to implement Euclidean distance calculation, Angular
distance calculation and vector normalization through SIMD
instructions of oneMKL. Since SIMD is designed for vector
operations such as inner-product and element-wise addition,
it significantly reduces the computation overhead of the ELP
component. In addition, we pre-calculate key-value pairs of

Dataset Dimensions Database Query Distance
Vectors Vectors

SIFT10M [41] 128 10M 10K Euclidean
DEEP10M [31] 96 10M 10K Euclidean
DEEP1B [31] 96 1B 10K Euclidean
GIST1M [42] 960 1M 1K Euclidean

TEXT10M [31] 200 10M 10K Angular

Table 2: Datasets used in the evaluation.

some operations(e.g., arccos) offline and consult the key-value
pairs online to improve the performance of these operations.

6 Evaluation
In this section, we empirically evaluate Auncel from the fol-
lowing aspects: (i) end-to-end performance improvement over
state-of-the-art solutions; (ii) effectiveness of ELP; (iii) vali-
dation of the mathematical formulation; (iv) system overhead
of Auncel; and (v) scalability. The summary of the experi-
ments is as follows.
• Auncel outperforms LAET [30] and Faiss [22] by up to

3.6× and 10× on average query latency under the same
error bound, respectively (§6.1).

• The ELPs built by Auncel are highly accurate across a range
of datasets (§6.2).

• The mathematical formulation of Auncel fits well with real-
world datasets (§6.3).

• The runtime overhead of Auncel is within 1%, and building
an ELP offline can be done within ten minutes (§6.4).

• Auncel scales out near ideally, and only takes 25 ms to
process a query on DEEP1B with 128 workers (§6.5).

Setup. All experiments are conducted on AWS. We use two
EC2 instance types, both configured with Ubuntu 18.04 LTS.
For the single-node experiments, we use c5.4xlarge, which
is configured with 16 vCPUs (Intel Xeon Platinum 8275CL)
and 32 GB memory. For the scalability experiments, we use
c5.metal, which is configured with 96 vCPUs (Intel Xeon
Platinum 8275CL) and 192 GB memory. The reason of using
c5.metal for the scalability experiments is the experiments
aim to demonstrate the ability of Auncel to support very large
datasets and we need large memory to host DEEP1B (nearly
400 GB memory footprint).

Datasets. Table 2 summarizes the preprocessed datasets used
in our experiments. These datasets are widely-used bench-
marking datasets for vector query processing in both academic
and industry [43, 44]. Each dataset consists of database vec-
tors, query vectors and ground truth. For each query vector, the
ground truth records the indexes and distances of its top-100
neighbors. SIFT [41] is a dataset of local SIFT image descrip-
tors [45] with ten million database vectors and ten thousand
queries. DEEP [31] is a dataset of CNN [46] image embed-
dings with one billion database vectors and ten thousand
queries. The single-node experiments only use ten million
database vectors of DEEP, denoted by DEEP10M. The scala-
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Figure 10: Performance under different datasets.
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Figure 11: Performance under different error bounds.
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Figure 12: Performance under different values of k.

bility experiments use all database vectors of DEEP, denoted
by DEEP1B. GIST [42] is a dataset of global color GIST
descriptors [45] with one million database vectors and one
thousand query vectors. TEXT [31] is a cross-model [47, 48]
dataset of texts and images, where the ten million database
vectors and the ten thousand query vectors have different dis-
tributions in a shared representation space. The TEXT dataset
adopts Angular distance as the distance metric, while the other
three datasets use Euclidean distance.

Baselines. We compare Auncel to two baselines.
• Faiss [22] is a widely-used solution for processing vector

queries. It uses a fixed approach that picks the same sam-
pling size for all queries under a given error bound.

• LAET [30] is a state-of-the-art solution that uses machine
learning to adaptively determines search termination condi-
tions for individual queries.

We emphasize that Faiss and LAET do not provide perfor-
mance guarantees. To the best of our knowledge, Auncel is the
first system that provides performance guarantees for vector
query processing. In the experiments, we use the best con-
figurations (e.g., the minimal n in the map for Faiss and the
earliest search termination condition for LAET) to guarantee
that all queries meet the given error bound. This allows us to

fairly compare the query latency of Auncel, Faiss and LAET,
while all three systems satisfy the given error bounds.

Note that it is necessary for all the three systems (Auncel,
Faiss and LAET) to train their ELPs offline with some exam-
ple queries. In the experiments, unless otherwise stated, we
randomly split the query vectors into two parts of equal size,
one for training and the other for testing. Because Auncel and
LAET only perform search on the training queries once, the
ELP building times of the two systems are almost the same.
However, the grid search method of Faiss requires searching
on the training queries for different top-n (exponential power
of two in practice to save time), and the building time is tens
of times longer than that of Auncel and LAET.

Metrics. We use average end-to-end query latency,
Ave(Tsystem) as the main evaluation metric, where Tsystem rep-
resents the individual query latency of one of the three sys-
tems. In addition, we also report average slowdown of latency
and average cluster search ratio. Average slowdown of latency
is defined as Ave(Tbaseline

TAuncel
). Average cluster search ratio is de-

fined as the average ratio between the number of searched
clusters by the baseline and that by Auncel, i.e., Ave(Nbaseline

NAuncel
),

where N represents the number of searched clusters when
processing an individual query.
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Figure 13: Effectiveness of error profiles.
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Figure 14: Effectiveness of time profiles.

6.1 Overall Performance

We compare the end-to-end query latency between Auncel,
Faiss and LAET under the same error bound. Auncel outper-
forms Faiss and LAET under different datasets, different error
bounds, and different values of k.

Performance under different datasets. We compare Aun-
cel against the baselines on SIFT10M, DEEP10M, GIST1M
and TEXT10M. We use one c5.4xlarge EC2 instance. The
error bound is 10% and k in top-k is 100 (i.e., returning top-
100 nearest neighbors for a query). The results are shown in
Figure 10, which we summarize as follows.
• Auncel achieves 1.8–3.6× lower average end-to-end latency

than LAET and 1.3–4.8× lower of that than Faiss under the
same error bound. This is because Auncel adaptively and
accurately profiles the relationship between errors and sam-
pling sizes, which allows Auncel to sample fewer clusters
to generate query results.

• Compared to the gap of average latency between Auncel
and the baselines, the gap of average slowdown is larger.
This is because Auncel co-adapts individual queries and the
error bounds, while the two baselines fail to adapt queries
and error bounds at the same time.

• Auncel outperforms the two baselines by up to 9.6× in
average cluster search ratio. This means Auncel can reduce
the search cost by up to 9.6× in average while meeting
the requested error bound, due to the use of the geometric
properties when building ELPs.

• Auncel significantly outperforms Faiss and LAET on all the
four datasets, which have different characteristics of data
and different metrics of distance (Euclidean and Angular).

Performance under different error bounds. To show that
Auncel consistently outperforms the baselines when the error

bound changes, we vary the error bound from 1% to 10% and
run the top-100 workload on the SIFT10M dataset. Figure 11
shows the performance under different error bounds. Auncel
achieves 1.4–1.7× lower average end-to-end latency than
LAET and 1.8–4.8× lower of that than Faiss.

Performance under different values of k. We also vary the
value of k from 10 to 100. We fix the error bound as 10% and
run different top-k workloads on the SIFT10M dataset. From
Figure 12, we observe that Auncel outperforms LAET and
Faiss by 1.6–3.3× and 4.6–10× on average query latency,
respectively. It confirms that Auncel can handle different
values of k in top-k.

6.2 Effectiveness of ELP Techniques

In this set of experiments, we evaluate the effectiveness of the
ELP building techniques in Auncel.

Error Profiles. To evaluate our error profiling technique, we
run Auncel with the top-100 workload on the four datasets.
We vary the error bound from 10% to 70%. Figure 13 illus-
trates the maximum and 95%-tile actual errors. We also plot
the ideal straight lines (i.e., actual error equals to error bound)
in Figure 13. Note that the measured actual error is always no
bigger than the error bound, which demonstrates the ability of
Auncel to guarantee bounded errors. As we increase the error
bound, the measured actual error increases as well, indicating
that Auncel adapts to the error bound. However, the maximum
error does not increase monotonically with the error bound
on SIFT10M, DEEP10M and GIST1M. This is because the
geometric characteristics (e.g., dimension and distribution) of
query vectors vary widely across different datasets.

Time Profiles. To evaluate our time profiling technique, we
run Auncel with the top-100 workload on the four datasets and
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Figure 15: Validation of Formula 10.

report query latency of each query, with a time bound from
5 ms to 50 ms. Figure 14 shows the results of the maximum
and minimum end-to-end query latencies. The results show
that each query is terminated before the time bound.

6.3 Validation of Mathematical Formulation

This experiment validates that our theoretical model (For-
mula 10) fits well with real-world unstructured datasets. In
ELP initialization, we compute the geometric upper bound
function U and collect the corresponding real scaling factor ϕ

according to the ground truth. We sample a portion of U−ϕ

pairs, where ϕ is the maximal in a small interval, to model
the tight upper bound of ϕ. The larger interval apparently
leads to a tighter upper bound. We then use least squares to fit
Formula 10 for these U−ϕ pairs. Figure 15 shows the results
of the top-100 search workload on SIFT10M and DEEP10M.
The results confirm that Formula 10 can well capture the rela-
tionship between U and ϕ, which allows Auncel to accurately
predict the runtime errors.

6.4 System Overhead

Runtime overhead. To evaluate the runtime overhead of
Auncel, we perform an experiment with top-k search work-
loads on different datasets. We configure Auncel to search
fixed number of clusters and make an error prediction after
searching each cluster. For comparison, we measure the ELP
prediction time and the entire time of query processing. We
also vary the value of k from 10 to 100, and run Auncel on
SIFT10M. As shown in Table 3 and Table 4, the average la-
tency can hardly be distinguished between Auncel with ELP
and Auncel without ELP. The runtime overhead of using ELP
in Auncel is within 1%. Note that the average latency almost
stays the same from top-10 search to top-100 search. This is
because distance computation dominates in the search process
such that top-k relevant computation is negligible.

ELP Building Time. We evaluate the offline time taken for
ELP building. We configure Auncel to train 50% query vec-
tors with the top-100 workload on different datasets. Table 5
shows that the time to build ELP is within ten minutes, which
is relatively small for datasets with ten million vectors.

6.5 Scalability

Auncel shards a dataset into several partitions. For a vector
query, it performs local ANN search with ELP in the map
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Figure 16: Scalability on multiple workers.

Dataset Without ELP With ELP

SIFT10M 68.02 ms 68.41 ms (+0.58%)
DEEP10M 48.16 ms 48.55 ms (+0.81%)
GIST1M 6.86 ms 6.91 ms (+0.70%)

TEXT10M 95.42 ms 96.00 ms (+0.61%)

Table 3: Runtime overhead under different datasets.

Top-K Without ELP With ELP

Top-10 68.09 ms 68.47 ms (+0.55%)
Top-50 68.12 ms 68.51 ms (+0.57%)
Top-100 68.02 ms 68.4 1ms (+0.58%)

Table 4: Runtime overhead under different values of k.

Dataset Building Time

SIFT10M 6.20min
DEEP10M 4.44min
GIST1M 0.61min

TEXT10M 8.65min

Table 5: ELP building time on different datasets.

phase and aggregates the local results in the reduce phase.
We evaluate how configurations with different number of
workers impact the average latency. We use four c5.metal
EC2 instances to verify the scalability of Auncel. In this ex-
periment, we adopt the calibration techniques described in
§4.5 to guarantee 10% global bounded error for all queries.
We vary the number of workers from 4 to 128, and run the
top-100 workload on DEEP1B. Auncel assigns each machine
an equal number of workers and spawns a leader worker on
one of the machines. The leader worker receives all local
top-k results and completes the reduce task. Figure 16 shows
that the average latency is almost halved when the number
of workers doubles each time, indicating that Auncel scales
out near ideally. This is because Auncel only transmits the
indexes of local top-100 vectors and their corresponding dis-
tances to the query vector from the workers to the leader; it
does not transmit the raw data of the high-dimensional vec-
tors. The reduce phase to aggregate local results takes only
a small portion of the total time. Therefore, Auncel can fully
leverage the advantages of data parallelism to scale out.
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7 Discussion
Hardware acceleration. Some query engines [23, 49] lever-
age GPUs to accelerate vector query processing. GPU accel-
eration works well for small datasets, but is not suitable for
large datasets because of limited GPU memory size. Thus,
CPUs are widely used in production for large datasets. Also,
GPUs are more expensive than CPUs. Therefore, we focus on
CPUs for implementation and evaluation in this paper. We re-
mark that the design of Auncel is orthogonal to the underlying
hardware. Auncel can be applied to GPUs or other specialized
hardware for vector query processing.

Vector compression. Vector compression [50] is proposed to
reduce the memory footprint of large datasets. It compresses
high-dimensional vectors into low-dimensional space while
maintaining the distance property. The number of dimen-
sions in each vector is reduced after vector compression. This
technique is orthogonal to Auncel since we only consider the
distance property between different vectors. Auncel processes
vector queries on a dataset, no matter how many dimensions
each vector in the dataset has.

8 Related Work
ANN indexes. Many ANN indexes are proposed to im-
prove query accuracy and reduce query latency, such as
IVF [15, 25, 35], graph index [16, 51, 52] and locality sen-
sitive hashing [18, 53–55]. These algorithms perform search
on sampling data which trade accuracy for query latency. They
leave the sampling size (e.g., top-n in IVF) to users and do
not provide bounded performance. These ANN algorithms
are orthogonal and complementary to Auncel, and we fol-
low one of the state-of-the-art solutions, IVF, to build Auncel.
Besides, ANN algorithms also have different system charac-
teristics [56]. For example, the graph index is more efficient
than IVF, but it needs extra memory to hold large graphs. An
interesting direction for future work is to build a unified ELP
for more ANN indexes and provide bounded performance
according to user preferences. Some recent works [30, 57]
focus on early stopping conditions of nearest neighbor search
to reduce average query latency at a high accuracy, but they
do not provide any error or time bound guarantees. With the
proliferation of unstructured data and machine learning, ANN
on the embedding vectors of unstructured data becomes a key
component in many AI applications, such as recommenda-
tion [1–4], recognition [5–8] and information retrieval [9–11].
Recent industrial vector data management systems [23,24,58]
are developed to meet the rapidly increasing demand of these
AI applications. They typically build their query processing
engines on top of Faiss [22]. As we integrate the Auncel pro-
totype into Faiss, it is convenient for these systems to leverage
Auncel to improve vector query processing.

Approximate query processing. Approximate query process-
ing systems [19, 20, 59–61] have gained a lot of popularity

due to the long latency of exact search. These systems all pro-
vide time or latency guarantees through probability statistics.
However, none of them pays attention to unstructured data
represented by vectors. BlinkDB [19] and Quickr [60] focus
on structured data and approximate aggregation jobs while
ASAP [20] focuses on approximate graph pattern mining.
The probability statistics method fails to produce good results
on vector queries with performance guarantees. Thus, we in-
troduce a novel high-dimensional geometry theory tailored
for vector queries in Auncel. GRASS [21] is a scheduler for
approximation jobs in data analytics clusters to alleviate the
straggler problem in a map-reduce framework. It is comple-
mentary to the distributed design of Auncel since our error
and latency calibration mechanism is easy to be integrated
into such cluster schedulers. Big data warehouses [62–64]
are prevalent in modern cloud services, which provide high-
performance query processing. To manage large-scale un-
structured data, Auncel can be integrated into these query
systems to provide bounded performance. Auncel bridges
the gap between approximate query processing and vector
queries.

9 Conclusion
We present Auncel, a vector query processing engine that pro-
vides bounded errors and latencies on very large unstructured
datasets. Auncel exploits the geometric properties of high-
dimensional space and the nature of vector query processing
to build precise and lightweight ELPs. Auncel is a distributed
solution that leverages probability theory to scale out with
multiple workers. We demonstrate the performance of Auncel
on a variety of datasets. Auncel significantly reduces query
latency while meeting error or latency bounds, and scales to
billion-scale datasets with latency reduction.
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A Appendix
A.1 Validation of Local Uniform Distribution
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(a) cp1 in SIFT10M.
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(b) cp2 in SIFT10M.
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(c) cp3 in DEEP10M.
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(d) cp4 in DEEP10M.

Figure 17: Validation of local uniform distribution.
We emphasize that the assumption about data distribution

is local uniform distribution rather than uniform distribution.
It is because the real-world items are distributed together
smoothly. We perform a measurement to validate that vec-
tors conform to local uniform distribution in widely-used
unstructured datasets. We randomly pick a central point (cp)
in the geometric space and let it do a random walk. Each
time cp moves a small distance in either direction, the num-
ber of database vectors within a small radius (r) from cp is
counted through a sweep. In this measurement, we pick two
initial central points for SIFT10M and DEEP10M, respec-
tively. Figure 17 shows the dynamics of the number of cp’s
neighbors and how it changes when cp moves. Within 25
moves (i.e., a relatively small local scope), the number of cp’s
neighbors fluctuates no more than 14% in the four examples.
Consequently, it is reasonable to conclude the local uniform
distribution.

A.2 Analysis of Formula 10

1

𝑥!

𝑑𝑥

! 1 − 𝑥" radius sphere in 
(d-1) dimensional space 

Spherical Cap

Figure 18: Unit spherical cap.

Let dbm represent the distance between the query vector
q and the boundary of C1, Cm. We leverage cosine theorem
to calculate dbm by three anchor vectors, q and the centroid
vectors of C1,Cm, where the boundary is the mid-vertical
plane of the line segment connecting the two centroids.

Since only the volume ratio is considered, we simplify
the model into unit sphere, which substitutes λi( j) with unit
element (1) and dbm with xm = dbm

λi( j) after processing Ci. Thus,
V (Pj(m))

V (B(λi( j))) is identical to the ratio of spherical cap’s volume,
V (sc) to the volume of the unit sphere as Figure 18 shows.
According to properties of high-dimensional space [65], the
volume of the unit sphere, Un(d) in d-dimensional space is

V (Un(d)) =
π

d
2

d
2 Γ( d

2 )
.

As for the spherical cap, the exact volume calculation is
time-consuming through definite integral. To guarantee the
bounded error, it is sufficient to provide an upper bound for-
mula of the ratio. Thus, we derive the following lemma.

Lemma A.1 For any 0 ≤ xm ≤ 1 , the fraction of the vol-
ume of the hemisphere above the boundary (spherical cap,
sc) is V (sc). The unit sphere’s volume is V (Un(d)) in d-
dimensional space (d ≥ 3). We conclude that V (sc)

V (Un(d)) ≤
a× arccos(xm), where a is a number corresponding to d.

Proof. The surface area of the intersection of the boundary
and the sphere is

(1− x2)
d−1

2 V (Un(d−1)).

Thus, the volume of sc is:

V (sc) =V (Un(d−1))
∫ 1

xm

(1− x2)
d−1

2 dx.

Now,

V (sc)
V (Un(d))

=
V (Un(d−1))

V (Un(d))

∫ 1

xm

(1− x2)
d−1

2 dx

≤ a×
∫ 1

xm

(1− x2)
d−1

2 dx.

As for the upper bound, since 0≤ (1−x2)≤ 1 and− 1
2 < 0 <

d−1
2 , we have (1−x2)

d−1
2 ≤ (1−x2)−

1
2 . Due to the properties

of definite integral,∫ 1

xm

(1− x2)
d−1

2 dx≤
∫ 1

xm

(1− x2)−
1
2 dx

Thus,

V (sc)
V (Un(d))

≤ a×
∫ 1

xm

(1− x2)−
1
2 dx = a× arccos(xm).

The lemma is concluded by the above proof, and we fit a by
sampling queries offline.

Above all, one of U is ∑
l
m=i+1 arccos(xm) in Formula 10

where a×U represents the upper bound of ∑
l
m=i+1 V (Pj(m))

V (B(λi( j))) .
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