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ABSTRACT

Advances in wireless technologies have transformed wireless
networks from a pure communication medium to a perva-
sive sensing platform, enabling many sensorless and con-
tactless applications. After years of effort, wireless sensing
approaches centering around conventional signal processing
are approaching their limits, and meanwhile, deep learning-
based methods become increasingly popular and have seen
remarkable progress. In this paper, we explore an unseen
opportunity to push the limit of wireless sensing by jointly
employing learning-based spectrogram generation and spec-
trogram learning. To this end, we present SLNet, a new
deep wireless sensing architecture with spectrogram anal-
ysis and deep learning co-design. SLNet employs neural
networks to generate super-resolution spectrogram, which
overcomes the limitation of the time-frequency uncertainty.
It then utilizes a novel polarized convolutional network that
modulates the phase of the spectrograms for learning both
local and global features. Experiments with four applications,
i.e., gesture recognition, human identification, fall detection,
and breathing estimation, show that SLNet achieves the
highest accuracy with the smallest model and lowest com-
putation among the state-of-the-art models. We believe the
techniques in SLNet can be widely applied to fields beyond
WiFi sensing.

1 INTRODUCTION

We are entering the era of Artificial Intelligence of Things
(AIoT) where trillions of devices are pervasively connected
and, more importantly, equipped with advanced sensing in-
telligence. They can sense the physical space and gain aware-
ness of contexts such as locations, activities, motion, vital
signs, etc. With advances in wireless sensing, all these could
be achieved using pervasive wireless infrastructure, without
dedicated sensors, wearables, or cameras. As promising as it
is, existing wireless sensing is approaching its limits using
conventional signal processing methods and faces perfor-
mance bottlenecks in distinguishing task-relevant features
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from entangled irrelevant features in signals.
With its remarkable success in numerous fields, deep learn-

ing has become increasingly popular, and also seemingly
effective, for wireless sensing, promising the next break-
through for practical wireless sensing systems for AIoT. Most
of the prior works perform conventional signal processing
(e.g., frequency transformation) in tandem with deep neural
networks, such as convolutional neural networks, which are
mainly designed for visual data like images and videos. RF
data, most commonly Channel State Information (CSI) data,
however, fundamentally differs from visual data in multiple
unique aspects: 1) Non-visual1: RF data contains physical
and geometric connotations in time, space, and frequency
domains that are not visually intelligible; 2) Complex: RF
data is complex-valued with both amplitude and phase infor-
mation; 3) High-dimensional: While visual data are mostly
2D or 3D, RF data comes with multiple dimensions of time,
subcarriers, antennas, and/or transceivers. In addition, it
is generally more difficult to build a large RF dataset for
training than in the computer vision field, both because that
RF data collection is cumbersome as it depends on many
environmental factors and that RF data cannot be labeled
offline since they are not visually intelligible to human eyes.
There exists a gap between prior neural networks and the
distinct RF data, rendering existing deep wireless sensing
systems suboptimal in performance yet over-complicated
in model complexity. While there are also other non-visual,
complex, and/or high-dimensional data like speech [28, 50],
the unique characteristics of RF sensing call for a separate
design to push the limit of deep wireless sensing.
We present SLNet, a novel neural network architecture

with a spectrogram analysis-deep learning co-design for RF
data. Rather than performing spectrogram analysis sepa-
rately from deep learning, SLNet couples them tightly based
on an in-depth understanding of their respective limitations
in processing RF data. By doing so, SLNet significantly
boosts the effectiveness and efficiency of deep wireless sens-
ing. It consists of three major modules:
Learning-Assisted Spectrogram Enhancement: Many

1RF data can certainly be visualized in many ways. However, we argue that

RF data itself is not visually intelligible like images to humans.
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Figure 1: A comparison between SLNet and the state-

of-the-art neural networks for WiFi-based gesture

recognition task. CV models are accurate but bigger,

while existing networks for wireless sensing are rel-

atively small but less accurate. SLNet achieves the

highest performance on wireless sensing tasks while

reducing computing and memory consumption for

practical applications. The radii of the circles repre-

sent the number of model parameters. (References: A:

[90], B: [22], C: [87], D: [84], E: [30], F: [46])

wireless sensing approaches, either model-driven or data-
driven, employ the Fast Fourier Transform (FFT) on a time
series of RF data to obtain time-frequency spectrograms of
human activities. FFT suffers from errors due to an effect
known as leakage, when the block of data is not periodic (the
most common case in practice), which results in a smeared
spectrum of the original signal and further leads to mislead-
ing data representation for learning-based sensing: First, the
side lobes łpollutež the spectrograms as they are not from
actual human motions but simply the results of spectral
leakage. Second, human activities typically contain multiple
frequency responses that may be severely affected by the
leakage, leading to a łblurredž spectrogram with mixed lobes.
Classical approaches reduce leakage by windowing, which
cannot eliminate leakage entirely. In effect, they only change
the shape of the leakage with different windowing func-
tions to achieve a trade-off between temporal and frequency
resolutions. Differently, utilizing learning-based methods
promises to push the boundaries beyond classical limitations
and, in turn, provide high-fidelity spectrograms for further
learning tasks. SLNet introduces a spectrogram enhance-
ment network (ğ3.1) to learn the best function to minimize
or nearly eliminate the leakage, thereby outputting an un-
paralleled spectrum with high accuracy.
Multi-Resolution Spectrogram Fusion: The frequency
resolution of FFT depends on its window size, i.e., the length
of the input data block. Using a larger window promises

higher resolution, but only generates a more accurate spec-
trum when the underlying frequency is quasi-static within
thewindow. In contrast, applying a shorter window improves
the responsiveness to fast-changing frequencies, but immedi-
ately loses high resolution. Therefore, instead of balancing be-
tween conflicting goals of resolution and responsiveness by
finding a fixed window length, SLNet employs multiple win-
dows jointly and generates a hologram of multi-resolution
spectrograms, which then serves as multi-channel inputs
that a neural network can adaptively learn from (ğ3.2).
Polarized Convolutional Network: The hologram is like
an image by format, with each spectrogram serving as a
łcolorž channel. Thus it is straightforward to employ convo-
lutional neural networks (CNN) to extract underlying fea-
tures from it. Invented for visual data, CNN mainly learns
local features irrespective of global locations of objects in
an image, allowing images to be shifted. Unfortunately, the
locality property makes CNN inappropriate for spectrogram
learning, as the global locations, i.e., frequencies, are corre-
lated with the physical properties of a person’s activities,
which is not shift-invariant. To preserve global discrimina-
tion, we propose a Polarized Convolutional Network (PCN,
ğ3.3). First, we polarize the spectrograms via specially mod-
ulated phase information, making them locally unaltered
while globally differentiated. Then we design a special con-
volutional operator to extract features from the polarized and
thus complex-valued spectrogram. Compared to CNN, PCN
preserves the local features and the global discrimination
simultaneously and thus boosts the learning performance.
Based on this, we further adopt a compression network for
feature deduction and build a task-adaptive network that
can be flexibly customized for different sensing tasks.

We implement SLNet on commodity off-the-shelf (COTS)
WiFi devices and evaluate its performance for four human-
centered sensing applications, i.e., gesture recognition, gait-
based person identification, fall detection, and breathing rate
estimation. Extensive experiments are conducted in four
typical indoor environments including a classroom, a hall,
an apartment, and an office. Our results show that SLNet
achieves 96.6% accuracy on gesture recognition, 98.9% ac-
curacy on gait identification, 99.8%/97.2% precision/recall
for fall detection, and an average error of 2.4 BPM for multi-
person breath estimation. Experimental comparisons with
over 10 state-of-the-art deep learning models demonstrate
that SLNet achieves the highest accuracy with the fewest
model parameters and computation operations, as illustrated
in Fig. 1, making it more practical and preferable for edge
devices (e.g., home routers).
Contributions: SLNet presents a spectrogram analysis-
deep learning co-design network distinctively customized for
deep wireless sensing on the time series of high-dimensional,
complex-valued RF data. We envision that SLNet inspires
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tailored deep-learning architectures that are generalizable
to multiple tasks and environments of wireless sensing. Fur-
ther, we believe the techniques introduced in SLNet, includ-
ing SEN and PCN, are applicable to many fields involving
timeśfrequency signal analysis and spectrogram learning.
SLNet is open-sourced here [41].

2 PRIMER

2.1 Preprocessing of RF Data

CSI reflects the channel through which wireless signals prop-
agate. When a person performs an activity, his or her impact
on the channel is encoded in CSI, and the activity can thus
be inferred from the CSI. Suppose that the person creates 𝐿
propagation paths between the transmitter and the receiver,
the measured CSI is [36]:

𝐻 (𝑡) =𝐻𝑠 +

𝐿∑

𝑙=1

𝛼𝑙 (𝑡)𝑒
𝑗2𝜋

∫
𝑡

−∞
𝑓𝐷𝑙

(𝑢)du + 𝑛(𝑡), (1)

where 𝛼𝑙 , 𝑓𝐷𝑙
are the complex attenuation and Doppler fre-

quency shift of the signal of the 𝑙-th path, 𝐻𝑠 is the static
part of the channel between the transmitter and the receiver,
and 𝑛 is the additive Gaussian noise.

To recognize the activity of the person, the raw temporal
CSI signals are usually transformed into spectrograms via
Short-Time Fourier Transform (STFT):

𝑆 (𝑓 , 𝑡) =STFT[𝐻 (𝑡)] =FFT[𝜛] ∗

𝐿∑

𝑙=1

𝛼𝑙 (𝑡)𝛿 (𝑓 − 𝑓𝐷𝑙
)+𝑁 (𝑓 , 𝑡),

(2)
where 𝜛 represents the windowing function in the time do-
main, ∗ the convolution operation, and 𝛿 the impulse func-
tion. 𝑁 is the frequency response of the Gaussian noise. In

Eq. 2,
∑𝐿

𝑙=1 𝛼𝑙 (𝑡)𝛿 (𝑓 − 𝑓𝐷𝑙
) reflects the activity of the person.

However, it is distorted by the windowing effect of FFT[𝜛]
and the noise𝑁 . As a result, the data fidelity of a spectrogram
in representing a person’s activity is impaired. To remove
these negative effects in the spectrogram and make the fre-
quency components of interest prominent, a spectrogram
enhancement network is developed in SLNet.
Hereafter, we refer to the 2-D output of STFT as spectro-

gram and the 1-D output of FFT as spectrum.

2.2 Complex-Valued Neural Network

The neural network acts as one of the most powerful tools
in solving various cognitive problems, such as image clas-
sification [24], speech enhancement [16], and text transla-
tion [31]. A neural network consists of layers of neurons that
generate responses according to their inputs. As shown in
Fig. 2a, a neuron calculates the sum of the input x weighted
with parameters w and the bias and applies a nonlinear ac-
tivation function 𝜎 (e.g., tanh) to generate the output 𝑥 ′,

(a)

Real Imag

(b)

Figure 2: Comparison between (a) real-valued and (b)

complex-valued neurons.

i.e., 𝑥 ′
=𝜎 (

∑
wx + 𝑏). Recently, neural networks have been

used for applications of wireless sensing, such as activity
classification [22], gait identification [91], and gesture recog-
nition [90]. However, the phase information of CSI is less
exploited or even abandoned in the existing approaches. Ac-
cording to Eq. 1, the CSI phase also encodes important infor-
mation related to the person’s activity, which, once exploited,
can benefit the recognition process. Thus, instead of using a
real-valued neural network, SLNet devises a complex-valued
neural network, whose neuron processes complex values
and fits the complex-valued spectrogram of CSI. As shown
in Fig. 2b, a complex-valued neuron consists of two real-
valued neurons, which process the real and imaginary parts
of the input, respectively. Specifically, suppose the input is
z=x+𝑖y, the weight isw=w1+𝑖w2, and the bias is b=b1+𝑖b2,
then the output of the complex neuron is 𝑧 ′=𝑥 ′ + 𝑖𝑦 ′, where
𝑥 ′

=𝜎 (Re(
∑
wz + 𝑏)) and 𝑦 ′

=𝜎 (Im(
∑
wz + 𝑏)).

3 SLNET ARCHITECTURE

SLNet is designed as a customized spectrogram learning
framework assisted with deep learning for RF data appli-
cations. It identifies the limitations of the standard signal
processing methods for wireless signals and employs specif-
ically designed deep learning modules to overcome them.
Fig. 3 shows the workflow of SLNet, which consists of four
parts. First, the spectrogram enhancement network (SEN) takes
as input a spectrogram transformed from wireless signals
via STFT, removes the spectral leakage in the spectrogram,
and recovers the underlying actual frequency components.
Second, the Fusion module combines SEN-enhanced spectro-
grams with various temporal and frequency resolutions to
form a hologram of spectrograms. To coherently combine
all spectrograms, SLNet modulates them with linear phases,
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Figure 4: Illustration of spectral leakage. (a) The ideal

frequency spectrum with discrete frequency compo-

nents. (b) Themeasured frequency spectrum obtained

via FFT. (c) The frequency components recovered via

least mean square regression. (d) The frequency com-

ponents recovered from SLNet’s SEN.

and the result is termed a polarized hologram. Third, the
polarized convolutional network (PCN) module processes the
hologram to obtain feature maps with general representa-
tivity. Finally, we adopt a compression network for feature
deduction and build a task-adaptive network (TAN), which
can be flexibly adapted for different sensing tasks.

3.1 Spectrogram Enhancement Network

Standard signal processing transforms temporal CSI signals
to a time-frequency spectrogram via STFT. A certain STFT
operator truncates the time series of signals using a slid-

ing window with a fixed length. However, the truncation
results in the windowing effect, which convolves the ideal
frequency spectrum with a sinc function and creates spectral
leakage in the frequency domain. Some classical windowing
functions (like Hamming or Gaussian window [13]) can be
multiplied with the truncated signal to mitigate the spectral
leakage, but none of them completely removes the leakage.
Fig. 4a illustrates an ideal frequency spectrum with two fre-
quency components at 15 and 30 Hz. As shown in Fig. 4b, the
estimated frequency spectrum obtained via STFT and Gauss-
ian window has significant spectral leakage and additive
Gaussian noise. Formally, suppose the ideal and estimated
frequency spectrums are s and ŝ respectively. We have:

ŝ=As + n, (3)

where n represents the additive Gaussian noise vector and A
is the convolution matrix of the windowing function in the
frequency domain. Based on Eq. 2, the 𝑖-th column of A is:

A(:,i) =FFT(𝜛) ∗ 𝛿 (𝑖). (4)

The spectral leakage significantly distorts the frequency
spectrum, producing unwanted side lobes and inaccurate fre-
quencies and amplitudes. For example, when two frequency
components are close to each other, their spectral leakage
interacts, and the weaker component becomes less promi-
nent, as shown in Fig. 4b. Such spectral leakage is caused
by the truncation of the STFT operation and is not relevant
to the sensing targets, and is essential to be removed before
applying the frequency spectrum to sensing tasks.
Given the relation between the ideal and estimated spec-

trum as in Eq. 3, it is straightforward to recover the ideal
spectrum via the least mean square (LMS) regression:

s= argmins | |ŝ − As| |2. (5)

However, the LMS regression tends to output suboptimal
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Figure 5: Data synthesis and training process of SEN.

solutions with inaccurate side peaks, as shown in Fig. 4c,
due to the existence of Gaussian noises. In contrast, the ideal
frequency spectrum of CSI signals tends to be sparse, due to
the sparsity of moving objects exposed in the wireless chan-
nel [90]. By adding the 𝑙0-norm regularization, the recovered
spectrum is closer to the ideal spectrum. However, the 𝑙0-
norm regularization makes the computational complexity of
the problem exponential to the dimension of the frequency
spectrum s [6], which is thus intractable. Besides, the sparse
Fourier transform that aims to solve this issue also suffers
from high complexity [14].

To efficiently recover the ideal spectrum, we resort to the
neural network. Compared with the optimization methods,
the learning-based method offloads the computation efforts
to the training phase and enables efficient linear computation
in the testing phase. In addition, the neural network can
regress arbitrary functions and is resistant to noises thanks
to its continuity in the hidden space. To achieve it, we develop
the dedicated network SEN. As shown in Fig. 5, the SEN takes
as input the measured complex-valued frequency spectrum
and outputs the recovered spectrum. The SEN consists of four
complex-valued fully connected layers with the hyperbolic
tangent activation function.

To train the SEN, the training dataset has to embrace the
complexity of the frequency spectrum, which is extremely
high due to the wide amplitude and phase range of wire-
less signals and random channel noises. For example, the
frequency of interest for human-centered sensing is within
[−60, 60] Hz and usually, at most five frequency compo-
nents can be observed for major reflections from the hu-
man body [55]. That is, after normalizing the signal ampli-
tude, a spectrogram can consist of 1 to 5 frequency com-
ponents, whose amplitudes, phases, and frequencies are in
[0, 1], [0, 2𝜋], [−60, 60] Hz, respectively. As collecting data
with labeled ground truth from real scenarios is challenging,

we instead synthesize the training data, which turns out to
be sufficiently effective. As shown in the upper part of Fig. 5,
we randomly generate ideal spectrums with 1 to 5 frequency
components, whose amplitudes, phases, and frequencies are
uniformly drawn from their ranges of interest.
Then, the ideal spectrum is converted to the leaked spec-

trum following the process in Eq. 3 to simulate the win-
dowing effect and random complex noises. The amplitude
of the noise follows a Gaussian distribution, and its phase
follows a uniform distribution in [0, 2𝜋]. The SEN takes the
leaked spectrum as input and outputs the enhanced spec-
trum close to the ideal one. Thus, we minimize the 𝐿2 loss
𝐿SEN = | |SEN(ŝ) − s| |2 during training. During inference, the
spectrums measured from real-world scenarios are normal-
ized to [0, 1] and fed into the SEN to obtain the enhanced
spectrum for further processing. Fig. 6 shows an example
of the spectrogram when a person performs a gesture. As
is shown, the frequency components caused by the pushing
and pulling gesture are clearly recovered by the SEN.

3.2 Multi-Resolution Spectrogram Fusion

The SEN refines the frequency spectrum of the CSI signals
by recovering its underlying frequency components. Thus, it
assumes that the frequency components remain quasi-static
during the sliding window where the frequency spectrum is
generated. However, the Doppler frequency shifts induced
by human activities keep changing, which may violate this
assumption. For example, in the fall detection scenario, the
speed of the human body changes between 0 m/s and 5
m/s, creating significant variations in signal frequencies. To
illustrate its impact on SEN, we use an example of two com-
ponents with changing frequencies, as shown in Fig. 7a. The
measured spectrogram with a sliding window of 251 ms is
shown in Fig. 7b and the refined spectrogram from SEN in
Fig. 7c. While SEN correctly distinguishes the two compo-
nents in the first half of the spectrogram, it fails to recover
them clearly in the second half, due to the rapidly changing
frequencies of the components.
One straightforward solution is to use a shorter sliding

window, during which the rapidly changing frequencies can
be approximately viewed as quasi-static. However, using a
shorter sliding window reduces the frequency resolution,
which limits the ability of the SEN to remove the spectral
leakage of the two close frequency components. Fig. 7d
shows the output of the SEN using a sliding window of
125 ms. With a shorter sliding window, the SEN recovers the
second half of the spectrogram with fast-changing frequen-
cies. However, it does not separate well the close frequency
components in the first half of the spectrogram, due to the
coarse frequency resolution of the short sliding window.

To overcome the limitation of the temporal and frequency

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    1225



NSDI, 2023 Zheng Yang, Yi Zhang, et al.

Push

Pull

(a)

Push

Pull

(b)

Figure 6: Illustration of the spectrogram of a push-

ing and pulling gesture. (a) Themeasured spectrogram

and (b) the enhanced spectrogram from SEN.
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Figure 7: Illustrations of SEN-enhanced spectrograms.

(a) The ideal spectrogram with two frequency compo-

nents. (b) The measured spectrogram from STFT with

a sliding window size of 251 ms. (c) The enhanced

spectrogram with a window size of 251ms. (d) The en-

hanced spectrogram with a window size of 125 ms.

resolutions of the spectrogram, instead of using a fixed slid-
ing window, SLNet employs a bank of sliding windows with
different lengths (similar to [73]). For each sliding window,
the corresponding spectrogram is processed via the SEN that
is pre-trained with the synthesis spectrograms with the same
window length. All SEN-enhanced spectrograms are then
concatenated as multiple channels to form a hologram of
spectrograms. As each spectrogram encodes useful informa-
tion for a certain range of temporal and frequency resolu-
tions, we further resort to the neural network to adaptively
combine all the spectrograms.

3.3 Task-Adaptive Network

SLNet employs the Task-Adaptive Network to further adapt
the hologram of enhanced spectrograms to various sensing
tasks, such as gesture recognition, gait identification, and
fall detection. As shown in Fig. 3, the TAN consists of two
modules, the PCN module that captures high-level feature
maps of the hologram and the compression module that

reduces feature dimension for specific tasks.
Polarized Convolutional Network. A hologram can be

treated as an image where each spectrogram spanning in
2-D time and frequency dimension is as one of its łcolorž
channels, and, by doing so, a CNN [15, 24] can be applied to
extract the underlying features of the hologram. However,
the solution is not optimal, as explained below.

Each neuron in CNN only takes a local field of the input to
generate the output. All the neurons in each layer share the
same weights to ensure that the local features are preserved
irrespective of their global locations. As a result, CNN is
particularly tailored for visual data since it focuses on local
dependencies and is invariant to global shifts of objects in
images. This shift-invariant property makes CNN inappro-
priate for spectrogram processing, as the global locations,
i.e., frequencies, of the frequency components are correlated
with the physical properties of the person’s activities. In an-
other word, a shift along the frequency dimension means a
change in the moving status of the person, which is highly
possible due to a different activity. Besides, the local pat-
terns of the spectrogram capture the instant motion status
of the target, which is still needed for sensing tasks. Hence,
it is necessary to develop a new model that simultaneously
preserves local dependency and global discrimination.

We propose to modulate the spectrograms with phase in-
formation, which is discarded in existing wireless sensing
models, to explicitly encode global locations in the spectro-
gram while retaining its local correlations. Specifically, it is
expected that the adjacent frequency components have simi-
lar phases while the distant ones have discriminative phases.
Thus, we modulate the spectrogram with phases that vary
linearly along the frequency dimension, i.e., the modulated
phase of the 𝑖-th frequency bin is:

𝜙𝑖 = 𝑖
𝜙ℎ − 𝜙𝑙

𝑀
+ 𝜙𝑙 , (6)

where 𝜙ℎ and 𝜙𝑙 are the phases modulated to the lowest and
highest frequency bins, and 𝑀 is the number of total fre-
quency bins. As a result, global discrimination is introduced
along the frequency dimension while the shift-invariant
property is preserved along the time dimension. Note that
we apply the proposed polarized phase modulation, rather
than incorporating the original phase information because
the raw phase contains significant errors due to carrier fre-
quency offsets and timing offsets, etc. [37, 57].
The frequency components modulated with phases can

be viewed as polarized in a 2-D complex plane. To process
the polarized spectrograms, we propose the PCN network.
PCN consists of two pairs of convolutional layers and max-
pooling layers, which are responsible for higher-level fea-
ture extraction and dimension reduction, respectively. As
shown in Fig. 8a, the polarized hologram is applied with
a convolutional layer to extract local features followed by
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Figure 8: The (a) structure and (b) convolutional oper-

ations of the Polarized Convolutional Network.

a max-pooling layer to reduce the feature dimension. The
elements within each kernel are locally clustered, while the
elements within different kernels are globally polarized to
have better global discrimination benefiting from the linear
phase introduced. In practice, several convolutional layers
can be cascaded to obtain higher-level features of the input
spectrograms. The input channel represents the number of
fused spectrograms in the hologram or the number of out-
put channels in the previous convolutional layer. For each
convolutional layer, Fig. 8b illustrates the convolutional op-
erations in complex domain. The real-valued kernels are
convolved with the real and imaginary parts of the spectro-
grams separately and combined with a bias to get the final
complex-valued output. The max-pooling layer downsam-
ples the features with the maximum amplitude and outputs
the complex-valued features.
Featuremap compression. SLNet further adopts a com-

pression network to reduce the high dimensions of the fea-
ture maps generated by the PCN and obtains a condensed
representation of features for specific tasks. The compression
network consists of a complex-valued fully connected (FC)
layer with the 𝑡𝑎𝑛ℎ activation function and a real-valued
FC layer with the 𝑅𝑒𝐿𝑈 activation function. To connect two

FC layers, SLNet calculates the absolute value of the out-
put from the complex-valued FC layer and inputs it to the
real-valued FC layer. The output features can be further fed
into additional FC layers customized for different tasks. For
example, an FC layer with 𝑁 output units followed by a
softmax activation function can be used for a gesture classifi-
cation task with 𝑁 gestures, while an FC layer with 1 output
unit followed by a sigmoid layer can be used to predict the
likelihood of human fall for the fall detection task.
We employ the pre-trained SENs to obtain the enhanced

spectrograms and feed them into the TAN for training. The𝐿2
loss between the output of the TAN and the ground-truth la-
bel is minimized, and the RMSprop optimizer is used. During
inference, SLNet takes as input the measured CSI spectro-
grams and outputs the prediction result.

4 IMPLEMENTATION & EXPERIMENTS

4.1 Implementation

Hardware. SLNet collects CSI measurements from com-
modity Intel 5300 WiFi Network Interface Cards (NICs)
equipped on off-the-shelf mini-computers. The three an-
tennas of the NIC are separated apart by half of the signal
wavelength, i.e., 2.85 cm. The operating system of the mini-
computer is Ubuntu 10.04 with Linux CSI Tool [12] installed
to log CSI readings. The NIC is set to operate on channel 165
with a center frequency of 5.825 GHz. We set all the receivers
to work on monitoring mode and inject the transmitter to
broadcast at a rate of 1,000 packets per second. All the de-
vices are connected to a router and remotely controlled. We
employ a workstation equipped with an NVIDIA GeForce
2080Ti GPU to host the DNN model.
Software.We implement SLNetmainly for benchmark anal-
ysis. The data2 is collected with a Linux shell script, and
CSI measurements are preprocessed [36] with Matlab. The
dataset [70] and code [69] is available to public. Instructions
to use this dataset can be found in our released tutorial [68].
The PyTorch [34] library is adopted to implement the cus-
tom complex-valued neurons. Raw CSI is preprocessed in
a similar way as in [90]. The SEN module is trained offline
with randomly generated spectrums. A total of 5,000 epochs
is used to train the SEN models, each of which contains 100
batches × 128 instances of generated spectrums. We pre-
train an SEN for each resolution of the spectrogram. Three
resolutions are used with window sizes of 125 ms, 251 ms,
and 501 ms, respectively. The TAN is trained by the data
measured from real deployment scenarios and enhanced by
the pre-trained SEN. All the models are trained with Adam
optimizer at a learning rate of 0.001. Batch normalization and
dropout techniques are applied during training. In practice,
the model can be trained offline, except for the use case of

2All experiments that involve humans satisfy our IRB requirements.
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Figure 9: Experimental settings established in SLNet. (a) Classroom for gesture recognition. (b) Hall for gait iden-

tification. (c) Apartment for fall detection. (d) Office for breath estimation.

gait recognition where a user needs to register himself first.

4.2 Experiments

We evaluate SLNet in four WiFi sensing applications, includ-
ing gesture recognition, gait identification, fall detection,
and breath estimation. We mainly focus on WiFi CSI sensing
in this paper and leave it for the future to explore SLNet’s
potential for other modalities like acoustic sensing.
Gesture recognition. Device-free gesture recognition [2,
90] is one of the core enablers for human-computer interac-
tion. To evaluate the performance of SLNet for gesture recog-
nition, we conduct experiments in a classroom (sketched
in Fig. 9a). One WiFi transmitter and six receivers are placed
at a height of 110 cm to capture the motion of human arms.
The users are asked to stand at the five marked positions
and face the second, third, or fourth quadrant. Eight users
(6 males and 2 females) participate in this experiment, with
heights varying from 155 cm to 185 cm and ages from 22
to 28. They perform 16 gestures, including 6 sign gestures
(push and pull, sweep, clap, slide, draw a circle, and draw
zigzag), and 10 input gestures (draw digits 0 to 9). We collect
a total of 6,000 data samples (8 people × 6 gestures × 125
instances) for the sign gestures and 5,000 samples (2 people
× 10 gestures × 250 instances) for the input gestures. The
sign gestures are used in ğ5.1, and the input gestures are
used in the other evaluations. We use the ratio between the
number of correctly recognized gestures and the number of
all samples as metrics.
Gait identification. Gait has been exploited [18, 64] for hu-
man identification. To evaluate the performance of SLNet
for gait identification, we conduct experiments in a hall
(sketched in Fig. 9b). The devices are placed similarly to
that in the gesture experiment. The users are asked to walk
freely across the center of the area with eight directions sepa-
rating 45 degrees apart. Eleven users (7 males and 4 females)
participate in this experiment, and their heights vary from
155 cm to 183 cm, and their ages vary from 20 to 26. We
collect a total of 3,600 data samples, among which 2,800 sam-
ples (7 people × 8 directions × 50 instances) are from 7 users,
and 800 samples (4 people × 8 directions × 25 instances) are

Motion Types Sub variations

Fall

sit-then-fall, lose-balance,
kneel-then-fall, trip
walk-then-fall, slip

forward, backward,
lateral, on-position

Normal
walk, sit-down/stand-up, run, bend-and-pickup,
squat, dance, open/close door, open/close fanner

Table 1: Fall and normal activities in SLNet

from the other 4 users. We use the ratio between the number
of correctly identified gait samples and the number of all
samples as metrics.
Fall detection. Fall is a major cause of impairment among
senior citizens, and some works [33, 52] have tried to de-
tect falls with wireless signals. To evaluate the performance
of SLNet for fall detection, we conduct experiments in an
apartment (sketched in Fig. 9c). A pair of WiFi devices are
placed at the height of 135 cm and 40 cm, respectively, in the
living room and the balcony at a distance of 4.5 m. We recruit
a voluntary family with 5 members (two males and three
females with heights varying from 160 cm to 181 cm and
ages varying from 20 to 50). The observed fall and normal
activities are described in Tab. 1. When collecting fall data,
we require the users to wear protective gear, and the floor is
covered with foam. Additionally, we augment the dataset by
leveraging a manikin [25] to fall. In total, we collect 2,000
normal instances and 556 fall instances, among which 300
falls are from the manikin, and 256 are from the five users.
We use precision and recall as metrics [45].
Breath estimation. Breath rate [67, 78, 83] is an important
vital sign that can indicate the condition of physical health.
To evaluate the performance of SLNet for breath estimation,
we conduct experiments in an office (sketched in Fig. 9d).
A pair of WiFi devices are placed at a height of 1 meter to
capture the signal reflection from seated participants in the
discussion zone. We recruit three participants with heights
varying from 172 cm to 185 cm and ages varying from 22 to
26. For each experiment, two of the participants sit in the
chairs and breathe naturally. We collect a total of 19 groups
of data with a duration of approximately 44 minutes. We use
the Breath Per Minute (BPM) error between the estimated
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respiration rate and the ground truth as metrics.
We first conduct experiments on all tasks to demonstrate

the generality for multiple tasks. Then we carry out ablation
and parameter study with gesture recognition as the example
task due to the space limit. Unless otherwise stated, the
results below are obtained on a 10-fold validation basis where
we randomly split the datasets into training and testing parts.

5 EVALUATION

5.1 Comparison Study

5.1.1 Comparison between learning models. To validate
the effectiveness of the whole SLNet for wireless sensing,
we compare it with 12 typical neural models used in differ-
ent modalities, including WiFi sensing, FMCW-radar sens-
ing, acoustic sensing, computer vision, and other tasks that
leverage Complex-Valued Neural Networks (CVNNs). It is
worth noting that the implementations of these networks
differ slightly from those in the cited works. As the networks
presented in those citations are designed for tasks beyond
WiFi sensing, we borrow the backbone architectures and cus-
tomize them for our own tasks and datasets. The comparison
is performed with multiple metrics in terms of model com-
plexity and recognition performance. For model complexity,
we evaluate the number of parameters of the models, which
is perceived as an effective estimate of the memory require-
ments and training overhead. For recognition performance,
the metrics are discussed in ğ4.2.
WiFi (4 baselinemodels):We compare a hybrid CNN-RNN
model similar to [23, 90] with three convolutional layers,
a GRU layer, and four FC layers; an adversarial model [8,
22] with three convolutional layers as the feature extractor,
two FC layers as the activity recognizer, and two FC layers
as domain discriminator; an encoder-decoder model with
ten FC layers as in [39, 79]; and the time-frequency feature
learning model introduced in STFNet [73].
FMCW (2 baseline models): Similar to [87], we design an
adversarial model with three convolutional layers and a GRU
layer as the feature extractor, two FC layers as the activity
recognizer, and two FC layers as the domain discriminator.
We further compare a CNN model with three convolutional
layers and four FC layers as in [84, 86]. The model is applied
to the real and imaginary parts of complex-valued features
separately.
Acoustic (1 baseline model): We compare an RNN model
with a GRU layer and six FC layers as in [30].
Vision (3 baseline models): We compare three base-
line models including VGG-11 [40], resnet-18 [15], and
densenet [20]. The input and output layers are reshaped to
accommodate our tasks.
CVNN (2 baseline models):We compare two CVNN net-
works that are not originally designed for wireless sensing

Modality Ref. Gesture Gait Fall1 Para2

WiFi
[23, 90] 90.6% 95.1% 92.8%, 96.3% 1.07M
[8, 22] 89.0% 96.6% 96.4%, 84.3% 2.72M
[39, 79] 84.3% 83.3% 96.8%, 93.8% 5.77M
[73]3 78.9% 70.9% 95.5%, 96.8% 0.06M

FMCW
[87] 88.0% 95.4% 96.0%, 96.0% 1.06M

[84, 86] 91.6% 96.4% 99.7%, 95.7% 2.76M

Acoustic [30] 89.6% 95.4% 90.6%, 98.3% 6.08M

Vision
[40] 88.3% 90.1% 95.3%, 95.3% 128.8M
[15] 91.9% 96.6% 97.0%, 95.6% 11.18M
[20] 91.0% 97.7% 99.8%, 96.3% 6.96M

CVNN
[17, 32] 72.3% 96.0% 95.2%, 93.7% 115.6M
[46] 92.0% 96.3% 98.4%, 93.8% 2.94M

WiFi SLNet 96.6% 98.9% 99.8%, 97.2% 1.48M

Table 2: Comparison against 12 baseline models. 1 The
two metrics are precision and recall. 2 Number of parameters
in Million. 3 Trained with 10,000 epochs to converge.

tasks. Similar to [17, 32], we implement an encoder-decoder
model with five complex-valued FC layers and three real-
valued FC layers. Similar to [46], we evaluate a CNN model
with two complex-valued convolutional layers, two complex-
valued FC layers, and two real-valued FC layers.

The input of the baseline model [73] is CSI amplitude with
a size of (𝑇, 30,𝐶), where𝑇 represents the time snapshots of
data samples, 30 represents the number of subcarriers, and
𝐶 represents the number of WiFi antennas. The input of the
other baseline models is raw DFS with a size of (121,𝑇 ,𝐶),
where 121 represents the frequency bins within [−60, 60] Hz.
For the signals collected by multiple antennas, we perform
PCA analysis on the subcarriers of all three antennas and
use the principle components for spectrogram1 analysis.

Tab. 2 presents the performance of the baseline models and
SLNet. Three key observations can be derived from the re-
sults. First, the models used in computer vision tasks achieve
better performance than most of the other baseline models.
This is because the vision models are heavily parameterized,
which endows them with strong representation capabilities.
However, for wireless sensing tasks, a less parameterized
neural network is preferable due to the cumbersome data col-
lection and the lack of the wide availability of public datasets.
SLNet is designed for this purpose. Second, the models that
work in complex domain [17, 32, 46, 84, 86] achieve better
performance than those real-valued models. This verifies
our assumption that the phase of wireless signals embodies
valuable information. SLNet strives to exploit this informa-
tion with its custom neurons. Third, the advantage of SLNet
over baseline models is more significant for the gesture and
gait tasks than the fall detection task. This is because fall
detection is a binary classification problem that is simpler
than the other tasks. SLNet is advantageous in complicated
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human sensing scenarios. The most relevant work to SLNet

is STFNet [73], which designs customized neural operations
to process sensor and RF data. However, while the perfor-
mance on fall detection is comparable with the other models,
it is not desirable for gesture and gait identification tasks.
This is because STFNet is built upon the traditional STFT that
suffers from spectral leakage. This leakage, when appearing
in the spectrogram with clustered frequency components
(typical for gesture and gait motion), will distort and even
mislead the learning process when searching for the un-
derlying signal structures. The lightly parameterized model
in STFNet makes this problem even more challenging. On
the contrary, SLNet alleviates this leakage with SEN before
learning the hidden features with task-specific networks,
ensuring high-fidelity motion representations.

5.1.2 Performance for unseen environments. Wireless
sensing systems are prone to environmental changes when
deployed in various environments. In this experiment, we
evaluate the performance of SLNet when it is applied in
unseen environments/users after training. Specifically, for
the gesture recognition task, we set up another system in an
office, which has different layouts and sizes with the class-
room illustrated in Fig. 9a. Four volunteers participate in the
experiments, and we collect a total of 3,000 gesture samples.
For the gait identification task, we collect 600 instances of
walking samples from three volunteers in a discussion room,
which has a smaller size and more furniture compared with
the hall illustrated in Fig. 9b. For the fall detection task,
we collect 500 walking samples and 200 falling samples in
an office room with different layouts and sizes from the
apartment in Fig. 9c. For each task, we train SLNet from
scratch with the data collected from one site and test it with
the data collected from another.

Fig. 10 demonstrates the performance. As is shown, when
deployed in unseen environments without any model adapta-
tion, the performance of SLNet slightly decreases but is still
encouraging. SLNet is based on the spectrograms of wireless
signals, making it more robust to the surrounding static ob-

jects. However, this also makes it prone to changes in relative
locations and orientations between users and devices. This is
because the frequency components in RF spectrograms are
induced by the Doppler shifts, which depend on the moving
direction and locations. SLNet is not particularly designed
to resolve this problem, yet we believe it can be further ad-
dressed by domain adaptation mechanisms [10, 22, 90].

5.1.3 Performance on open datasets. We further evalu-
ate SLNet on a publicly available open datasets. We mainly
study fall detection using the dataset released in [33], since
it is nearly impossible to find open datasets that have the
same types of gestures for gesture recognition or have the
same users for gait recognition. This dataset has a total of 181
clearly annotated fall samples and 297 samples of normal ac-
tivities collected from five rooms of a typical apartment. We
compare three settings: 1) We only use our own dataset and
split it into non-overlapped train and test parts; 2) We train
the model with our dataset and test it with the open dataset;
3) We only use the open dataset and split it into separate
train and test parts. The results in Fig. 11 show that SLNet
achieves close to 90% precision and recall when trained on
our dataset and tested on the open dataset. Despite being
degraded, we believe the performance is still encouraging,
as the testing data are from completely different and unseen
settings with different users, environments, devices, types
of falls, etc. Compared with the performance in [33], the
precision of our system increases by around 5%, demonstrat-
ing the effectiveness of the proposed spectrograms learning
pipeline. Considering the promissing performance of SLNet
in both intra-domain and cross-domain scenarios, We be-
lieve SLNet points a valuable direction to applying wireless
sensing systems for real-world applications.

5.2 Ablation Study

SLNet consists of three key modules, i.e., SEN, Fusion, and
PCN. To validate their effectiveness, we perform an ablation
study for these modules. To do so, we remove it from SLNet

while adapting the two modules to the input and output
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Figure 13: Accuracy for breath estimation. (a) The raw spectrogram from traditional FFT. Spectral leakage causes

severe interference for the close frequency components, making it hard to differentiate the breath rates of differ-

ent people. (b) The enhanced spectrogram with SEN. Frequency components can be clearly discriminated. (c) The

accuracy of breath rate estimation with raw and enhanced spectrograms.

format. Specifically, for the SENmodule, the originally leaked
spectrograms are used as the input of the Fusion and PCN
modules. For the Fusion module, only the spectrograms with
a window size of 251 ms are enhanced by the SEN and used
as the input of the PCN. For the PCN module, the output of
the Fusion module is fed to two conventional CNN layers
and one max-pooling layer, followed by one FC layer as the
output layer. In addition, we further remove both the SEN
and the Fusion modules to evaluate their joint performance.
As shown in Fig. 12, the accuracy decreases from 97.5%

to 96.2%, 95.6% and 95% when the Fusion, PCN and SEN
are removed respectively. The accuracy further decreases to
91.2% when only the PCN is used. The result of the ablation
study demonstrates the effectiveness of the three modules of
SLNet. It is also worth noting that the benefit brought by the
SEN module is more significant than others, meaning that
the spectral leakage problem cannot be neglected in wireless
sensing tasks, and SLNet successfully resolve the problem.
Multi-Person Breathing Rate Estimation Perfor-

mance. Even though SLNet is designed for motion recogni-
tion tasks that attempt to leverage deep learning schemes,
its components are valuable beyond that scope. For example,
the SEN module can be used to mitigate the spectral leakage
induced by the Fourier transform, which could potentially
boost the performance of sensing systems that involve spec-
tral analysis. To validate the effectiveness of SEN, we design
a human breath estimation experiment in this part.
Breath estimation plays an important role in healthcare,

and some recent works [51, 78] exploit the feasibility of using
WiFi signals to estimate the respiration rate. A typical way to
do this job is to convert the time domain CSI measurements
into a frequency domain spectrogram and characterize res-
piration rates with the prominent frequency components.
However, when multiple people breathe concurrently, the
spectral leakage problem will severely blur the spectrogram

components and make it difficult to discriminate the respira-
tion of different people. With the SEN module, we envision
that the leakage will be mitigated or even eliminated, con-
tributing to improved respiration rate estimation accuracy.
In this experiment, two participants sit in chairs and

breathe naturally. One of them has just finished some exer-
cise. To obtain ground truth, each of the participants has a
smartphone tied to his chest to measure the acceleration of
the body induced by breath movements. We apply STFT with
a window width of 6,000 (60 seconds) on the acceleration
measurements and detect peaks in the spectrogram to repre-
sent the respiration rate of each participant. We downsample
CSI to 10 Hz and apply STFT with a window width of 251
(25.1 seconds) to get the spectrograms of CSI measurements.
We then apply SEN to the spectrograms and pinpoint the two
most prominent peaks therein to characterize the respiration
rates of the two participants.
Fig. 13a and Fig. 13b demonstrate the raw and enhanced

spectrograms of WiFi. As can be seen, the raw spectro-
gram is severely distorted by the leakage effect, and the
frequency components corresponding to the two participates
are blurred. By applying SEN, two distinct frequency compo-
nents can be observed and approximate ground truth very
well. Fig. 13c presents the empirical CDF of the respiration
rate estimation error. With SEN applied, the average error is
2.4 BPM and the 80%-tile error is 1.4 BPM. Without SEN, the
performance deteriorates to 5.0 BPM for average error and
9.5 BPM for 80%-tile error. This experiment demonstrates
SEN’s strong capability of removing spectral leakage. This
merit makes it especially suitable for human-centered sens-
ing tasks, where the human-induced frequency components
are tightly clustered and demand to be discriminated.

5.3 Parameter Study

5.3.1 Impact of training epochs of the SEN. In practice,
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rate.

we randomly generate data samples during each training
epoch. With more training epochs, the SEN should capture
the underlying structure of spectrograms better and improve
the system recognition accuracy. To reveal the relationship
between training epochs and performance, we train the SEN
with different numbers of training epochs from 40 to 2500
and integrate them into SLNet. For each SEN, the TAN mod-
ule is retrained from scratch. We record the validation loss of
the SEN and the recognition accuracy of the overall SLNet.
As shown in Fig. 14, the validation loss for SEN training tum-
bles and the overall accuracy proliferates when the epochs
increase from 40 to 2,000. The performance becomes stable
when the SEN is trained with more epochs.

5.3.2 Impact of window type. Some window func-
tions [13] have been proposed to suppress spectral leakages,
such as Hamming, Hanning, and Blackman windows. In this
experiment, we evaluate the system performance with re-
gard to these windows. For each window function, we train
an independent SEN module with spectrograms calculated
with it. The TAN module is then trained from scratch with
different SEN modules. We record the overall recognition
accuracy concerning different window functions. As shown
in Fig. 15, different window functions have little impact on
the performance of SLNet, demonstrating the effectiveness
of SEN for the removal of spectral leakage.

5.3.3 Impact of window width. In this experiment, we

evaluate the impact of the window width on the system
performance. Specifically, we train an SEN module for each
window width. The Fusion module of SLNet is removed to
evaluate eachwindowwidth. The TANmodules are retrained
accordingly, and the overall recognition accuracy is recorded.
As shown in Fig. 16, when window width increases from 31
ms to 251 ms, the overall accuracy proliferates from 74%
to 96%, but tumbles to 92.5% when window width further
increases to 1001 ms. It is because a very small window
leads to a coarse-grained frequency resolution, while a very
large window cannot capture the rapid change of frequency
components in the time domain. The result reveals that a
width of 251 ms is the best for the gesture recognition task.
However, it is noted that a single-resolution spectrogram for
wireless sensing tasks is not the optimal solution, as verified
by the ablation study.

5.3.4 Impact of combinations of different window widths.

In this experiment, we evaluate the impact of different com-
binations of window widths. For each combination, we use
the corresponding SEN modules to enhance the spectro-
grams and combine them as holograms. The TAN mod-
ule is retrained for each combination. The overall recog-
nition accuracy with different combinations is reported. As
shown in Fig. 17, the best combination of window widths
is (125, 251, 501) ms and the worst is (31, 61, 125) ms. The
combination of three windows outperforms either one of
these windows independently. The performance could be
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further improved with more window widths fused at the
cost of increased computational complexity, which is limited
in edge devices in practice. For SLNet, the combination of
(125, 251, 501) ms is adopted to achieve a trade-off between
performance and complexity.

5.3.5 Impact of polarization range of PCN. The PCN mod-
ule of SLNet is designed to extract both local and global
features simultaneously from the holograms. In this experi-
ment, we evaluate the impact of the range of the linear phase
modulated to spectrograms in SEN. Specifically, the phases
are set to be within 𝑘 ∗ [−𝜋, 𝜋], where 𝑘 changes from 0 to 1.
For each phase range, we retrain the TANmodel from scratch.
The overall recognition accuracy concerning different phase
ranges is reported. As shown in Fig. 18, the accuracy de-
creases from 97.5% to 96.0% when the polarization range
decreases from [−𝜋, 𝜋] to [0, 0], which reveals that the PCN
with phase modulation is effective in spectrogram-based
sensing tasks.

5.3.6 Impact of CSI sampling rate. The impact of the CSI
sampling rate is evaluated in this part. Specifically, we down-
sample the original CSI streams (1,000 Hz) before spectral
analysis and input the corresponding spectrograms in SLNet.
Both SEN and TAN are retrained for each downsampling rate.
As shown in Fig. 19, when the CSI sampling rate decreases
from 1,000 Hz to 500 Hz, the accuracy gradually decrease
from 97.5% to 90% and further tumbles to 76% with a sam-
pling rate of 250 Hz. It is because, with a lower sampling
rate, the CSI signals have a poorer temporal resolution and
cannot capture the rapidly changing frequency components.
In addition, the signal-to-noise ratio decreases with the re-
duced number of samples for spectral analysis. These factors
together deteriorate the recognition performance of SLNet.

6 RELATED WORK

Model-based wireless sensing. Model-based wireless
sensing works [2, 4, 38, 49, 52, 60, 62, 74] try to establish
quantitative relations between wireless signals and human
activities via non-learning based approaches. Many applica-
tions have been explored and enabled, including gestures
[2, 35, 44, 47, 75], walking [56, 57, 64, 76], falls [19, 21, 33, 45],
and respiration [1, 27, 58, 61, 78], and tracking [3, 37, 63, 66],
etc. These approaches have the benefit of being interpretable
and usually efficient. For example, WiGest [2] empirically
builds a link between received signal strength (RSSI) and
hand-moving patterns. SMARS [78] exploits breathing esti-
mation by periodicity finding. However, these approaches
are constrained by the coarse-grained signal and motion
models and are approaching performance limits in real envi-
ronments. More works are seeking learning-based schemes
for better performance, and SLNet is one among them.

Learning-based wireless sensing. Early works mainly
rely on signal processing and employ traditional machine
learning [48, 56, 57, 59, 64, 76, 77]. With the impressive
achievements in computer vision using deep neural net-
works, more effort [9, 10, 22, 45, 54, 71, 72, 79, 80, 82, 85, 86, 88,
90] has been put into applying deep learning models in wire-
less sensing tasks. Among them, Widar3.0 [81, 90] leverages
CNN and RNN networks to learn from its novel motion fea-
ture BVP. RFPose [84], RFPose3D [86], and RFAvatar [85] use
CNN models to capture human skeleton and mesh of body.
Many works [10, 22, 49, 79, 90] employ sophisticated net-
work architectures like adversarial learning, transfer learn-
ing, andmeta-learning to solve the environment-dependency
problem of wireless sensing, while others aim to reduce cum-
bersome data collection for training [7, 11, 42, 53, 65]. Some
works e.g., [84ś86] on FMCW sensing, have further con-
sidered customized models for the unique properties of RF
data. Existing works either learn from the time series of
raw CSI, with both amplitude and phase, or convert them
into the frequency-domain representation or other feature
space. Despite some time-domain approaches for speech
separation [29, 43], recent works like STFNets [73], which
extends DeepSense [72], and UniTS [26] both pursue and
demonstrate superior performance of temporal-spatial learn-
ing with STFT operators. Noticing phase encodes essential
spatial information, complex-valued neural networks [5]
have been explored in the DL community [17, 32, 46] and
exploited especially for radar sensing [89], acoustic sensing
and speech processing [28, 50].

7 CONCLUSION

This paper presents SLNet, a spectrogram analysis-deep
learning co-design for deep wireless sensing. We demon-
strate SLNet’s remarkable performance in gesture recogni-
tion, gait recognition, fall detection, and breath estimation,
showing the highest accuracy and lowest computation com-
pared to the state-of-the-art models. We believe SLNet is a
unique deep-learning framework for WiFi sensing. At the
same time, the techniques can be used, jointly or separately,
to augment the spectrogram quality and enhance learning
performance for many applications in signal estimation, fre-
quency analysis, sensing with acoustic/millimeter-wave sig-
nals, etc.
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