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Abstract
Serverless applications are typically composed of function

workflows in which multiple short-lived functions are trig-
gered to exchange data in response to events or state changes.
Current serverless platforms coordinate and trigger functions
by following high-level invocation dependencies but are obliv-
ious to the underlying data exchanges between functions. This
design is neither efficient nor easy to use in orchestrating com-
plex workflows – developers often have to manage complex
function interactions by themselves, with customized imple-
mentation and unsatisfactory performance.

In this paper, we argue that function orchestration should
follow a data-centric approach. In our design, the platform
provides a data bucket abstraction to hold the intermediate
data generated by functions. Developers can use a rich set of
data trigger primitives to control when and how the output of
each function should be passed to the next functions in a work-
flow. By making data consumption explicit and allowing it to
trigger functions and drive the workflow, complex function in-
teractions can be easily and efficiently supported. We present
Pheromone – a scalable, low-latency serverless platform fol-
lowing this data-centric design. Compared to well-established
commercial and open-source platforms, Pheromone cuts the
latencies of function interactions and data exchanges by or-
ders of magnitude, scales to large workflows, and enables easy
implementation of complex applications.

1 Introduction

Serverless computing, with its Function-as-a-Service incarna-
tion, is becoming increasingly popular in the cloud. It allows
developers to write highly scalable, event-driven applications
as a set of short-running functions. Developers simply spec-
ify the events that trigger the activation of these functions,
and let the serverless platform handle resource provisioning,
autoscaling, logging, fault-tolerance, etc. Serverless comput-
ing is also economically appealing as it has zero idling cost:
developers are only charged when their functions are running.

Many applications have recently been migrated to the sever-
less cloud [28,35,39,43,48,59,68,75,78]. These applications
typically consist of multiple interactive functions with diverse

*This work was partially done while the author was at HKUST.

function-invocation and data-exchange patterns. For example,
a serverless-based batch analytics application may trigger hun-
dreds of parallel functions for all-to-all data communication
in a shuffle phase [49, 59, 79]; a stream processing applica-
tion may repeatedly trigger certain functions to process dy-
namic data received in a recent time window. Ideally, a server-
less platform should provide an expressive and easy-to-use
function orchestration to support various function-invocation
and data-exchange patterns. The orchestration should also be
made efficient, enabling low-latency invocation and fast data
exchange between functions.

However, function orchestration in current serverless plat-
forms is neither efficient nor easy to use. It typically models
a serverless application as a workflow that connects functions
according to their invocation dependency [4, 11, 21, 24, 34,
51, 53, 66]. It specifies the order of function invocations but
is oblivious to when and how data are exchanged between
functions. Without such knowledge, the serverless platform
assumes that the output of a function is entirely and immedi-
ately consumed by the next function(s), which is not the case
in many applications such as the aforementioned “shuffle” op-
eration in batch analytics and the processing of dynamically
accumulated data in stream analytics. To work around these
limitations, developers have to manage complex function in-
teractions and data exchanges by themselves, using various
approaches such as a message broker or a shared storage, ei-
ther synchronously or asynchronously [6, 10, 24, 31, 49, 66].
As no single approach is found optimal in all scenarios, devel-
opers may need to write complex logic to dynamically select
the most efficient approach at runtime (see §2.2). Current
serverless platforms also incur function interaction latencies
of tens of milliseconds, which may be unacceptable to latency-
sensitive applications [46], particularly since this overhead
accumulates as the function chain builds up.

In this paper, we argue that function orchestration should
follow the flow of data rather than the function-level invo-
cation dependency, thus a data-centric approach. Our key
idea is to make data consumption explicit, and let it trigger
functions and drive the workflow. In our design, the server-
less platform exposes a data bucket abstraction that holds the
intermediate output of functions in a logical object store. The
data bucket provides a rich set of data trigger primitives that
developers can use to specify when and how the intermediate
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data are passed to the intended function(s) and trigger their
execution. With such a fine control of data flow, developers
can express sophisticated function invocations and data ex-
changes, simply by configuring data triggers through a unified
interface. Knowing how intermediate data will be consumed
also enables the serverless platform to schedule the intended
downstream functions close to the input, thus ensuring fast
data exchange and low-latency function invocation.

Following this design approach, we develop Pheromone1,
a scalable serverless platform with low-latency data-centric
function orchestration. Pheromone proposes three key de-
signs to deliver high performance. First, it uses a two-tier
distributed scheduling hierarchy to locally execute a function
workflow whenever possible. Each worker node runs a lo-
cal scheduler, which keeps track of the execution status of a
workflow via its data buckets and schedules next functions of
the workflow onto local function executors. In case that all
local executors are busy, the scheduler forwards the request
to a global coordinator which then routes it to another worker
node with available resources. Second, Pheromone trades the
durability of intermediate data, which are typically short-lived
and immutable, for fast data exchange. Functions exchange
data within a node through a zero-copy shared-memory object
store; they can also pass data to a remote function through di-
rect data transfer. Third, Pheromone uses sharded global coor-
dinators, each handling a disjoint set of workflows. With such
a shared-nothing design, local schedulers only synchronize
workflows’ execution status with the corresponding global
coordinators, which themselves require no synchronization,
thus ensuring high scalability for distributed scheduling.

We evaluate Pheromone against well-established commer-
cial and open-source serverless platforms, including AWS
Lambda with Step Functions, Azure Durable Functions,
Cloudburst [66], and KNIX [24]. Evaluation results show
that Pheromone improves the function invocation latency by
up to 10× and 450× over Cloudburst (best open-source base-
line) and AWS Step Functions (best commercial baseline),
respectively. Pheromone scales well to large workflows and in-
curs only millisecond-scale orchestration overhead when run-
ning 1k chained functions and 4k parallel functions, whereas
the overhead is at least a few seconds in other platforms.
Pheromone has negligible data-exchange overhead (e.g., tens
of µs), thanks to its zero-copy data exchange. It can also
handle failed functions through efficient re-execution. Case
studies of two serverless applications, i.e., Yahoo! stream
processing [40] and MapReduce sort, further demonstrate
that Pheromone can easily express complex function interac-
tion patterns (rich expressiveness), require no specific imple-
mentation to handle data exchange between functions (high
usability), and efficiently support both latency-sensitive and
data-intensive applications (wide applicability).

1Pheromone is a chemical signal produced and released into the environ-
ment by an animal that triggers a social response of others of its species. We
use it as a metaphor for our data-centric function orchestration approach.

2 Background and Motivation

We first introduce serverless computing and discuss the limita-
tions of function orchestration in current serverless platforms.

2.1 Serverless Computing
Serverless computing, with its popular incarnation being
Function-as-a-Service (FaaS), has recently emerged as a pop-
ular cloud computing paradigm that supports highly-scalable,
event-driven applications [8, 18, 22]. Serverless computing
allows developers to write short-lived, stateless functions that
can be triggered by events. The interactions between functions
are simply specified as workflows, and the serverless platform
manages resource provisioning, function orchestration, au-
toscaling, logging, and fault tolerance for these workflows.
This paradigm appeals to many developers as it allows them
to concentrate on the application logic without having to man-
age server resources [47, 63] – hence the name serverless
computing. In addition to the high scalability and operational
simplicity, serverless computing adopts a “pay-as-you-go”
billing model: developers are billed only when their functions
are invoked, and the function run-time is metered at a fine
granularity, e.g., 1 ms in major serverless platforms [8,18]. Al-
together, these benefits have increasingly driven a large num-
ber of traditional “serverful” applications to be migrated to the
serverless platforms, including batch analytics [39,48,59,79],
video processing [35, 43], stream processing [28], machine
learning [75, 78], microservices [46], etc.

2.2 Limitations of Current Platforms
Current serverless platforms take a function-oriented ap-
proach to orchestrating and activating the functions of a server-
less workflow: each function is treated as a single and stan-
dalone unit, and the interactions of functions are separately
expressed within a workflow. This workflow connects indi-
vidual functions according to their invocation dependencies,
such that each function can be triggered upon the completion
of one or multiple upstream functions. For example, many
platforms model a serverless workflow as a directed acyclic
graph (DAG) [4, 11, 21, 24, 34, 51, 53, 66], in which the nodes
represent functions and the edges indicate the invocation de-
pendencies between functions. The DAG can be specified
using general programming languages [4, 21], or domain-
specific languages such as Amazon States Language [11, 24].
However, this approach has several limitations with regard to
expressiveness, usability, and applicability.
Limited expressiveness. Although the current function-
oriented orchestration supports the workflows of simple in-
vocation patterns, it becomes inconvenient or incapable of
expressing more sophisticated function interactions, as sum-
marized in Table 1. This is because the current function or-
chestration assumes that data flow in the same way as how
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Figure 1: The shuffle operation (left) in data analytics and the
batched data processing in a stream (right).

functions are invoked in a workflow, and that a function passes
its entire output to others by directly invoking them for im-
mediate processing. These assumptions do not hold for many
applications, hence developers resort to create workarounds.

For example, the “shuffle” operation in a data analytics
job involves a fine-grained, all-to-all data exchange between
the functions of two stages (e.g., “map” and “reduce” stages).
As shown in Fig. 1 (left), the output data of a function in
stage-1 are shuffled and selectively redistributed to multiple
functions in stage-2 based on the output keys. However, the
way to invoke functions is not the same as how the output data
flow: only after stage-1 completes can the workflow invoke
all the stage-2 functions in parallel. In current serverless plat-
forms, developers must manually implement such a complex
data shuffle invocation via external storage [49, 59], which is
neither flexible nor efficient.

Another example is a batched stream analytics job which
periodically invokes a function to process the data contin-
uously received during a time window [40, 73], as shown
in Fig. 1 (right). A serverless workflow cannot effectively
express this invocation pattern as the function is not imme-
diately triggered when the data arrive, and thus developers
have to rely on other cloud services (e.g., AWS Kinesis [7])
to batch the data for periodic function invocations [28–30].
Note that, even with the latest stateful workflow (e.g., Azure
Durable Functions [17]), an addressable function needs to
keep running to receive data. As we will show in §6.5, deploy-
ing a long-running function not only incurs extra resource
provisioning cost but results in an unsatisfactory performance.

Limited usability. Current serverless platforms provide var-
ious options for data exchange between functions. Functions
can exchange data either synchronously or asynchronously via
a message broker or a shared storage [6,10,24,31,49,66]. They
can also process data from various sources, such as nested
function calls, message queues, or other cloud services [23].

The lack of a single best approach to exchange data be-
tween functions significantly complicates the development
and deployment of serverless applications, as developers must
find their own ways to efficiently pass data across func-
tions [53] which can be dynamic and non-trivial; thus, re-
ducing the usability of serverless platforms. To illustrate this
problem, we compare four data-passing approaches in AWS
Lambda: a) calling a function directly (Lambda), b) using
AWS Step Functions (ASF) to execute a two-function work-
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Figure 2: The interaction latency of two AWS Lambda func-
tions under various data sizes using four approaches.

flow2, c) allowing functions to access an in-memory Redis
store for fast data exchange (ASF+Redis), and d) configuring
AWS S3 to invoke a function upon data creation (S3) [32].
Fig. 2 compares the latencies of these four approaches under
various data volumes. Lambda is efficient for transferring
small data; ASF+Redis is efficient for transferring large data;
the maximum data volume supported by each approach varies
considerably, and only the S3 approach can support virtually
unlimited (but slow) data exchange. Thus, there is no single
approach that prevails across all scenarios, and developers
must carefully profile the data patterns of their applications
and the serverless platforms to optimize the performance of
data exchange between interacting functions.

To make matters worse, the data volume exchanged be-
tween functions depends on the workload, which may be
irregular or unpredictable. Thus, there may be no best fixed
approach to exchanging data between interacting functions,
and developers have to write complex logic to select the best
approach at runtime. Developers also need to consider the in-
teraction cost. Previous work has highlighted the tricky trade-
off between I/O performance and cost when using different
storage to share intermediate data [49, 59], which further ex-
acerbates the usability issue. Altogether, these common prac-
tices bring a truly non-serverless experience to developers as
they still have to deal with server and platform characteristics.
Limited applicability. Existing serverless applications are
typically not latency-sensitive. This is because current server-
less platforms usually have a function interaction delay of
multiple or tens of milliseconds (§6.2), and such delays ac-
cumulate as more functions are chained together in an appli-
cation workflow. For example, in AWS Step Functions, each
function interaction causes a delay of more than 20 ms, and
the total platform-incurred delay for a 6-function chain is
over 100 ms, which may not be acceptable in many latency-
sensitive applications [46]. In addition, as current serverless
platforms cannot efficiently support the sharing of varying-
sized data between functions (as described earlier), they are
ill-suited for data-intensive applications [8, 24, 43, 46, 59, 66].
Altogether, the above characteristics substantially limit the
applicability of current serverless platforms.

2We use the ASF Express Workflows in our experiments as it delivers
higher performance than the ASF Standard Workflows [14].
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3 Data-Centric Function Orchestration

In this section, we address the aforementioned limitations of
the function orchestration practice in current serverless plat-
forms, with a novel data-centric approach. We will describe
how this approach can be applied to develop a new serverless
platform later in §4.

3.1 Key Insight

As discussed in §2.2, the current function orchestration prac-
tice only specifies the high-level invocation dependencies
between functions, and thus has little fine-grained control
over how these functions exchange data. In particular, the
current practice assumes the tight coupling between function
flows and data flows. Therefore, when a function returns its
result, the workflow has no knowledge about how the result
should be consumed (e.g., in full or part, directly or condi-
tionally, immediately or later). To address these limitations,
an effective serverless platform must allow fine-grained data
exchange between the functions of a workflow, while simulta-
neously providing a unified and efficient approach for function
invocation and data exchange.

Following this insight, we propose a new data-centric ap-
proach to function orchestration. We note that intermediate
data (i.e., results returned by functions) are typically short-
lived and immutable [49, 67]: after they are generated, they
wait to be consumed and then become obsolete.3 We therefore
make data consumption explicit and enable it to trigger the
target functions. Developers can thus specify when and how
intermediate data should be passed to the target functions and
trigger their activation, which can then drive the execution of
an entire workflow. As intermediate data are not updated once
they are generated [49, 67], using them to trigger functions
results in no consistency issues.

The data-centric function orchestration addresses the limi-
tations of the current practice via three key advances. First,
it breaks the tight coupling between function flows and data
flows, as data do not have to follow the exact order of function
invocations. It also enables a flexible and fine-grained control
over data consumption, and therefore can express a rich set of
workflow patterns (i.e., rich expressiveness). Second, the data-
centric function orchestration provides a unified programming
interface for both function invocations and data exchange, ob-
viating the need for developers to implement complex logic
via a big mix of external services to optimize data exchange
(i.e., high usability). Third, knowing when and how the in-
termediate data will be consumed provides opportunities for
the serverless platform scheduler to optimize the locality of
functions and relevant data, and thus latency-sensitive and
data-intensive applications can be supported efficiently (i.e.,
wide applicability).

3For data that need durability, they can be persisted to a durable storage.

source functions data bucket

send object(s) trigger function(s)
f f…

target functions

…f f

Figure 3: An overview of triggering functions in data-centric
orchestration. Source functions send intermediate data to the
associated bucket, which can be configured to automatically
trigger target functions.

3.2 Data Bucket and Trigger Primitives

Data bucket. To facilitate the data-centric function orches-
tration, we design a data bucket abstraction and a list of trig-
ger primitives. Fig. 3 gives an overview of how functions are
triggered. A serverless application creates one or multiple
data buckets that hold the intermediate data. Developers can
configure each bucket with triggers that specify when and how
the data should invoke the target functions and be consumed
by them. When executing a workflow, the source functions di-
rectly send their results to the specified buckets. Each bucket
checks if the configured triggering condition is satisfied (e.g.,
the required data are complete and ready to be consumed).
If so, the bucket triggers the target functions automatically
and passes the required data to them. This process takes place
across all buckets, which collectively drive the execution of
an entire workflow.

We design various trigger primitives for buckets to specify
how functions are triggered. The interaction patterns between
functions can be broadly classified into three categories:

Direct trigger primitive (i.e., Immediate) allows one or
more functions to directly consume data in the associated
buckets. This primitive has no specified condition, and trig-
gers the target functions immediately once the data are ready
to be consumed. This primitive can easily support sequential
execution or invoke multiple functions in parallel (fan-out).

Conditional trigger primitives trigger the target function(s)
when the developer-specified conditions are met.

• ByBatchSize: It triggers the function(s) when the as-
sociated bucket has accumulated a certain number of
data objects. It can be used to enable the batched stream
processing [29, 30] in a way similar to Spark Streaming.

• ByTime: It sets up a timer and triggers the function(s)
when the timer expires. All the accumulated data objects
are then passed to the function(s) as input. It can be used
to implement routine tasks [40, 73].

• ByName: It triggers the function(s) when the bucket re-
ceives a data object of a specified name. It can be used
to enable conditional invocations by choice [12].

• BySet: It triggers functions when a specified set of data
objects are all complete and ready to be consumed. It
can be used to enable the assembling invocation (fan-in).

• Redundant: It specifies n objects to be stored in a bucket
and triggers the function(s) when any k of them are
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Table 1: Expressiveness comparison between the function-
oriented workflow primitives in AWS Step Functions (ASF)
and the data-centric trigger primitives in Pheromone.

Invocation Patterns ASF Pheromone

Sequential Execution Task Immediate
Conditional Invocation Choice ByName
Assembling Invocation Parallel BySet
Dynamic Parallel Map DynamicJoin

Batched Data Processing - ByBatchSize
ByTime

k-out-of-n - Redundant
MapReduce - DynamicGroup

Function invocations Send objects

f f f
every second

f

f

f

f

f

f

MapReduce
Mappers Reducers

1
2
3

Preprocess Query 
event info

Aggregate 

Advertisement event stream

Figure 4: Usage examples of two primitives: DynamicGroup
for data shuffling in MapReduce (left), and ByTime for peri-
odic data aggregation in the event stream processing (right).

available and ready to be consumed. It can be used to
execute redundant requests and perform late binding for
straggler mitigation and improved reliability [50, 60, 69].

Dynamic trigger primitives, unlike the previous two cate-
gories with statically-configured triggers, allow data exchange
patterns to be configured at runtime.

• DynamicJoin: It triggers the assembling functions when
a set of data objects are ready, which can be dynamically
configured at runtime. It enables the dynamic parallel
execution like ‘Map’ in AWS Step Functions [13].

• DynamicGroup: It allows a bucket to divide its data ob-
jects into multiple groups, each of which can be con-
sumed by a set of functions. The data grouping is dynam-
ically performed based on the objects’ metadata (e.g.,
the name of an object). Once a group of data objects are
ready, they trigger the associated set of functions.

Dynamic trigger primitives are critical to implement some
widely-used computing frameworks, e.g., MapReduce (which
is hard to support in current serverless platforms as it requires
triggering parallel functions at every stage and optimizing the
fine-grained, all-to-all data exchange between them [48, 49,
59], see §2.2). Here, our DynamicGroup primitive provides
an easy solution to these issues. As shown in Fig. 4 (left),
when a map function sends intermediate data objects to the
associated bucket, it also specifies to which data group each
object belongs (i.e., by specifying their associated keys). Once
the map functions are all completed, the bucket triggers the
reduce functions, each consuming a group of objects.

We have developed a new serverless platform, Pheromone,
which implements the aforementioned data bucket abstrac-

struct BucketKey {
string bucket_; // bucket name
string key_; // key name
string session_; // unique session id per request

};

abstract class Trigger {
// Check whether to trigger functions for a new object.
vector <TriggerAction > action_for_new_object(

BucketKey bucket_key);

// Notify the information of a source function.
void notify_source_func(string function_name ,

string session , vector <string > function_args);

// Check whether to re-execute source functions.
vector <TriggerAction > action_for_rerun(string session);

};

Figure 5: Three main methods of the trigger interface.

tion and trigger primitives. The design of Pheromone will be
detailed in §4. Table 1 lists all the supported trigger primi-
tives in current Pheromone platform. Compared to AWS Step
Functions (ASF), Pheromone supports more sophisticated in-
vocation patterns and provides richer expressiveness for com-
plex workflows. We note that Azure Durable Functions [15]
can also achieve rich expressiveness for complex workflows
(§6.1). Yet, it fails to achieve the other two desired properties,
i.e., high usability and wide applicability (§6.5).
Abstract interface. Pheromone’s trigger primitives are not
only limited to those listed in Table 1. Specifically, we pro-
vide an abstract interface for developers to implement cus-
tomized trigger primitives for their applications, if needed.
Fig. 5 shows the three main methods of the trigger interface.
The first method, action_for_new_object, is provided to
specify how the trigger’s associated target functions should be
invoked. This method can be called when a new data object
arrives: it checks the current data status and returns a list of
functions to invoke, if any. The method can also be called
periodically in a configurable time period through periodi-
cal checking (e.g., ByTime primitive). The other two methods,
notify_source_func and action_for_rerun, are provided
to implement the fault handling logic which re-executes the
trigger’s associated source functions in case of failures. In
particular, through notify_source_func, a trigger can ob-
tain the information of a source function once the function
starts, including the function name, session, and arguments;
Pheromone also performs the periodic re-execution checks
by calling action_for_rerun, which returns a list of time-
out functions, such that Pheromone can then re-execute them.
The detailed fault tolerance mechanism will be described in
§4.4. We give an example of implementing a customized
ByBatchSize trigger primitive via the abstract interface in
our technical report [74].

3.3 Programming Interface
Our Pheromone serverless platform currently accepts func-
tions written in C++, with capabilities to support more lan-
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Table 2: The APIs of user library which developers use to operate on intermediate data objects and drive the workflow execution.

Class API Description

EpheObject
void* get_value() Get a pointer to the value of an object.
void set_value(value, size) Set the value of an object.

UserLibrary

EpheObject* create_object(bucket, key) Create an object by specifying its bucket and key name.
EpheObject* create_object(function) Create an object by specifying its target function.
EpheObject* create_object() Create an object.
void send_object(object, output=false) Send an object to its bucket, and set the output flag if it needs to persist.
EpheObject* get_object(bucket, key) Get an object by specifying its bucket and key name.

int handle(UserLibraryInterface* library ,\
int arg_size , char** arg_values);

Figure 6: Function interface.

1 app_name = 'event -stream -processing '
2 bucket_name = 'by_time_bucket '
3 trigger_name = 'by_time_trigger '
4 prim_meta = {'function ':'aggregate ', 'time_window ':1000}
5 re_exec_rules = ([('query_event_info ', EVERY_OBJ)], 100)
6 client.create_bucket(app_name , bucket_name)
7 client.add_trigger(app_name , bucket_name , trigger_name , \
8 BY_TIME , prim_meta , hints=re_exec_rules)

Figure 7: Configuring a bucket trigger to periodically invoke
a function in a stream processing workflow.

guages (see §7). Pheromone also provides a Python client
through which developers can program function interactions.

Function interface. Following the common practice, devel-
opers implement their functions through the handle() inter-
face (see Fig. 6), which is similar to the C++ main function
except that it takes a user library as the first argument. The
user library provides a set of APIs (see Table 2) that allow
developers to operate on intermediate data objects. These
APIs enable developers to create intermediate data objects
(EpheObject), set their values, and send them to the buckets.
A data object can also be persisted to a durable storage by set-
ting the output flag when calling send_object(). When a
bucket receives objects and decides to trigger next function(s),
it automatically packages relevant objects as the function ar-
guments (see Fig. 6). A function can also access other objects
via the get_object() API.

Bucket trigger configuration. Developers specify how the
intermediate data should trigger functions in a workflow via
our Python client. The client creates buckets and configures
triggers on the buckets using the primitives described in §3.2.
Functions can then interact with the buckets by creating, send-
ing and getting objects using the APIs listed in Table 2.

As an example, we refer to a stream processing work-
flow [40] as shown in Fig. 4 (right). This workflow first fil-
ters the incoming advertisement events (i.e., preprocess)
and checks which campaign each event belongs to (i.e.,
query_event_info). It then stores the returned results into a
bucket and periodically invokes a function (i.e., aggregate)
to count the events per campaign every second. Fig. 7 gives a
code snippet of configuring a bucket trigger that periodically
invokes the aggregate function, where a ByTime trigger is

Scheduler

Shared Memory Object Store

Executor … Executor

Coordinator

Worker Node

Scheduler

Shared Memory Object Store

Executor …

Coordinator

…

Worker Node

Durable Key-Value Store

Executor

…
Pheromone Runtime

Figure 8: An architecture overview of Pheromone.

created with the primitive metadata that specifies both the tar-
get function and the triggering time window (line 4). Develop-
ers can optionally specify a re-execution rule in case of func-
tion failures, e.g., by re-executing the query_event_info
function if the bucket has not received query_event_info’s
output in 100 ms (line 5). We will describe the fault toler-
ance and re-execution in §4.4. A full script of deploying this
workflow is given in our technical report [74].

To summarize, our data bucket abstraction, trigger primi-
tives, and programming interface facilitate the data-centric
function orchestration, and enable developers to conveniently
implement their application workflows and express various
types of data patterns and function invocations. In addition,
the unified programming interface also obviates the need to
make an ad-hoc selection from many APIs provided by vari-
ous external services, such as a message broker, in-memory
database, and persistent storage.

4 Pheromone System Design

This section presents the design of Pheromone, a new server-
less platform that supports data-centric function orchestration.

4.1 Architecture Overview
Pheromone runs on a cluster of machines. Fig. 8 shows an
architecture overview. Each worker node follows instructions
from a local scheduler, and runs multiple executors that load
and execute the user function code as needed. A worker node
also maintains a shared-memory object store that holds the
intermediate data generated by functions. The object store pro-
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Figure 9: Intra-node (left) and inter-node (right) scheduling.

vides a data bucket interface through which functions can ef-
ficiently exchange data within a node and with other nodes. It
also synchronizes data that must persist with a remote durable
key-value store, such as Anna [71]. When new data are put
into the object store, the local scheduler checks the associated
bucket triggers. If the triggering conditions are satisfied, the
local scheduler invokes the target function(s) either locally, or
remotely with the help of a global coordinator that runs on a
separate machine and performs cross-node coordination with
a global view of bucket statuses.

4.2 Scalable Distributed Scheduling

We design a two-tier, distributed scheduling scheme to ex-
ploit data locality and ensure high scalability, enabled by the
data-centric approach. Specifically, a workflow request first
arrives at a global coordinator, which routes the request to
a local scheduler on a worker node. The local scheduler in-
vokes subsequent functions to locally execute the workflow
whenever possible, thus reducing the invocation latency and
incurring no network overhead.
Intra-node scheduling. In Pheromone, a local scheduler
uses bucket triggers to invoke functions as locally as possi-
ble. The scheduler starts the first function of a workflow and
tracks its execution status via its bucket. The downstream
functions are triggered immediately on the same node when
their expected data objects are put into the associated buckets
and ready to be consumed. As no cross-node communication
is involved, it reduces the function invocation latency and
enables efficient consumption of data objects in a local work-
flow execution. Fig 9 (left) shows how the local scheduler
interacts with executors when running a workflow locally. The
executors synchronize the data status (e.g., the readiness of
local objects in buckets) with the local scheduler, which then
checks the associated bucket triggers and invokes downstream
functions if the triggering conditions are met. The low-latency
message exchange between the scheduler and executors is
enabled via an on-node shared-memory object store.

A local scheduler makes scheduling decisions based on
the status of executors. The scheduler only routes function
requests to idle executors that have no running tasks, avoiding
concurrent invocations and resource contention in each execu-
tor (similar to the concurrency model in AWS Lambda [9]).
When the executor receives a request for the first time, it loads
the function code from the local object store and persists it
in memory for reuse in subsequent invocations. In case of

multiple idle executors, the scheduler prioritizes those with
function code already loaded to enable a warm start.4

Delayed request forwarding from overloaded nodes. If
the requests received by a local scheduler exceed the capacity
of local executors, the scheduler forwards them to a global
coordinator, which routes them to other worker nodes with suf-
ficient resources. Instead of forwarding the exceeding requests
immediately, the scheduler waits for a configurable short time
period: if any local executors become available during this pe-
riod, the requested functions start and the requests are served
locally. The rationale is that it typically takes little time for
executors to become available as most serverless functions
are short-lived [64], plus Pheromone has microsecond-scale
invocation overhead (§6.2). Such a delayed scheduling has
proven effective for improving data locality [77].
Inter-node scheduling. A global coordinator not only for-
wards requests from overloaded nodes to non-overloaded
nodes, but also drives the execution of a large workflow which
needs to run across multiple worker nodes that collectively
host many functions of the workflow. This cannot be orches-
trated by individual local schedulers without a global view.

As Fig. 9 (right) shows, a coordinator gathers the associated
bucket statuses of the functions of a large workflow from mul-
tiple worker nodes, and triggers the next functions as needed.
Each node immediately synchronizes local bucket status with
the coordinator upon any change, such that the coordinator
maintains an up-to-date global view. When the coordinator
decides to trigger functions, it also updates this message to
relevant workers, which reset local bucket status accordingly.
This ensures a function invocation is neither missed nor du-
plicated. Note that, some bucket triggers (e.g., ByTime) can
only be performed at the coordinator with its global view;
here, worker nodes only update their local statuses to the
coordinator without checking trigger conditions.

The data-centric orchestration improves data locality in
the inter-node scheduling. The coordinator makes scheduling
decisions using the node-level knowledge reported by local
schedulers, including cached functions, the number of idle
executors, and the number of objects relevant to the workflow.
It then schedules a request to a worker node with sufficient
warm executors and the most relevant data objects.
Scaling distributed scheduling with sharded coordina-
tors. Pheromone employs a shared-nothing model to sig-
nificantly reduce synchronization between local schedulers
and global coordinators, thus attaining high scalability. Specif-
ically, it partitions the workflow orchestration tasks across
sharded coordinators, each of which manages a disjoint set
of workflows. When executing a workflow, the responsible
coordinator sends the relevant bucket triggers to a selected set
of worker nodes and routes the invocation requests to them.
A worker node may run functions of multiple workflows. For

4Many techniques have been proposed to deal with cold starts of execu-
tors [33, 37, 41, 44, 57, 64, 70], which can be applied directly in Pheromone.
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each workflow, its data and trigger status are synchronized
with the responsible coordinator only. This design substan-
tially reduces communication and synchronization overheads,
and can be achieved by running a standard cluster manage-
ment service (e.g., ZooKeeper [5, 45]) that deals with coor-
dinator failures and allows a client to locate the coordinator
of a specific workflow. The client can then interact with this
coordinator to configure data triggers and send requests. This
process is automatically done by the provided client library
and is transparent to developers.

4.3 Bucket Management and Data Sharing

We next describe how Pheromone manages data objects in
buckets, and enables fast data sharing between functions.
Bucket management. Pheromone uses an on-node shared-
memory object store to maintain data objects, such that func-
tions can directly access them via pointers (i.e., EpheObject
in Table 2). A data object is marked ready when the source
function puts it into a bucket via send_object(). The bucket
can be distributed across its responsible coordinator and a
number of worker nodes, where each worker node tracks local
data status while the coordinator holds a global view (§4.2).
Bucket status synchronization is only needed between the
responsible coordinator and workers, as local statuses at dif-
ferent workers track their local objects only and are disjoint.

Pheromone garbage-collects the intermediate objects of a
workflow execution after the associated invocation request
has been fully served along the workflow. In case a workflow
is executed across multiple worker nodes, the responsible co-
ordinator notifies the local scheduler on each node to remove
the associated objects from its object store.

When a worker node’s local object store runs out of mem-
ory, a remote key-value store is used to hold the newly gener-
ated data objects at the expense of an increased data access
delay.5 Later, when more memory space is made available
(e.g., via garbage collection), the node remaps the associated
buckets to the local object store. In case a data object is lost
due to system failures, Pheromone automatically re-executes
the source function(s) to get it recovered (details in §4.4).
Fast data sharing. Pheromone further adopts optimizations
to fully reap the benefits of data locality enabled by its data-
centric design. As intermediate data are typically short-lived
and immutable [49, 67], we trade their durability for fast data
sharing and low resource footprint. With an on-node shared-
memory object store, Pheromone enables zero-copy data shar-
ing between local functions by passing only the pointers of
data objects to the target functions. This avoids the significant
data copying and serialization overheads, and substantially
reduces the latency of accessing local data objects.

To efficiently pass data to remote functions, Pheromone

5Our current implementation does not support spilling in-memory objects
to disk, which we leave for future work.

also enables the direct transfer of data objects between nodes.
A function packages the metadata (e.g., locator) of a data
object into a function request being sent to a remote node.
The target function on the remote node uses such metadata
to directly retrieve the required data object. Compared with
using a remote storage for cross-node data sharing, our di-
rect data transfer avoids unnecessary data copying, and thus
leads to reduced network and storage overheads. While the
remote-storage approach can ensure better data durability and
consistency [24, 65, 66], there is no such need for intermedi-
ate data objects. Only when data are specified to persist will
Pheromone synchronize data objects with a durable key-value
store (see send_object() in Table 2).

Note that, Pheromone’s data-centric design can expose de-
tails of intermediate data (e.g., the size of each data object),
therefore we can further optimize cross-node data sharing. For
large data objects, they are sent as raw byte arrays to avoid
serialization-related overheads, thus significantly improving
the performance of transferring large objects (see Fig. 13
in §6.2). For small data objects, Pheromone implements a
shortcut to transfer them between nodes: it piggybacks small
objects on the function invocation requests forwarded during
the inter-node scheduling (see §4.2). This shortcut saves one
round trip as the target function does not need to additionally
retrieve data objects from the source function. In addition,
Pheromone runs an I/O thread pool on each worker node to
improve cross-node data sharing performance.

4.4 Fault Tolerance

Pheromone sustains various types of system component
failures. In case an executor fails or a data object is lost,
Pheromone restarts the failed function to reproduce the lost
data and resume the interrupted workflow. This is enabled by
using the data bucket to re-execute its source function(s) if
the expected output has not been received in a configurable
timeout. This fault handling approach is a natural fit for data-
centric function orchestration and brings two benefits. First,
it can simplify the scheduling logic as data buckets can au-
tonomously track the runtime status of each function and issue
re-execution requests whenever necessary, without needing
schedulers to handle function failures. Second, it allows devel-
opers to customize function re-execution rules when configur-
ing data buckets, e.g., timeout. Fig. 7 gives an example of spec-
ifying re-execution rules (line 5). Fig. 5 shows the interface
to implement the logic of function re-execution for a bucket
trigger (notify_source_func and action_for_rerun).

Pheromone also checkpoints the scheduler state (e.g., the
workflow status) to the local object store, so that it can quickly
recover from a scheduler failure on a worker node. In case
that an entire worker node crashes, Pheromone re-executes
the failed workflows on other worker nodes. Pheromone can
also handle failed coordinators with a standard cluster man-
agement service, such as ZooKeeper, as explained in §4.2.
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Figure 10: Latencies of invoking no-op functions under three interaction patterns: function chain, parallel and assembling
invocations. Each bar is broken into two parts which measure the latencies of external (darker) and internal (lighter) invocations,
respectively. The overall latency value is given at the top of the bar, and the internal invocation latency is given at the bottom.

5 Implementation

We have implemented Pheromone atop Cloudburst [66], a
lightweight, performant serverless platform. We heavily re-
architected Cloudburst and implemented Pheromone’s key
components (Fig. 8) in 5k lines of C++ code. These com-
ponents were packaged into Docker [19] images for ease
of deployment. Pheromone’s client was implemented in 400
lines of Python code. Like Cloudburst, Pheromone runs in a
Kubernetes [25] cluster for convenient container management,
and uses Anna [71, 72], an autoscaling key-value store, as the
durable key-value storage. On each worker node, we mount
a shared in-memory volume between containers for fast data
exchange and message passing. The executor loads function
code as dynamically linked libraries, which is pre-compiled
by developers and uploaded to Pheromone. The entire code-
base of Pheromone is open-sourced at [26].

6 Evaluation

In this section, we evaluate Pheromone via a cluster deploy-
ment in AWS EC2. Our evaluation answers three questions:

• How does Pheromone improve function interactions
(§6.2) and ensure high scalability (§6.3)?

• Can Pheromone effectively handle failures (§6.4)?
• Can developers easily implement real-world applications

with Pheromone and deliver high performance (§6.5)?

6.1 Experimental Setup
Cluster settings. We deploy Pheromone in an EC2 cluster.
The coordinators run on the c5.xlarge instances, each with 4
vCPUs and 8 GB memory. Each worker node is a c5.4xlarge
instance with 16 vCPUs and 32 GB memory. The number
of executors on a worker node is configurable and we tune
it based on the requirements of our experiments. We deploy
up to 8 coordinators and 51 worker nodes, and run clients on
separate instances in the same us-east-1a EC2 zone.
Baselines. We compare Pheromone with four baselines.

1) Cloudburst: As an open-source platform providing fast
state sharing, Cloudburst [66] adopts early binding in schedul-
ing: it schedules all functions of a workflow before serving
a request, and enables direct communications between func-
tions. It also uses function-collocated caches. As Pheromone’s
cluster setting is similar to Cloudburst’s, we deploy the two
platforms using the same cluster configuration and resources.

2) KNIX: As an evolution of SAND [34], KNIX [24] im-
proves the function interaction performance by executing
functions of a workflow as processes in the same container.
Message passing and data sharing can be done either via a
local message bus or via a remote persistent storage.

3) AWS Step Functions (ASF): We use ASF Express Work-
flows [14] to orchestrate function instances as it achieves
faster function interactions than the ASF Standard Work-
flows [14]. As ASF has a size limit of transferring interme-
diate data (see Fig. 2), we use Redis [6], a fast in-memory
storage service, to share large data objects between functions.

4) Azure Durable Functions (DF): Compared with ASF, DF
provides a more flexible support for function interactions. It
allows developers to express workflows in program code and
offers the Entity Functions [17] that can manage workflow
states following the actor model [36, 54]. We include DF
to study whether this expressive orchestration approach can
achieve satisfactory performance.

Here, Cloudburst, KNIX and ASF focus more on optimiz-
ing function interactions of a workflow, while DF provides
rich expressiveness. Note that, for the two commercial plat-
forms, i.e., ASF and DF, we cannot control their orchestration
runtime. To make a fair comparison, we configure their re-
spective Lambda and Azure functions such that the number
of function instances matches that of executors in Pheromone.
The resource allocations of each function instance and execu-
tor are also maintained the same. In our experiments, func-
tions are all warmed up to avoid cold starts in all platforms.

6.2 Function Interaction
Function invocation under various patterns. We first eval-
uate the overhead of invoking no-op functions without any
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Figure 11: Latencies of a two-function chain invocation under
various data sizes.

payload. We consider three common invocation patterns: se-
quential execution (e.g., a two-function chain), parallel invo-
cation (fan-out), and assembling invocation (fan-in). We vary
the number of involved functions for parallel and assembling
invocations to control the degree of parallelism. Fig. 10 shows
the latencies of invoking no-op functions under these three
patterns. Each latency bar is further broken down into the
overheads of external and internal invocations. The former
measures the latency between the arrival of a request and the
complete start of the workflow, and the latter measures the
latency of internally triggering the downstream function(s)
following the designated pattern. In Pheromone, the external
invocation latency is mostly due to the overhead of request
routing which takes about 200 µs [20]. Note that, functions
can be invoked locally or remotely in Pheromone and Cloud-
burst, thus we measure them respectively in Fig. 10. In our
experiments, we report the average latency over 10 runs.

Fig. 10 (left) compares the invocation latencies of a two-
function chain measured on five platforms. Pheromone sub-
stantially outperforms the others. In particular, Pheromone’s
shared memory-based message passing (§4.3) only incurs an
overhead of less than 20 µs, reducing the local invocation
latency to 40 µs, which is 10× faster than Cloudburst. The
latency improvements become significantly more salient com-
pared with other platforms (e.g., 140× over KNIX, 450× over
ASF). When invoking a remote function, both Pheromone and
Cloudburst require network transfer, leading to a similar inter-
nal invocation latency. Yet, Cloudburst incurs higher overhead
than Pheromone for external invocations as it needs to sched-
ule the entire workflow’s functions before serving a request
(early binding), thus resulting in worse overall performance.

Fig. 10 (center) and (right) show the invocation latencies un-
der parallel and assembling invocations, respectively. We also
evaluate the cross-node function invocations in Pheromone
and Cloudburst by configuring 12 executors on each worker,
thus forcing remote invocations when running 16 functions.
Pheromone constantly achieves the best performance and in-
curs only sub-millisecond latencies in all cases, even for cross-
node function invocations. In contrast, Cloudburst’s early-
binding design incurs a much longer latency for function
invocations as the number of functions increases. Both KNIX
and ASF incur high invocation overheads in the parallel and
assembling scenarios. DF yields the worst performance, and
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Figure 12: Latencies of parallel (left) and assembling (right)
invocations under various data sizes, using 8 functions.

we exclude it from the experiments hereafter.

Data transfer. We next evaluate the interaction overhead
when transferring data between functions. Fig. 11 shows the
invocation latencies of a two-function chain with various
data sizes in Pheromone, Cloudburst, KNIX, and ASF. We
evaluate both local and remote data transfer for Pheromone
and Cloudburst. For KNIX and ASF where the data transfer
can be done via either a workflow or a shared storage (i.e.,
Riak and Redis), we report the best of the two choices.

For local data transfer, Pheromone enables zero-copy data
sharing, leading to extremely low overheads regardless of the
data size, e.g., 0.1 ms for 100 MB data. In comparison, Cloud-
burst needs the data copying and serialization, causing much
longer latencies especially for large data objects. For remote
data transfer, both Pheromone and Cloudburst support direct
data sharing across worker nodes. Pheromone employs an
optimized implementation without (de)serialization, making
it more efficient than Cloudburst. Collectively, compared with
Pheromone, the serialization overhead in Cloudburst domi-
nants the latencies of both local and remote invocations under
large data exchanges, which diminishes the performance ben-
efits of data locality: saving the cost of transferring 100 MB
data across network only reduces the latency from 844 ms to
648 ms. Fig. 11 also shows that KNIX and ASF incur much
longer latencies. While KNIX outperforms ASF when data
objects are small, ASF becomes more efficient for passing
large data because it is configured in our experiments to use
the fast Redis in-memory storage for large data transfer.

We further evaluate the overhead of data transfer under
parallel and assembling invocations. For parallel invocation,
we measure the latency of a function invoking parallel down-
stream functions and passing data to all of them; for assem-
bling invocation, we measure the latency between the trans-
fer of the first object and the reception of all objects in the
assembling function. Fig. 12 shows the latencies of these
two invocation patterns under various data sizes. Similarly,
Pheromone constantly achieves faster data transfer compared
with all other platforms for both invocation patterns.

Improvement breakdown. To illustrate how each of our
individual designs contributes to the performance improve-
ment, we break down Pheromone’s function invocation per-
formance and depict the results in Fig. 13. Specifically, for
local invocation, “Baseline” uses a central coordinator to in-
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voke downstream functions (i.e., no local schedulers), which
is today’s common practice [11]; “Two-tier scheduling” uses
our local schedulers for fast invocations on the same worker
node (§4.2), where intermediate data objects are cached in the
scheduler’s memory and get copied to next functions; “Shared
memory” further optimizes the performance via zero-copy
data sharing (§4.3). Fig. 13 (top) shows that applying two-tier
scheduling can reduce network round trips and achieve up to
3.7× latency improvement over “Baseline”. Applying shared
memory avoids data copy and serialization, further speeding
up the data exchange especially for large objects (e.g., 1 MB)
by two orders of magnitude.

For remote invocation, “Baseline” uses a durable key-value
store (i.e., Anna [71]) to exchange intermediate data among
cross-node functions; “Direct transfer” reduces the commu-
nication overhead by allowing direct data passing between
nodes (§4.3), where raw data objects on a node are serialized
into a protobuf [27] message and then sent to downstream
functions; “Piggyback & w/o Ser.” further optimizes the data
exchange by piggybacking small objects on forwarded func-
tion requests and eliminating serialization (§4.3). As shown
in Fig. 13 (bottom), direct data transfer avoids interactions
with the remote storage and improves the performance by up
to 2.6× compared with baseline. The piggyback without seri-
alization further speeds up the remote invocations with small
(10 B) and large (1 MB) objects by 2× and 2.7×, respectively.

6.3 Scalability
We next evaluate the scalability of Pheromone with regard to
internal function invocations and external user requests.
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Figure 15: End-to-end latencies with various numbers of par-
allel functions (left), and the distribution of function start
times when executing 4k functions in Pheromone (right).
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Figure 16: Request throughput when serving requests to no-op
functions under various numbers of functions or executors.

Long function chain. We start with a long function chain
that sequentially invokes a large number of functions [76].
Here, each function simply increments its input value by 1
and sends the updated value to the next function, and the final
result is the total number of functions. As shown in Fig. 14,
we change the number of chained functions, and Pheromone
achieves the best performance at any scale. Moreover, Cloud-
burst suffers from poor scalability due to its early-binding
scheduling, causing significantly longer latencies when the
number of chained functions increases; KNIX cannot host
too many function processes in a single container, making
it ill-suited for long function chains; ASF incurs the longest
latencies due to its high overhead of function interactions.
Parallel functions. Fig. 15 (left) evaluates the end-to-end
latencies of invoking various numbers of parallel functions,
where each function sleeps 1 second. We run 80 function ex-
ecutors per node in Pheromone and Cloudburst. Pheromone
only incurs a negligible latency in large-scale parallel execu-
tions, while ASF and Cloudburst incur much higher latencies,
e.g., seconds or tens of seconds. KNIX suffers from severe
resource contention when running all workflow functions in
the same container, and fails to support highly parallel func-
tion executions. To further illustrate Pheromone’s behavior in
parallel invocations, Fig. 15 (right) shows the distribution of
function start times, where Pheromone can quickly launch all
4k functions within 40 ms.
User request throughput. Fig. 16 shows the user request
throughput when serving requests to no-op functions using
various numbers of executors. We configure 20 executors on
each node in Pheromone and Cloudburst. We observe that
Cloudburst’s schedulers can easily become the bottleneck
under a high request rate, making it difficult to fully utilize the
executor’s resources; KNIX suffers from a similar problem
that limits its scalability. While ASF has no such an issue, it
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Figure 17: Median and 99th tail latencies of a four-function
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executions. The numbers indicate the tail latencies.

leads to low throughput due to its high invocation overhead
(Fig. 10). Compared with these platforms, Pheromone ensures
better scalability with the highest throughput.

6.4 Fault Tolerance
We evaluate Pheromone’s fault tolerance mechanism (§4.4).
We execute a workflow that chains four sleep functions (each
sleeps 100 ms), and each running function is configured
to crash at a probability of 1%. Fig. 17 shows the median
and 99th tail latencies of the workflow over 100 runs using
Pheromone’s function- and workflow-level re-executions after
a configurable timeout. In particular, the timeout is configured
as twice of the normal execution, i.e., 200 ms for each indi-
vidual function and 800 ms for the workflow. We also include
the normal scenario where no failure occurs. Compared with
the common practice of workflow re-execution, Pheromone’s
data-centric mechanism allows finer-grained, function-level
fault handling, which cuts the tail latency of the workflow
from 1204 ms to 608 ms, thus significantly reducing the re-
execution overhead.

6.5 Case Studies
We evaluate two representative applications atop Pheromone:
Yahoo’s streaming benchmark for advertisement events [40],
and a data-intensive MapReduce sort.
Advertisement event stream processing. This application
filters incoming advertisement events (e.g., click or purchase),
checks which campaign each event belongs to, stores them
into storage, and periodically counts the events per campaign
every second. As shown in Fig. 1 (right) and discussed in §2.2,
the key to enabling this application in serverless platforms
is to periodically invoke a function to process the events
accumulated during the past one second.

In Pheromone, this is straightforward by using the ByTime
primitive (§3.3 and Fig. 7). This application can also be imple-
mented easily in DF by using an addressable Entity function
for aggregation [16]. However, it is non-trivial in ASF and
we have to resort to a “serverful” workaround: one workflow
does the regular “filter-check-store” for each event and sends
the event ID to an external, serverful coordinator; a separate
workflow is set up to get triggered every second by the accu-
mulated event IDs sent from the external coordinator, so that
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Figure 18: Delays of accessing the accumulated data objects
in the advertisement event stream processing. Lower delays
and more objects are better.

it can access and count the associated events per campaign.
Fig. 18 compares the performance on Pheromone, ASF, and

DF. We measure the delays of accessing accumulated data
objects (i.e., advertisement events), where the lower delays
and more objects are better. For DF, data are not accessed in
batches, and thus we measure the queuing delay between the
reset request being issued and the Entity function receiving
it. We use up to 40 functions in all these platforms. DF re-
sults in a significant overhead with high and unstable queuing
delays, as its Entity function can easily become a bottleneck.
Among the three platforms, Pheromone performs the best: it
can access substantially more accumulated data objects in a
much smaller delay. In summary, Pheromone not only simpli-
fies the design and deployment for such a stream processing
application, but also delivers high performance.
MapReduce sort. We next evaluate how Pheromone’s data-
centric orchestration can easily facilitate MapReduce sort, a
typical data-intensive application. We have built a MapRe-
duce framework atop Pheromone, called Pheromone-MR. Us-
ing the DynamicGroup primitive, Pheromone-MR can be im-
plemented in only 500 lines of code, and developers can pro-
gram standard mapper and reducer [2] without operating on
intermediate data (§3.2). We compare Pheromone-MR with
PyWren [48], a specialized serverless analytics system built
atop AWS Lambda. Compared with Pheromone-MR, PyWren
is implemented in about 6k lines of code and supports the
map operator only, making it complicated to deploy a MapRe-
duce application: developers need to explicitly transfer the
intermediate data via a shared storage (e.g, Redis) to simu-
late the reducer, and carefully configure the storage cluster
for improved data exchange. Even with these optimizations,
PyWren still suffers from limited performance (and usability).

We evaluate the performance of Pheromone-MR and Py-
Wren with MapReduce sort over 10 GB data, where 10 GB
intermediate objects are generated in the shuffle phase. We
allocate each Pheromone executor and each Lambda instance
the same resource, e.g., 1 vCPU. We also configure a Redis
cluster for PyWren to enable fast data exchange. We measure
the end-to-end latencies on Pheromone-MR and PyWren using
various numbers of functions, and break down the results into
the function interaction latency and the latency for compute
and I/O. The former measures the latency between the com-
pletion of mappers and the start of reducers. For PyWren,
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compute and I/O. The numbers indicate the former.

the interaction latency consists of two parts: 1) the invoca-
tion latency of triggering all reducers after mappers return,
and 2) the I/O latency of sharing intermediate data via Re-
dis. As shown in Fig. 19, running more functions in PyWren
improves the I/O of sharing intermediate data, but results
in a longer latency in parallel invocations. Compared with
PyWren, Pheromone-MR has a significantly lower interaction
latency (e.g., less than 1s), thus improving the end-to-end
performance by up to 1.6×.

We note that, the limitations of AWS Lambada make Py-
Wren less efficient. First, because Lambda does not support
large-scale map by default [13], it needs to implement this
operation but in an inefficient way which incurs high invo-
cation overheads. Second, Lambda has a limited support for
data sharing, forcing developers to explore an external alter-
native that incurs high overheads even though using a fast
storage (i.e., Redis). Unlike AWS Lambda, Pheromone sup-
ports rich patterns of function executions while enabling fast
data sharing, such that developers can easily build a MapRe-
duce framework and achieve high performance.

7 Discussion and Related Work

Isolation in Pheromone. Pheromone provides the container-
level isolation between function invocations, while functions
running on the same worker node share in-memory data ob-
jects (§4.3). Commercial container-based serverless platforms
often do not co-locate functions from different users to en-
hance security [1]. In this setting, functions on the same
worker node can be trusted; hence, it is safe to trade strict iso-
lation for improved I/O performance. We notice that current
serverless platforms have made various trade-offs between
performance and isolation. For example, AWS Lambda runs
functions in MicroVMs for strong isolation [33]; KNIX iso-
lates a workflow’s functions using processes in the same
container for better performance [34]; recent work proposes
lightweight isolation for privacy-preserving serverless appli-
cations [52]. Pheromone can explore these different trade-offs,
which we leave for future work.
Supported languages. Pheromone currently supports func-
tions written in C++, but it can be straightforward to sup-

port other programming languages. Specifically, Pheromone’s
executor exposes data trigger APIs (Tabel 2) and interacts
with other system components, and can serve as a proxy
for functions written in different languages. That being said,
Pheromone’s optimization on fast data exchange via shared
memory may not apply to all language runtimes – only
those allowing the direct consumption of byte arrays without
(de)serialization, e.g., Python ctype, can benefit from zero-
copy data sharing. The other Pheromone designs are still
effective regardless of language runtimes.
Data exchange in serverless platforms. Data exchange is
a common pain point in today’s serverless platforms. One gen-
eral approach is to leverage shared storage to enable and opti-
mize data exchange among functions [38,42,43,49,56,58,59].
One other approach is to exploit data locality to improve
performance, e.g., by placing workflow functions on a sin-
gle machine [46, 51, 53, 65–67]. Moreover, OFC [55] and
Faa$T [61] provide the autoscaling cache for individual ap-
plications. Shredder [80] and Zion [62] push the function
code into storage. Wukong [39] enhances the locality of
DAG-based parallel workloads at the application level. Lamb-
data [67] makes the intent of a function’s input and output
explicit for improved locality; however, it does not provide a
unified programming interface for expressive and simplified
function interactions, and its performance is heavily bound to
Apache OpenWhisk [3, 51].

8 Conclusion

This paper revisits the function orchestration in serverless
computing, and advocates a new design paradigm that a server-
less platform needs to: 1) break the tight coupling between
function flows and data flows, 2) allow fine-grained data ex-
change between functions of a workflow, and 3) provide a uni-
fied and efficient approach for both function invocations and
data exchange. With this data-centric paradigm, we have de-
signed and developed Pheromone, a new serverless platform
which achieves all the desired properties, namely, rich expres-
siveness, high usability, and wide applicability. Pheromone is
open-sourced, and outperforms current commercial and open-
source serverless platforms by orders of magnitude in terms
of the latencies of function invocation and data exchange.
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