
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Test Coverage for Network Configurations
Xieyang Xu and Weixin Deng, University of Washington; Ryan Beckett, Microsoft;

Ratul Mahajan, University of Washington; David Walker, Princeton University
https://www.usenix.org/conference/nsdi23/presentation/xu

Test Coverage for Network Configurations

Xieyang Xu1 Weixin Deng1 Ryan Beckett2 Ratul Mahajan1 David Walker3

1University of Washington 2Microsoft 3Princeton University

Abstract
We develop NetCov, the first tool to reveal which network
configuration lines are tested by a suite of network tests. It
helps network engineers improve test suites and thus increase
network reliability. A key challenge in developing a tool like
NetCov is that many network tests test the data plane instead
of testing the configurations (control plane) directly. We must
be able to efficiently infer which configuration elements con-
tribute to tested data plane elements, even when such contribu-
tions are non-local (on remote devices) or non-deterministic.
NetCov uses an information flow graph based model that pre-
cisely captures various forms of contributions and a scalable
method to infer contributions. Using NetCov, we show that
an existing test suite for Internet2, a nation-wide backbone
network in the USA, covers only 26% of the configuration
lines. The feedback from NetCov makes it easy to define new
tests that improve coverage. For Internet2, adding just three
such tests covers an additional 17% of the lines.

1 Introduction

As critical infrastructure, networks must be highly reliable
but, unfortunately, network outages are common. A primary
culprit is networks’ reliance on complex, low-level configu-
ration that dictates how routers select best paths and forward
traffic. Day-to-day updates to network configuration are error-
prone, leading to outages that knock off important online
services (e.g., banking), ground airplanes, and disable critical
communication (e.g., emergency calls) [3, 33, 34, 39, 45].

To improve network reliability, automatic testing and veri-
fication of configurations is becoming commonplace. Today,
network operators have at their disposal many tools with in-
creasing sophistication that can scale to large networks and
check various aspects of network behavior [5, 23, 40, 49, 51].

However, using such tools is not sufficient by itself; one
must also use them effectively. Outages can occur despite
automated testing when the test suite is poor and does not
cover key aspects of network configuration. This was the case
with the massive Facebook outage during which Facebook,
WhatsApp, Instagram, and Oculus were unavailable for six
hours [35]. Current tools have pushed the limits of what can
be tested but left open the question of what needs to be tested.

Without tool support, it is difficult for engineers to know if
they are effectively testing network configurations. In indus-
trial networks with possibly millions of lines of configurations,

engineers’ understanding of network behavior and dependen-
cies is necessarily incomplete. It is even harder to update
an existing test suite after the network evolves because the
engineers likely do not know what the old test suite is or is
not testing for the updated network.

Recent work has proposed data plane coverage [47] to re-
veal testing gaps. It shows which data plane elements, such as
forwarding rules, are exercised by a test suite. However, well-
tested data plane does not imply well-tested configurations.
Data plane elements are the output of network’s configura-
tions (which define its control plane) and the current operating
environment (failures, external routing information). Testing
a given data plane only tests configuration elements that are
exercised in that particular environment. Other configuration
elements are not tested. We demonstrate this empirically via
a scenario where testing all data plane elements leaves over
half of configuration lines untested.

We develop configuration coverage to provide comprehen-
sive and precise feedback to network engineers on test suite
quality. Our goal is to identify exactly which configuration
lines are tested and which ones are not. We want to consider
all configuration elements, not only those that contribute to
the current data plane. Revealing exactly which lines are
untested helps improve tests—add tests that target untested
lines—which in turn can improve network reliability. This
is similar to how code coverage tools help improve tests and
software reliability [9, 11, 22].

A major challenge we face is that many network tests do
not exercise configurations directly. Instead, they reason about
the data plane elements produced by configurations. We need
to infer the configuration elements that contribute to the tested
data plane elements. This inference is complicated because
contributions can be non-local and non-deterministic. In a
distributed control plane, a piece of tested routing information
may have been propagated and transformed multiple times
along its path, and both local and non-local configurations
may have contributed to its existence. For example, the path
attributes of a BGP route is shaped by routing policies on each
and every hop that it traverses. Further, not all contributions
are deterministic. For instance, any one of possibly multiple
sub-prefixes can lead to the route of an aggregate prefix. We
must scalably account for local and non-local contributions
and for non-deterministic contributions.

Our solution is to model the contribution between config-
uration elements and data plane elements as an information

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1717

flow graph. An IFG is a directed acyclic graph (DAG) where
vertices denote network elements and edges denote contribu-
tions. In addition to direct contributions from configuration
elements to data plane elements, we also model contribu-
tions between data plane elements (from predecessors to suc-
cessors). For instance, a BGP route contributes to the BGP
message that derived from it. Indirect contributions are thus
modeled by multi-hop paths in the DAG. When contributions
exhibit non-determinism, we use special disjunctive nodes to
organize possible DAG paths that may contribute to a given
data plane element.

We build a tool called NetCov based on this model. It
annotates which configuration lines and logical elements are
tested by a given test suite and produces aggregated coverage
statistics. To efficiently map tested data plane element to
the set of contributing configuration elements, it materializes
the IFG lazily, instead of tracking contributions proactively,
during data plane generation. This design avoids the cost to
compute and store contributions for transient or untested data
plane elements. NetCov is open-sourced on GitHub [30].

We evaluate NetCov on Internet2, a nation-wide backbone
network in the USA, and on synthetic data center networks.
We show that test suites proposed in prior work can have poor
coverage. The three tests proposed by Bagpipe [44] covered
only 26% of the configuration lines of Internet2. We also
show how surfacing untested configuration elements suggests
new tests that improve coverage. By adding just three such
tests to the Internet2 test suite based on NetCov’s feedback,
we could improve coverage to 43%, and more similar tests
can be added to further increase coverage. NetCov performs
reasonably well. The time to compute coverage is 1.2 hours
for the largest network that we study, which has over 2 million
forwarding rules. This time is an order of magnitude less than
the time to execute tests.

Stepping back, we note that networking is not alone in
its reliance on configuration. Today, a lot of infrastructure
and distributed applications are deployed by composing ex-
isting components using configuration (e.g., infrastructure
deployment using Terraform, and application deployment us-
ing containers and service meshes). These configurations are
central to correct behavior, which is why there is an intense
focus on testing them properly [21, 38, 43]. As for networks,
there are no tools to help engineers discover how well the con-
figurations are tested. The techniques developed in our work,
the IFG-based contribution tracking and its lazy traversal, can
provide a starting point toward better testing of infrastructure
and distributed application configuration as well.

2 Background on Network Testing

In networks with distributed control planes, each device runs
one or more routing protocol (e.g., BGP, OSPF) instances.
Each instance exchanges routing messages with its neighbor-
ing instances. Routing messages contain attributes of paths

that the sender is using to various destinations. A routing
instance may learn multiple paths to the same destination via
different neighbors. It selects the best one (or multiple best
ones if multipath routing is enabled) based on its policy and
stores that path in its protocol RIB (routing information base).
Multiple routing protocol instances on a device may have
best paths to the same destination. The device selects the best
one(s) based on the relative preference of the protocols and
stores the selection in its main RIB. Information in the main
RIB is used to forward packets.1

Network engineers can control many aspects of the com-
putation above using device configuration. This includes the
routing protocol instances that are running; the peering be-
tween instances; the destination prefixes that are announced
by each routing protocol instance; how routing messages are
transformed prior to sending (export policy) and upon recep-
tion (import policy); and the preference function for best path
selection. Naturally, thus, how the network forwards packets
is intimately dependent on device configurations.

Given the importance of configurations to correct network
behavior, network engineers use automatic testing to find bugs
and gain confidence in their correctness. Network tests come
in two flavors. Data plane tests analyze the computed data
plane state (i.e., RIBs), e.g., checking that node A can reach B
and that route to a particular destination is present at node C.
Control plane tests directly analyze device configuration, e.g.,
checking that the import policy blocks routing messages for
private address space (such as 10.0.0.0/8) and BGP peerings
are correctly configured.

3 Configuration Coverage: Overview

Network engineers today create data and control plane tests
based on past outages and their knowledge of which behaviors
are important to test. There are no tools to provide feedback
on how well they are testing configurations and which aspects
of the configuration are untested. We aim to build such a tool.
Given the complexity of real-world networks, it is difficult for
humans to know if they have covered all important elements of
configurations. As with software, high coverage is necessary
but not sufficient for a good test suite. In addition to exercising
all key behaviors, the tests must also properly assert that those
behaviors match intent. This latter task is not our focus.

Our goal is to reveal which elements of the network config-
uration are covered by a suite of data and control plane tests.
Before discussing our approach, we define what it means for
a configuration element to be covered.

1In reality, for fast forwarding, routers have a forwarding information
base (FIB), which maps each main RIB destination to its outgoing interface,
by recursively resolving next hop information (which may be an IP address).
The difference between main RIB and FIB is not material for our work, and
we use the term main RIB for the table that has forwarding information.

1718 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.1 Defining coverage
We deem a configuration element to be covered if it i) is
tested directly by a control plane test; or ii) contributes to
the production of a data plane state element (i.e., an entry
in the protocol or main RIB) tested by a data plane test. For
now, assume that contributions are deterministic. We discuss
non-deterministic contributions in the next section.

Figure 1 illustrates configuration coverage as a result of
a data plane test. It shows parts of the two routers’ configu-
ration. R1’s configuration defines one interface (Lines 1-2)
and one BGP peer (192.168.1.2, which is R2’s address), and
it specifies the import and export policy to use. The import
policy (R2-to-R1 at Lines 6-11) denies routing messages for
a particular prefix and sets the preference for another.

R2’s configuration defines two interfaces, a BGP peer (R1)
and routing policies. At Line 13, it states that the prefix
10.10.1.0/24 should be announced to BGP peers iff it is in
the main RIB.2 In our example, 10.10.1.0/24 will be in the
main RIB as it corresponds to the eth1’s prefix. (Address
statements like Line 4 encode the IP address and prefix length.
For eth1, given the address 10.10.1.1 and prefix length of 24,
the prefix is 10.10.1.0/24.) Routers add interface prefixes to
the "connected" protocol RIB, from where those prefixes can
enter the main RIB. The resulting RIBs on the two routers
are shown in the figure. Each entry includes the next hop and
source routing protocol ("conn" = connected).

Suppose the entry for 10.10.1.0/24 at R1 was tested by
a data plane test. The covered configuration elements are
highlighted. On R1, the BGP peer configuration and import
policy binding (Lines 3-4) are covered because the tested
entry came via that peering and passed through that policy.
Parts of the routing policy R2-to-R1 relevant to the tested
state (Lines 6, 9-11) are also covered. The interface definition
(Lines 1-2) is covered because it enables the BGP peering to
be established. In contrast, the export policy R1-to-R2 and
unexercised parts of R2-to-R1 (Lines 7-8) are not covered.

There are covered configuration elements at R2 as well.
These include the interface definitions—eth0 enables the BGP
edge and 10.10.1.0/24 was announced due to eth1—and BGP
peering, the export policy, and the BGP network statement.

Alternative definitions of coverage. One may consider an
alternative definition of coverage that disregards non-local
configuration elements. But we posit that including non-local
elements is more meaningful. These elements, such as the
BGP network statement on R2’s Line 13, are just as key to
the existence of 10.10.1.0/24 at R1 as the local elements.

Another definition of coverage is based on mutation [4]: a
configuration line is deemed covered if its mutation alters the
test result. Compared to the definition of coverage we adopt,
mutation-based coverage will report an additional class of
configuration elements as covered—configuration elements

2Different router vendors have different semantics for BGP network state-
ments. We are assuming Cisco semantics.

Figure 1: An example network with routing tables and con-
figurations. The highlighted configuration lines are covered
when the route to 10.10.1.0/24 is tested at R1.

that de-prioritize (or reject) the competitors of the tested data
plane element. Mutation-based coverage tends to be signifi-
cantly harder to compute [24], and its results can be hard to
interpret. In developing the first tool in this space, we decided
to focus on a simpler, more direct definition of coverage. We
will explore more sophisticated definitions in the future.

3.2 Our approach
While it is straightforward to identify configuration elements
covered by a control plane test, it is not so for data plane tests.
Data plane tests analyze the "output" of the control plane, and
we need a scalable way to compute which configuration ele-
ments contributed to tested data plane state. The relationship
between these inputs and outputs is complex. How a particular
RIB entry comes about relies on many configuration elements
across multiple devices. The need to map tested outputs to
input space sets computation of configuration coverage apart
from data plane coverage and software coverage, for both of
which the coverage domain is the same as test domain.

To motivate our approach to solving this problem, let us
first sketch two strawman approaches. One potential approach
is to express control plane computation declaratively, e.g., in
Datalog. This enables identification of contributing inputs
for a given output using a form of backward-reasoning [46,
52]. However, network control plane computations can be
quite complex (e.g., non-monotonic behaviors [16,36]). While
declarative encodings may work in special cases [27], it is
generally hard to get high-fidelty, performant encodings. That
is why most control plane analysis tools use an imperative
approach [12, 31, 32, 49].3

3Batfish [12], a widely used control plane analysis tool, originally used
Datalog to encode network control planes but switched to imperative simula-
tions due to expressiveness and performance challenges.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1719

Figure 2: Subset of the IFG for the Figure 1 example. It tracks configuration elements that contribute to the tested RIB entry (F1).

Another potential approach is to use simulation-based for-
ward reasoning, i.e., simulate the control plane (imperatively)
and track which configuration elements feed into each part of
the data plane state. However, this approach has scalability
limitations. Network simulation is time and memory inten-
sive [12, 32, 49], and it will become significantly worse if it
needed to track all necessary information along each hop.

Our approach is based on two observations. First, for the
purposes of computing coverage, we do not need a full com-
putational model of the control plane. We need to only track
which configuration elements contribute to tested data plane
state (i.e., taint analysis [41]), not the exact input-output re-
lationship; and we need to reason only about the stable state
(i.e., the the of devices once they have settled on best paths),
not the transient states. Data plane testing [19, 23, 25, 26, 48]
assumes that the analyzed state is stable. Our second observa-
tion is that the stable state contains enough information for us
to infer contributions of configuration elements after the fact,
based on the semantics of the control plane. This inference
is vastly cheaper than tracking contributions towards all data
plane state entries, independent of whether they are tested.

To model contributions to the stable state, we use an infor-
mation flow graph (IFG). Figure 2 shows a subset of the IFG
for the example in Figure 1. Each node is a fact and arrows
denote information flow from the tail to head. IFGs have three
types of facts: i) data plane state, ii) configuration elements,
and iii) auxiliary facts that capture intermediate dependencies
between data plane state and configuration elements.

The main RIB entry 10.10.1.0/24 at R1 (F1) is derived
from the corresponding BGP RIB entry (F5), which in turn is
derived from the BGP message from R2 (F10). This message
exists because of the BGP edge between R1 and R2 (F13),
the source message sent by R2 (F11), and the relevant con-
figuration element within import policy (F20). R2 sent the
BGP message because of the same BGP edge (F13), its ex-
port policy elements (F22), and the BGP RIB entry (F7). This

BGP RIB entry exists because of the configuration element
(F23) and the RIB entry (F3), which exists because of the
connected route (F8). The BGP edge (F13) exists because of
the configuration elements that define the peering (F16, F17)
and paths between R2 and R1 that enable the BGP session
to be established. The paths depend on the RIB entries (F2
and F4, respectively), the contributions to which can be simi-
larly traced. In this manner, the IFG captures all configuration
elements that led to the tested RIB entry (F1).

We do not track IFG dependencies proactively but infer
them on-demand based on control plane semantics, using
a mix of backward-forward reasoning. Backward inference
infers the parent (tail) of the edge from its child (head). The
information in child nodes is not enough to fully recover the
parent nodes, but is often enough to select them from the
known stable state. For instance, we can compute the BGP
RIB entry F5 from the main RIB entry F1—the main RIB
entry indicates that its source routing protocol is BGP, and
we thus look up the BGP RIB for 10.10.1.0/24.

Lookup-based inference does not always work. For in-
stance, given a BGP message which has passed through an
import policy, we cannot compute backwards which terms
of the import policy were exercised (F10← F20). Another
parent of F10, the pre-import BGP message (F11) cannot be
looked up either because it is not part of the input and needs to
be computed on-the-fly. To address these limitations, we com-
bine backward and forward inference. When a parent can not
be directly looked up, we first look up the prerequisites of the
parent. For instance, we can look up F7 based on F10. Next,
we use targeted simulations to compute non-existing facts and
to select relevant facts exercised in a control plane process
or data plane process. For instance, given the BGP route at
R2 (F7), we simulate its processing through the export policy,
which allows us to derive the pre-import BGP message (F11)
and find the policy term exercised during the export process
(F22). Once F11 is computed, we conduct another targeted

1720 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

simulation to discover the policy term exercised in the import
process (F20). Unlike a full control plane simulation, these
targeted simulations are fast. They have limited scope (e.g.,
best path selection is not simulated) and are done only for
messages of interest, not all messages.

By combining backward and forward inference, atop the
stable state IFG, we can scalably discover all covered config-
uration elements. We describe this approach in detail next.

4 Design of NetCov

NetCov takes as input configuration files, data plane state
(protocol RIBs, main RIB and active routing edges) of the
network. The data plane state may be pulled from live net-
work or produced by control plane analysis tools [12, 32, 49].
In addition, NetCov takes as input what is tested: data plane
entries that are tested by data plane tests, and configuration el-
ements that are tested by control plane tests. This information
is produced by network testing tools [12, 47].

Based on these inputs, NetCov computes which config-
uration elements are covered. The core of this computation
efficiently mapping a data plane fact to configuration elements
that contribute to it. We describe this computation next.

4.1 Information flow model
IFGs are directed acyclic graphs whose nodes denote network
facts and edges denote information flow between facts. Table 1
shows the types of network facts modeled by NetCov and the
information flow between different types. Data plane state
has three subtypes: main RIB entries, protocol RIB entries,
and access control list (ACL) entries.

Auxiliary facts have three subtypes: routing edges, routing
messages, and paths of routing messages. These facts are not
strictly necessary, but they help create a compact IFG and
speed up graph walking. For instance, the routing messages
of many protocol RIB entries depend on the same path which
in turn may depend on many main RIB entries. Adding an
explicit fact for the path avoids the need to add all pairs of
edges between routing messages and main RIB entries.

In our model, the auxiliary facts for routing messages rep-
resent messages between routing protocol instances across
devices as well as within a device, i.e., redistribution [10].
This uniform treatment is a modeling convenience. In real-
ity, explicit messages are not exchanged during redistribution
(though redistribution is subject to routing policies akin to
messages between cross-device routing instances).

The last column of Table 1 shows how information flows
among different types of facts. A main RIB entry stems from
a protocol RIB entry and optionally another main RIB entry
(when its next hop is an IP address whose corresponding out-
put interface needs further resolution). A protocol RIB fact
stems from a routing message (for protocols such as BGP),
a configuration element (for connected interfaces and static

Network fact Information flow

Configuration element (c) None

Data
plane
state

Main RIB entry (f)
fi← r j
fi← r j, fk

Protocol RIB entry (r)

ri← m j
ri← c j
ri← f j,ck
ri←{r j1 , ...},ck

ACL entry (a) ai←{ci1 , ...}

Aux-
iliary

Routing message (m)
mi← r j,ek,{cl1 , ...}
mi← m j,ek,{cl1 , ...}

Routing edge (e)
ei←{c j1 , ...}
ei←{c j1 , ...},{pk1 , ...}

Path (p) pi←{ f j1 , ...},{ak1 , ...}

Table 1: Information flow model: Types of facts and all possi-
ble information flows for each type. {t, ...} denotes a set of
facts.

routes), a main RIB entry accompanied with a configuration
element (such as when a BGP network statement populates a
main RIB entry into BGP RIB) or a set of RIB entries accom-
panied with a configuration element (for aggregate routes).
ACLs facts stem from configuration facts and have no other
dependencies. Routing messages stem from a RIB fact or an-
other message (e.g., post-import-policy message depends on
pre-import-policy message), and they also depend on routing
edges and routing policy configurations. Inter-device routing
edges stem from paths that enable sessions to be established
and configuration facts that define peerings; Intra-device rout-
ing edges stem from configuration facts that define redistribu-
tion. Finally, path facts depends on main RIB facts and ACL
facts that impact routing traffic along the way.

For correct computation of coverage, the IFG model must
be sound and realizable. Soundness means that it includes all
relevant dependencies (per control plane semantics) and no
more. Realizable means parents (tails) along all information
flow edges can always be inferred, via lookup or simulation
or a mix. Our model is sound to our knowledge; and that we
are able to use it to compute coverage, using the framework
described next, points to its realizability.

4.2 Inferring the IFG on demand
Based on the information flow model, NetCov uses a
backward-forward inference framework to lazily material-
ize the IFG from any set of facts whose coverage need to be
tracked. The framework is abstracted using a set of inference
rules and an iterative construction algorithm. Each inference
rule is function that takes a materialized IFG node as input
and materializes a set of its ancestor nodes as well as the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1721

Algorithm 1: Rule to infer BGP RIB entry from main
RIB entry.

1 def infer_from_main_rib_entry(f,
stable_state):↪→

2 if not (f is MainRibEntry and f.protocol ==
'bgp'):↪→

3 return []
4 bgp_entry = stable_state.bgp_rib.lookup(
5 host=f.host,
6 prefix=f.prefix,
7 nexthop=f.nexthop,
8 status='BEST'
9)

10 return [(bgp_entry, f)]

edges the allows the ancestors to reach the input node. These
nodes and edges will be merged into the materialized IFG
by the construction algorithm. The implementation of these
functions uses one or both of the lookup-based inference and
simulation-based inference. Let us elaborate.

Lookup-based inference. The computation of data plane
state is lossy. While a main RIB entry may be derived from a
BGP RIB entry, we cannot infer the complete BGP RIB entry
from the main RIB entry because BGP specific attributes (e.g.,
AS-path) are not preserved in the main RIB.

To handle this information loss, our inference takes two
steps. It first infers attributes that can be known from heuris-
tics (we know such heuristics from control plane semantic,
e.g., the BGP RIB entry should have the same prefix as the
main RIB entry derived from it). Next, we look up all en-
tries in the stable state that match the inferred attributes. For
instance, Algorithm 1 shows the simplified function to in-
fer the BGP RIB entry that led to a main RIB entry. Based
on control plane semantics, if a main RIB entry indicates
its source protocol to be BGP, it must have stemmed from a
BGP RIB entry on the same router with the same prefix and
nexthop attributes (Lines 5-7). Besides, the BGP RIB entry
should have been selected as the best route (Line 8). Such
information is enough to uniquely identify the parent within
the known stable state. The return value (Line 10) is a list of
tuples denoting the IFG edges materialized by this rule.

Simulation-based inference. Lookup-based inference falls
short in two scenarios. First, when a parent fact is absent from
the known stable state (e.g., routing messages), and second,
when the heuristics fail to infer enough information so as to
uniquely identify the parents (e.g., we cannot know which
policy clauses are used in the production of a BGP route
by looking at the resulted route). We use local simulations
to complement lookup-based inference. But simulations can
only be performed in the forward direction, i.e., to compute a
fact using simulations, we first need to know its parent. We use

Algorithm 2: Rule to infer ancestors of a post-import
BGP message.

1 def infer_from_bgp_message(m, stable_state):
2 if not (m is BgpMsg and m.is_post_import):
3 return []
4 bgp_edge = stable_state.bgp_edges.lookup(
5 recv_host=m.host
6 send_ip=m.nexthop
7)
8 origin_entry = stable_state.bgp_rib.lookup(
9 host=bgp_edge.send_host,

10 prefix=r.prefix,
11 status='BEST'
12)
13 pre_import_msg, export_clauses =

policy_simulation(↪→

14 input=origin_entry,
15 policy=bgp_edge.export_policy
16)
17 _, import_clauses = policy_simulation(
18 input=pre_import_msg,
19 policy=bgp_edge.import_policy
20)
21 return [(pre_import_msg, m), (bgp_edge, m)]

+↪→

22 [(cl, m) for cl in import_clauses] +
23 [(origin_entry, pre_import_msg), (bgp_edge,

pre_import_msg)] +↪→

24 [(cl, pre_import_msg) for cl in
export_clauses]↪→

a generalized version of lookup-based inference to discover
grandparent facts of a known fact, and then use simulations
with the grandparents to infer their children (i.e., parents of
the original fact).

Algorithm 2 shows the simplified inference rule that in-
fers the ancestors of a post-import BGP message. Line 13
demonstrates the use of simulation-based forward inference
to compute a missing parent fact on the fly. The two prereq-
uisites to simulate the BGP message–the grandparent BGP
RIB entry (origin_entry) and the BGP edge–are discovered
via lookup-based backward inference, on Line 8 and Line 4
respectively. The simulation returns the derived BGP message
after applying the routing policy, as well as the policy clauses
exercised during the process. The second forward-simulation
(Line 17) is to discover the policy clauses that are hit during
the import process. The return value includes the inferred IFG
edges that connect to the input node m as well as ones that
connect to parent pre_import_msg. The former corresponds
to information flow mi← m j,ek,{cl1 , ...} in Table 1 and the
latter corresponds to mi← r j,ek,{cl1 , ...}.

IFG construction. Next, we detail IFG materialization using
inference rules. Assume for now that the information flow

1722 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 3: IFG lazy materialization
Input: Initial nodes {vi}; Inference rules {φi : v 7→ {(ui,vi)}};
Output: Materialized IFG (V,E)
Data: Stable state data plane state (main RIB and protocol RIBs);

Routing edges; Configuration elements;
1 Procedure BuildIFG({vi}, {φi})
2 V,E←{vi},∅
3 Vprev←{vi} // dirty nodes of previous iteration
4 while |Vprev|> 0 do
5 Vcurr ←∅ // dirty nodes of current iteration
6 foreach c ∈Vprev do
7 foreach φ ∈ {φi} do
8 E ′← φ(c)
9 foreach (ui,vi) ∈ E ′ do

10 if ui /∈V then
11 V ←V ∪{ui}, Vcurr ←Vcurr ∪{ui}
12 if vi /∈V then
13 V ←V ∪{vi}, Vcurr ←Vcurr ∪{vi}
14 if (ui,vi) /∈ E then E← E ∪{(ui,vi)}

15 Vprev←Vcurr

16 return (V,E)

is deterministic; the next section discusses how we handle
non-determinism.

As shown in Algorithm 3, the IFG initially contains only
the nodes representing the tested data plane state facts from
the input and does not have any edges (Line 2). It is then
iteratively expanded by applying inference rules on existing
nodes. In each iteration, all inference rules are applied to
the dirty nodes derived from the previous iteration (Line 8).
The new nodes and edges inferred during such process are
collected and merged (with deduplication) into the IFG (Line
9-14). The computation repeats until no new facts can be
derived in an iteration.

4.3 Handling uncertainty

There are situations where it is not certain which stable state
facts contributes to a given fact. One such scenario is BGP
aggregation, where a prefix (e.g., 10.10.0.0/16) is added to
the RIB iff at least one more of its more specific prefixes (e.g.,
10.10.1.0/24) is present. When multiple more specifics are
present, we do not know which one triggered the aggregate.
Another such scenario is when multiple paths are available
for a routing edge to be established, which can happen when
the network uses multipath routing. Here, we do not know
which path is actually used by routing messages.

It is important to model and report such uncertainty be-
cause the notion of contribution is different. Unlike determin-
istic contribution, when the contribution is non-deterministic,
one or more parent facts can disappear without impacting
the outcome represented by the child. Our experiments have
scenarios where 78% of the configuration lines have non-
deterministic contribution, and the tested fact would not be

(a) (b) (c)

Figure 3: Modeling uncertainty. (a) BGP aggregate (F1) has
two potential contributors. (b) F5 is weakly covered but F6
and F7 are strongly covered. (c) The predicates of IFG nodes.

impacted if any of them did not exist. Not separating such
uncertain contribution would lead to misplaced confidence in
how well configurations are tested.

We model contribution uncertainty using disjunctive nodes
in the IFG. This node points to the parent fact (e.g., the ag-
gregated RIB fact) and the multiple contributors to the parent
point to this node. See Figure 3(a) for an example where a
BGP aggregate could be triggered by either of the two more
specific prefixes. When our inference rules encounter uncer-
tainty during IFG materialization, they produce a disjunctive
node and attach all contributors to it as children.

We introduce the notion of weak coverage to capture the
configuration elements whose contribution to the tested facts
is not critical. We define a contribution as non-critical if the
tested fact will not be affected by deleting the configuration
element from the IFG. In Figure 3(b), F5 is weakly covered
when F1 is tested because F1 can be derived without any
contribution from F5, via F2 and F6. On the other hand, F6 is
strongly covered because, without it, neither F2 nor F3 can be
derived and thus the disjunctive node cannot be derived. F7 is
also strongly covered because it contributes to F4, which is
essential to F1.

NetCov labels each covered configuration element as strong
or weak after the materialization of the IFG. The label is deter-
mined as follows. We first assign a Boolean variable to each
configuration element in the IFG. Next, we build a Boolean
predicate of each IFG node on top of these variables. The
predicate of a fact depends on the predicate of its ancestors
in the IFG: A normal node depends on the conjunction of its
immediate parents, and a disjunctive node depends on the dis-
junction of parents. Therefore the predicate of any IFG node is
ultimately composed of the variables associated with configu-
ration elements that lead to it, denoted as Γ(v) =F(x1, . . . ,xn).
Figure 3(c) shows the predicates of IFG nodes in Figure 3(b).
We represent these Boolean predicates using Binary Decision
Diagrams (BDDs) [8] and build BDD predicates by traversing
the IFG. By definition, a configuration fact (denoted as xi)
is strongly covered if and only if there exists a tested data
plane state fact (denoted as v), v is reachable from xi in the
IFG, and xi is a necessary condition of Γ(v). Therefore, once
the predicates are built, we test graph reachability and log-
ical necessity between each pair of configuration facts and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1723

tested data plane facts. Necessity ¬xi⇒¬Γ(v) is equivalent
to unsatisfiability of ¬xi∧Γ(v). While (un)satisfiability is NP-
Complete in general cases, we note that it is efficient in our
case—it can be reduced to computing the cofactor Γ(v)|xi=0
and testing whether the cofactor is constant false, both of
which are efficient using BDD operations.

We further reduce the size of BDD predicates by precluding
configuration facts that can reach tested facts via a path with
no disjunctive node, such as node F7 in Figure 3(b). These
configuration facts must be strongly covered so their necessity
do not need to be tested. Besides, their validity variables can
be replaced with constant true when building BDD predicates,
which will not affect the strong/weak classification of other
configuration elements. We empirically find this heuristic to
be effective in reducing the number of variables used for weak
coverage computation.

4.4 Future Extensions
Our current model tracks the contribution of configuration
elements to concrete data plane state entries. While this view
aligns well with tools that perform data plane testing [50], data
plane verification [25, 29], and control plane testing [12, 49],
it is not applicable to control plane verification tools [1,7] that
reason about data plane symbolically (i.e., simultaneously rea-
son about multiple data planes under different environments).
Control plane verification tools turn configuration into an
internal model that is used for validation. NetCov can be ex-
tended to these tools by tracking how configuration elements
contribute to the model, akin to how compilers link program
source information to its intermediate representations.

The current implementation of NetCov supports BGP, a
path vector protocol, and static routes. Other protocols, in-
cluding link state protocols (e.g., OSPF) and label switching
protocols (e.g., MPLS) can be supported with appropriate ex-
tensions. Such extensions require defining protocol-specific
configuration elements and data plane state facts (such as
label information base entry for MPLS) as well as all new
information flows.

5 Implementation

We implemented NetCov with 4,000 lines of Python code.
A total of 18 lambdas (Python functions) encode the IFG
inference rules. NetCov uses Batfish [6] to extract configu-
ration elements from configuration files and to run targeted
simulations, and it uses CUDD [37] for BDD operations.

NetCov supports several major router vendors supported
by Batfish, including Arista, Cisco, and Juniper. It builds a
vendor-neutral representation of configuration elements using
vendor-specific information provided by Batfish. Table 2 lists
the configuration elements that NetCov currently analyzes.

NetCov may not consider all components of a device’s
configuration. One category of such components is device

Type Purpose

Interface Interface and its settings (e.g., addresses)
BGP peer BGP peer settings (e.g., IP address, AS number)
BGP peer group BGP peer settings inherited by one or more peers
Route policy clause One clause in an export or import route policy
Prefix list List of prefixes, used in route policy clauses
Community list List of BGP communities for route policy clauses
AS-path list List of AS-path expressions for route policy clauses

Table 2: Configuration elements analyzed by NetCov.

management configuration (e.g., login settings), which does
not impact data or control plane functionality. The second
category is control plane components that are not currently
modeled by NetCov. This includes IPv6 (which is not mod-
eled by Batfish currently) and routing protocols other than
BGP (e.g., OSPF). The presence of unconsidered components
does not imply that NetCov cannot be used for that network.
As we show in the next section, NetCov provides helpful
coverage information for parts that are considered.

After constructing the IFG, which yields information on
which configuration elements are covered, NetCov computes
which lines are covered. NetCov leverages the Batfish parser
to map configuration elements to line numbers. Each element
typically spans multiple configuration lines, and when an
element is covered, it deems all of those lines as covered.

Based on element and line coverage, NetCov produces
three main outputs. The first is a coverage report at the granu-
larity of individual lines (or elements). We produce this report
in the lcov format, which is supported by common code cov-
erage tools and enables users to visualize coverage results
as annotations on configuration files. See Figure 4(a) for an
example. The second is coverage aggregated at the file level,
generated with the help of GNU LCOV [17]. See Figure 4(b)
for an example. The third output is coverage aggregated by
the type of configuration element, which shows what fraction
of elements of each type are covered.

These outputs help users uncover testing gaps and improve
their test suites in different ways. The aggregate results help
identify systematic gaps such as "router A is poorly covered"
or "routing policy clauses are poorly covered." The line-level
results help them zoom in to specific gaps and develop tests
that target them. The case study in the next section demon-
strates this test suite improvement process.

6 Case Studies

We present case studies of using NetCov on two disparate
networks, one a wide-area backbone and another a datacenter.
In each case, using realistic test suites, we show that NetCov
provides insight into what is and is not covered and how these
insights help improve the test suites.

1724 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Line-level coverage. Green background denotes covered lines, and red
denotes uncovered lines. Some lines are collapsed for simplicity.

(b) File-level aggregate coverage. The overall coverage is at top right, and
the coverage for individual files (devices) is in the table.

Figure 4: Example NetCov outputs.

6.1 Case Study I: The Internet2 backbone
Internet2 is a nation-wide network that connects over 60,000
US educational, research and government institutions. The
routing design of Internet2 is typical of backbone networks.
It has 10 BGP routers spread across the country. The routers
are organized as a single autonomous system (AS), and they
establish iBGP full mesh on top of internal reachability pro-
vided by the IS-IS protocol. The Internet2 routers connect
to 279 external BGP peers, and heavily use route import and
export policies. The import policy for an external peer has
multiple policy statements, some specific to the peer and some
shared within the same peer group. Peer-specific policies tend
to specify a list of allowed prefixes from this peer, and others
are used for sanity checking, preference setting, etc. Export
policies are similarly structured.

Internet2’s configurations that we study have 96,672 lines
(in Juniper’s JunOS format) across all routers. Of these, Net-
Cov’s coverage computation considers 64,886 lines. The bulk
of the unconsidered lines correspond to device management,
IPv6, and IS-IS protocol.

We do not have the data plane state of Internet2, which
is needed to run data plane tests. We approximate it using
Route Views [42], a repository of BGP routes from over two
hundreds ASes worldwide. This data helps approximate BGP
messages that external peers of Internet2 send to it. Consider
a peer with AS number X . If we find a prefix P in Route-
Views with AS-path [A,X ,Y], we assume that the peer sends

P to Internet2 with AS-path [X ,Y]. The existence of AS-path
[A,X ,Y] means that AS A must have a route to P with AS-
path [X ,Y], which it announces to its neighbors. If we find
multiple AS-paths for a prefix, we pick the one with fewest
AS hops.

We use these BGP messages that each peer sends to In-
ternet2 as inputs to simulate Internet2’s control plane using
Batfish. The data plane state produced by this simulation is
a coarse approximation of the real version, but it suffices to
meet our goals of running data plane tests and characterizing
configuration coverage.

6.1.1 Test suite coverage

To study how NetCov analyzes coverage for realistic test
suites, we use the test suite proposed in Bagpipe [44]. It has
three tests to validate Internet2’s BGP configuration.

• BlockToExternal: ensure that BGP routes with BTE com-
munity are not announced to any external (eBGP) peer.

• NoMartian: ensure that incoming BGP messages from
external peers for prefixes in the private address space
("Martian") are rejected.

• RoutePreference: ensure that if multiple routes to the
same prefix are accepted from multiple external neigh-
bors, the selected route belongs to the most preferred
neighbor. The neighbor’s preference depends on com-
mercial relationship [13]. Customers are most preferred,
followed by peers, and then providers4.

We implemented these tests using Batfish. BlockToExter-
nal and NoMartian are control plane tests. BlockToExternal
evaluates all BGP export policies on a set of BGP routes
carrying the BTE community and asserts that the result be
rejection. We generate the test cases by sampling BGP routes
from the data plane state and attaching the BTE community to
them. NoMartian evaluates all BGP import policies on a set
of BGP routes destined for Martian addresses and asserts that
the results be rejection. RoutePreference is a data plane test.
It focuses on destination prefixes available via multiple neigh-
bors and asserts that their local preferences reflect commercial
relationship. We use CAIDA data [28] to infer commercial
relationship between Internet2 and its BGP neighbors.

After running this test suite on Internet2, we find that it
covers only 26.1% of configuration lines across all devices.
Only a tiny fraction of configuration lines (0.5%) are weakly
covered, so we do not separate weak/strong coverage for this
case study; we will do that in the next one.

4As a not-for-profit network, Internet2 treats its member institutions as
customers and other not-for-profit networks (such as ESNet) as peers. Inter-
net2 does not have providers in its routing preference model.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1725

To help understand what is and is not covered in more detail,
NetCov enables network engineers to look at the data from
multiple perspectives. Figure 4(b) shows per-device coverage.
We see notable variation across devices, from 11.8% to 40.5%.
As we show below, the test suite has systematic gaps, and the
cross-device variation stems from different devices having
different fractions of covered configuration elements.

Figure 5 shows the coverage broken down by the type of
configuration elements. For simplicity, we create four buckets
of element types, as shown in the legend. The bottom bar
shows the fraction of reachable configuration lines in each
bucket. The "Test Suite" bar shows the covered fraction of
those lines, and the top three bars show the coverage of in-
dividual tests. The total coverage of individual tests is 0.6%,
0.9% and 24.7% respectively. BlockToExternal and NoMar-
tian cover only one type of configuration element (routing
policies), and even within this type, they cover a small frac-
tion. RoutePreference covered all four buckets but its overall
coverage is still limited.

Finally, NetCov reports that 27.9% of configuration lines
are "dead code" that will never be exercised. They include de-
fined BGP peer groups with no members and defined routing
policies that are never used for any peer.5

With 69% of BGP configurations, 85% of interfaces, 88%
of routing policies, and 57% of route attribute match lists
being completely untested, this test suite is clearly under-
testing the network. This leaves the network vulnerable to
bugs in untested configurations elements. Prior to NetCov,
it was not possible for network engineers to get any insight
into the quality of their test suite. It was also not possible for
them to get help toward systematically improving tests. We
demonstrate this test suite improvement process next.

6.1.2 Coverage-guided test development

NetCov’s feedback enables a test suite development process
that enables users to systematically improve coverage, which
helps test more critical aspects of the network and prevent
outages. This process is iterative. In each iteration the user
first identifies specific testing gaps and then creates new tests
to target those gaps. We demonstrate the process using three
iterations that focus on different types of gaps.

Iteration 1. We saw that routing policy coverage of NoMar-
tian test is low (Figure 5) despite that it checks the import
policies for all external peers. To investigate, we look at the
structure of Internet2 import policies and find that routers
have a policy named SANITY-IN which is shared by the major-
ity of external neighbors. Figure 4(a) shows this policy with
annotated coverage. Each router has an independent copy of

5Per best practices, these lines should be deleted. Or, at a minimum, they
should be tested lest someone start using an unused, erroneous policy. When
it comes to testing, such lines can never be exercised by data plane tests,
though control plane tests may be written for them.

0% 20% 40% 60% 80% 100%
Coverage

BlockToExternal

NoMartian

RoutePreference

Test Suite

All Lines

0.6%

0.9%

24.7%

26.1%

bgp peer/group interface routing policy prefix/community/as-path list

Figure 5: Coverage of the initial test suite broken down to
each individual test and configuration type.

this policy, but the copies and the coverage results are identi-
cal across routers. Of the five clauses in the policy, the clause
block-martians starting at line 6,896 is the only clause that
is covered. This coverage result confirms that the NoMartian
test did its job, and more importantly, it revealed a systematic
testing gap–the other four classes of forbidden routes are not
being tested.

Once we know the gap, the solution suggests itself. We
added a new test, SanityIn, to enforce that the other four
classes of received BGP messages should be rejected. After
adding this test, we used NetCov to confirm that this testing
gap had been addressed. Routing policy coverage was im-
proved by 0.6% and all five terms of SANITY-IN were covered
by the new test suite. The quantitative improvement is low
because SANITY-IN is just one of many policies in the network.
With feedback from NetCov, network engineers can identify
testing gaps in other routing policies and add more tests in a
similar way.6

Iteration 2. BGP peer configuration coverage of RoutePref-
erence test in Figure 5 is surprisingly low, given that all ex-
ternal BGP peers are supposed to be checked. Upon further
investigation we find that the uncovered peers have permitted
prefix-lists that do not overlap with other peers’ lists, which
left these peers untested.

We added a new test, PeerSpecificRoute, to check that BGP
announcements received from external peers should be ac-
cepted if their prefixes is in a peer-specific prefix list. This
test improved BGP peer coverage from 32% to 46%. The rest
of untested BGP peers are either not allowed to send BGP
routes to Internet2 or is intended for other internal use, such as
monitoring and management. This test also improved prefix-
list coverage from 45% to 63%. The remaining of untested
prefix-lists are mostly (30% out of 37%) ones that are defined
by never referenced.

Iteration 3. The low coverage of interface configuration in
Figure 5 reveals another testing gap. RoutePreference is the
only test in the initial test suite that checks interface configu-
rations, and it only considers one category of interfaces–ones
that are used to establish the tested BGP edges. Many other

6Automatic test generation based on coverage feedback will further help
engineers. We will investigate this in the future.

1726 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0% 20% 40% 60% 80% 100%
Coverage

0: Initial Test Suite

1: Add SanityIn

2: Add PeerSpecificRoute

3: Add InterfaceReachability

All Lines

26.1%

26.7%

36.9%

43.0%

bgp peer/group interface routing policy prefix/community/as-path list

Figure 6: Coverage improvement with test suite iterations.

interfaces remain untested, including but not limited to ones
that associate with untested BGP edges and other routing
protocols, and the ones that are unused.

We added a new PingMesh-style [18] test, InterfaceReach-
ablility, to check that the IPv4 addresses assigned to interfaces
should be reachable from each router in the network. This test
increased interface coverage from 15% to 53%. The rest of
untested interfaces do not have IPv4 addresses assigned.

Figure 6 summarizes the coverage improvement for the
three iterations of test improvement in our study. After only
three iterations, the overall coverage was improved from 26%
to 43%. This final coverage number is far from perfect, but
our goal was not to develop the ideal test suite for Internet2;
we wanted to demonstrate how coverage information helps
develop new tests. Networks are complex, and we should not
expect to get the job done with 6 tests. Many more tests are
likely needed. With NetCov, network engineers now have a
tool to develop new tests that meaningfully improve coverage.

6.2 Case study II: Datacenter networks
We study the coverage for data center networks which have
a different topology and routing design. We create synthetic
fat-tree [2] networks with routers across three tiers. The leaf
routers at the bottom tier connect to hosts. Aggregation routers
at the middle tier connect to leaf routers in a pod and to spine
routers at the top tier. The spine routers connect to the wide
area network (WAN). The WAN is not part of the tested
network. Each leaf router is assigned a /24 prefix which is
advertised inside the data center through eBGP. Spine routers
receive a default route (prefix 0.0.0.0/0) from WAN via eBGP
and propagate it to lower tiers. At each spine router, the entire
address space of the network is summarized into a /8 prefix
and is announced to WAN. Multipath routing (ECMP) is
enabled with maximum number of paths set to 4. Routing
policies are only configured at spine routers to white-list the
default route received from WAN peers. We synthesize the
configurations of these networks in Cisco IOS format.

We study a test suite of three tests inspired in prior works
on data center network validation [18, 23].

• DefaultRouteCheck: ensure that each router has the de-
fault route.

0% 20% 40% 60% 80% 100%
Coverage

DefaultRouteCheck

ToRPingmesh

ExportAggregate

Test Suite

All Lines

81.8%

82.1%

80.7%

85.6%

(strong/weak) bgp peer/group
(strong/weak) interface

(strong/weak) routing policy
(strong/weak) prefix/community/as-path list

Figure 7: Coverage of synthetic datacenter network for differ-
ent tests and types of configuration elements.

• ToRPingmesh: ensure that each leaf router’s assigned
subnet is reachable from all other leaf routers.

• ExportAggregate: ensure that each spine router exports
the aggregate route to WAN.

Figure 7 shows the coverage result when the network has a
total of 80 routers. Given the uniformity of the network and
the test suite, coverage results are similar for other network
sizes. The total coverage of individual tests is 81.5%, 82.1%
and 80.7% respectively, and the three tests together cover
85.3% of configuration lines. We find that these tests cover
largely the same configuration elements—interfaces and BGP
peerings between the data center routers—despite checking
for seemingly different network behaviors. This result indi-
cates that test development without coverage feedback can be
ineffective in terms of covering the testing gaps.

The coverage of ExportAggregate shows a large proportion
of weak coverage. This is because a spine router has routes to
all leaf routers, so that all leaf subnets contribute to the tested
aggregate route, albeit weakly. Separating out weak coverage
here avoids false negatives of testing gaps—the aggregate
routes would be there even if some of the BGP peering or
interfaces are misconfigured, therefore testing the aggregate
routes provides a weaker endorsement for the covered BGP
peerings and interfaces to be bug-free.

By looking at uncovered configuration lines reported by
NetCov, we learn that most correspond to host-facing inter-
faces on leaf routers. Adding tests that target those interfaces
improves this test suite and eliminate testing gaps. We omit
results of this iteration.

7 Performance Evaluation

We benchmark the performance of NetCov on both types of
networks we studied above. Our test machine has two Intel
Xeon CPUs (16 core each, 3.1 Ghz), 384 GiB of DRAM, and
runs Ubuntu 18.04.

Figure 8(a) shows the time to compute coverage for each
test in §6.1 and for the full test suite. It breaks out the time
spent on simulations and strong/weak labeling, and, for refer-
ence, also shows the test execution time. We see that coverage

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1727

0 20 40 60 80 100 120
Time (sec)

BlockToExternal

NoMartian

RoutePreference

SanityIn

PeerSpecificRoute

InterfaceReachablility

Test Suite

32.8

19.5

1701

0.86

11.4

593

2358

0.01

0.01

42.7

0.11

61.1

25.2

99.4

test execution
cov [other]
cov [simulations]
cov [strong/weak labeling]

(a) Internet2.

0 1000 2000 3000 4000 5000
Time (sec)

N= 20

N= 80

N= 180

N= 320

N= 500

N= 720

5.3

126

923

4372

16677

54043

0.6

12

97

427

1473

4413

test execution
cov [other]
cov [simulations]
cov [strong/weak labeling]

(b) Fat-tree networks.

Figure 8: Time to compute coverage.

computation is reasonably fast. The full test suite takes only
99.4 seconds. In comparison, the test execution takes 2,358
seconds. The total coverage computation time is less than the
sum for individual tests because facts tested by multiple tests
are tracked only once. The graph also shows that simulations
and strong/weak labeling are a minority component, which
means that most of the time is spent on walking the IFG and
doing lookups in stable state for backward inference.

Figure 8(b) shows test execution and coverage computation
time for the test suite in §6.2, as a function of the data center
network size. Coverage computation takes 4,413 sec on the
largest network, which has 2,040,624 RIB entries. This time
is less than 9% of the time to execute the test suite. While
substantial, we deem it acceptable in practice. Configuration
coverage analysis can be run in the background, as code cov-
erage is often run. NetCov does not slow down test execution,
which is on the critical path to finding configuration errors
and updating the network.

However, time to compute coverage increases rapidly with
network size. This is because the number of RIB entries grows
quadratically and so does the number of vertices in the IFG.
We find that the average time to materialize an IFG node does
not change substantially because all computation is local to
the node. The scaling trends suggest that to scale NetCov to
much larger networks, we need a concurrent implementation
of IFG materialization. Our current implementation is single-
threaded (as Python interpreter is single-threaded).

8 Comparison to Data Plane Coverage

We demonstrate the unique value of control plane coverage by
comparing it to data plane coverage. Following Yardstick [47],
we quantify data plane coverage as the proportion of main RIB
(forwarding) rules exercised. Figure 9 shows the comparison
for different cases. Figure 9(a) shows the comparison for
Internet2 for all tests in §6.1 and a hypothetical data plane
test that inspects all main RIB rules. Figure 9(b) shows the
comparison for fat-tree tests in §6.2.

Besides the obvious advantage that only control plane cov-
erage can support control plane tests—the graphs show 0%

data plane coverage for these tests—there are two main ad-
vantages to using control plane coverage to guide network
test development. First, it reveals testing gaps that can not be
revealed by data plane coverage. Tests with high data plane
coverage do not necessarily have high control plane coverage,
as we can see in the last row of Figure 9(a). Covering 100%
of the data plane state covered only 41% of the configuration.
If the engineers were to improve the test quality under the
guidance of only data plane coverage, they would not know
that 59% of the configurations remain untested. The reason
of this disagreement is that some configuration lines are only
exercised under specific environments (failures, routing mes-
sages). For instance, list-filtered route policies apply on BGP
messages within a specific range, and will only be exercised
when such messages appear in the environment.

Second, testing more data plane state can sometimes be
redundant in covering configurations, when the tests hit
the same configuration elements. For example, the Default-
RouteCheck test in Figure 9(b) has only 1.8% data plane
coverage because it only tests default routes, which is a small
fraction of all main RIB routes. However, because correct
propagation of default routes incorporates many BGP peer-
ings and interfaces in the network, this test has extensive
configuration coverage (87%). The ToRPingmesh test covers
much more data plane state (88%), but adding it atop Default-
RouteCheck has little value because this state is derived from
almost the same set of configurations lines. We do not nec-
essarily imply that engineers should drop one of these tests,
as there may be other reasons to keep both. Our observations
are about their value toward configuration coverage.

9 Related Work

Our work builds on top of four lines of research.

Code coverage. We borrow from the software domain the
idea of using code coverage to reveal testing gaps, quan-
tify test suite quality, and help engineers improve their test
suites [4, 15, 20]. Our coverage analysis techniques, however,
are specialized to the operation of network configurations.

1728 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0% 20% 40% 60% 80% 100%
Coverage

BlockToExternal

NoMartian

RoutePreference

SanityIn

PeerSpecificRoute

InterfaceReachablility

Test Suite
Hypothetical full DP

0.6%

0.9%

24.7%

0.7%

34.0%

11.5%

43.0%

44.1%

0%

0%

0.7%

0%

1.3%

0.7%

2.7%

100.0%

configuration coverage
data plane coverage

(a) Internet2.

0% 20% 40% 60% 80% 100%
Coverage

DefaultRouteCheck

ToRPingmesh

ExportAggregate

Test Suite

86.8%

88.3%

84.9%

90.4%

1.8%

88.0%

0.1%

89.9%

configuration coverage
data plane coverage

(b) Fat-tree with k=10.

Figure 9: Comparing control plane and data plane coverage.

Data plane coverage. Yardstick introduced data plane cov-
erage metrics [47] that quantify the proportion of data plane
elements such as forwarding rules and paths that are exercised
by network tests. Configuration coverage goes further and
maps tested data plane components to configuration elements
that contribute to them. It provides more direct feedback be-
cause network engineers author configurations, not data plane
state, and it supports testing of configuration elements that
are not exercised by the current data plane state.

Network testing and verification. A range of tools can anal-
yse properties of network data and control planes [7,12,14,18,
19, 23, 25, 26, 48, 49]. NetCov borrows ideas from verification
tools to concisely model the network, e.g., focusing on stable
state and routing protocol instances [7, 14]. However, NetCov
target a different problem—reveal what is tested vs enabling
testing of new properties–and uses different techniques.

Network provenance. Provenance systems can track causal
dependencies of events in distributed systems. Provenance
systems like ExSPAN [52] materialize provenance graphs
by tracing system execution in forward direction. Negative
provenance systems can reason about missing events [46]
and materialize provenance graphs lazily using backward in-
ference. NetCov too uses a graph-based model. However, it
is unique in terms of accommodating network configuration
into a provenance model, and this model, tailored to the sta-
ble state assumption, is more succinct. Further, it combines
backward and forward inference to overcome the limitations
of using only one type of inference.

Software configuration testing. As for networks, configu-
ration testing is an important problem for software systems
as well. Sun et al. developed a system that can link software
tests to exercised configuration parameters [38]. They exploit
dependence on configuration settings being explicit, observ-
able via read/write operations that use standard get/set APIs.
NetCov targets a setting where the dependencies are implicit
and non-local. Routers read the entire configuration file, and
their forwarding behavior depends on that file and informa-
tion received from neighbors who in turn act based on their
configuration files and their neighbors. That led us to develop

a different approach to tracking configuration dependencies.
We will investigate in the future if our approach can be ex-
tended to software systems where dependence between tested
runtime behavior and configuration is not explicit.

10 Summary

NetCov reveals which configuration lines are tested by a suite
of network tests. It uses an information flow model based on
control plane semantics to track which configuration lines con-
tribute to tested data plane state. It accounts for non-local and
non-deterministic contributions, and for performance, it dis-
covers the graph lazily. Our experiments showed that NetCov
successfully reveals coverage gaps for real-world networks
and test suites, and these tests can have surprisingly low cov-
erage, e.g., 26% of configuration lines for Internet2. They also
showed how its feedback helps improve coverage.

Acknowledgments

We thank the NSDI’23 reviewers and our shepherd, Aditya
Akella, for feedback on the earlier version of this paper. This
work was supported in part by NSF grant CNS-2007073 and
Cisco Systems.

Ethical considerations

This work does not raise any ethical issues.

References

[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast multilayer network
verification. In Proceedings of NSDI 20, pages 201–219.
USENIX Association, 2020.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1729

architecture. In Proceedings of SIGCOMM ’08, page
63–74. ACM, 2008.

[3] Mae Anderson. Time Warner cable says outages largely
resolved. http://www.seattletimes.com/busines
s/time-warner-cable-says-outages-largely-r
esolved, 2014.

[4] James H Andrews, Lionel C Briand, Yvan Labiche, and
Akbar Siami Namin. Using mutation analysis for as-
sessing and comparing testing coverage criteria. IEEE
Transactions on Software Engineering, 32(8):608–624,
2006.

[5] John Backes, Sam Bayless, Byron Cook, Catherine
Dodge, Andrew Gacek, Alan J Hu, Temesghen Kah-
sai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, et al.
Reachability analysis for AWS-based networks. In In-
ternational Conference on Computer Aided Verification,
pages 231–241. Springer, 2019.

[6] Batfish: Network configuration analysis tool. https:
//github.com/batfish/batfish.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of SIGCOMM ’17, pages
155–168. ACM, 2017.

[8] Karl S Brace, Richard L Rudell, and Randal E Bryant.
Efficient implementation of a BDD package. In Pro-
ceedings of the 27th ACM/IEEE design automation con-
ference, pages 40–45, 1991.

[9] Larry Brader, Howie Hilliker, and Alan Wills. Testing
for Continuous Delivery with Visual Studio 2012. Mi-
crosoft, 2013.

[10] Cisco Systems, Inc. Configure protocol redistribution
for routers. https://www.cisco.com/c/en/us/su
pport/docs/ip/enhanced-interior-gateway-ro
uting-protocol-eigrp/8606-redist.html.

[11] Codecov. Codecov: The leading code coverage solution.
https://about.codecov.io/, 2021.

[12] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In Proceedings of NSDI 15, pages 469–483.
USENIX Association, 2015.

[13] Lixin Gao and Jennifer Rexford. Stable internet routing
without global coordination. IEEE/ACM Transactions
on networking, 9(6):681–692, 2001.

[14] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast control plane analysis

using an abstract representation. In Proceedings of
SIGCOMM ’16, pages 300–313. ACM, 2016.

[15] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan
Sharma, Mohammad Amin Alipour, and Darko Mari-
nov. Comparing non-adequate test suites using coverage
criteria. In Proceedings of the 2013 International Sym-
posium on Software Testing and Analysis, ISSTA 2013,
page 302–313, 2013.

[16] Timothy G Griffin, F Bruce Shepherd, and Gordon Wil-
fong. The stable paths problem and interdomain routing.
IEEE/ACM Transactions On Networking, 10(2):232–
243, 2002.

[17] GNU Guix. lcov–code coverage tool that enhances gnu
gcov. https://guix.gnu.org/en/packages/lcov-
1.15/.

[18] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. In Proceedings of
SIGCOMM ’15, page 139–152. ACM, 2015.

[19] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time network verification using atoms. In
Proceedings of NSDI 17, pages 735–749. USENIX As-
sociation, 2017.

[20] Monica Hutchins, Herb Foster, Tarak Goradia, and
Thomas Ostrand. Experiments on the effectiveness
of dataflow-and control-flow-based test adequacy cri-
teria. In Proceedings of 16th International conference
on Software engineering, pages 191–200. IEEE, 1994.

[21] Istio. Diagnose your configuration with istioctl analyze.
https://istio.io/latest/docs/ops/diagnosti
c-tools/istioctl-analyze/.

[22] Marko Ivanković, Goran Petrović, René Just, and Gor-
don Fraser. Code coverage at google. In Proceedings
of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 955–963.
ACM, 2019.

[23] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at
scale. In Proceedings of SIGCOMM ’19, pages 200–
213. ACM, 2019.

1730 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://about.codecov.io/
https://guix.gnu.org/en/packages/lcov-1.15/
https://guix.gnu.org/en/packages/lcov-1.15/
https://istio.io/latest/docs/ops/diagnostic-tools/istioctl-analyze/
https://istio.io/latest/docs/ops/diagnostic-tools/istioctl-analyze/

[24] Yue Jia and Mark Harman. An analysis and survey of
the development of mutation testing. IEEE transactions
on software engineering, 37(5):649–678, 2010.

[25] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In Proceedings of NSDI 12, pages 113–126.
USENIX Association, 2012.

[26] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P Brighten Godfrey. Veriflow: Verifying
network-wide invariants in real time. In Proceedings of
NSDI 13, pages 15–27. USENIX Association, 2013.

[27] Nuno P Lopes and Andrey Rybalchenko. Fast BGP
simulation of large datacenters. In International Con-
ference on Verification, Model Checking, and Abstract
Interpretation, pages 386–408. Springer, 2019.

[28] Matthew Luckie, Bradley Huffaker, Amogh Dhamdhere,
Vasileios Giotsas, and KC Claffy. AS relationships,
customer cones, and validation. In Proceedings of IMC

’13, pages 243–256, 2013.

[29] Haohui Mai, Ahmed Khurshid, Rachit Agarwal,
Matthew Caesar, P. Brighten Godfrey, and Samuel Tal-
madge King. Debugging the data plane with Anteater.
In Proceedings of SIGCOMM ’11, pages 290–301.
ACM, 2011.

[30] Netcov: Network configuration coverage tool. https:
//github.com/UWNetworksLab/netcov.

[31] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand,
Brighten Godfrey, and Matthew Caesar. Plankton: Scal-
able network configuration verification through model
checking. In Proceedings of NSDI 20, pages 953–967.
USENIX Association, 2020.

[32] Bruno Quoitin and Steve Uhlig. Modeling the routing
of an autonomous system with C-BGP. IEEE network,
19(6):12–19, 2005.

[33] Steve Ragan. BGP errors are to blame for Monday’s
Twitter outage, not DDoS attacks. https://www.csoo
nline.com/article/3138934/security/bgp-err
ors-are-to-blame-for-monday-s-twitter-outa
ge-not-ddos-attacks.html, 2016.

[34] Deon Roberts. It’s been a week and customers are still
mad at BB&T. https://www.charlotteobserver.
com/news/business/banking/article202616124
.html, 2018.

[35] Deon Roberts. Facebook says its outage was caused by
a cascade of errors. https://www.nytimes.com/20
21/10/05/technology/facebook-outage-cause.
html, 2021.

[36] Joao Luis Sobrinho. Network routing with path vector
protocols: Theory and applications. In Proceedings of
the 2003 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications,
pages 49–60, 2003.

[37] Fabio Somenzi. CUDD: CU decision diagram package
release 2.5.0. University of Colorado at Boulder, 2012.

[38] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine
Ang, Owolabi Legunsen, and Tianyin Xu. Testing con-
figuration changes in context to prevent production fail-
ures. In Proceedings of OSDI’20. USENIX Association,
2020.

[39] Yevgeniy Sverdlik. United says it outage resolved,
dozen flights canceled monday. https://www.datace
nterknowledge.com/archives/2017/01/23/unit
ed-says-it-outage-resolved-dozen-flights-c
anceled-monday, 2017.

[40] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,
Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao.
Safely and automatically updating in-network ACL
configurations with intent language. In Proceedings of
SIGCOMM ’19, page 214–226. ACM, 2019.

[41] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Srid-
haran, and Omri Weisman. Taj: effective taint analysis
of web applications. ACM Sigplan Notices, 44(6):87–97,
2009.

[42] Route Views. University of Oregon Route Views project.
http://www.routeviews.org/routeviews/, 1997.

[43] Rosemary Wang. Testing HashiCorp Terraform. https:
//www.hashicorp.com/blog/testing-hashicorp
-terraform.

[44] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D
Ernst, Arvind Krishnamurthy, and Zachary Tatlock.
Scalable verification of border gateway protocol configu-
rations with an SMT solver. In Proceedings of OOPSLA
2016, pages 765–780. ACM, 2016.

[45] Zach Whittaker. T-mobile hit by phone calling, text
message outage. https://techcrunch.com/2020/
06/15/t-mobile-calling-outage/, 2020.

[46] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wen-
chao Zhou, and Boon Thau Loo. Diagnosing missing
events in distributed systems with negative provenance.
ACM SIGCOMM Computer Communication Review,
44(4):383–394, 2014.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1731

https://github.com/UWNetworksLab/netcov
https://github.com/UWNetworksLab/netcov
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.nytimes.com/2021/10/05/technology/facebook-outage-cause.html
https://www.nytimes.com/2021/10/05/technology/facebook-outage-cause.html
https://www.nytimes.com/2021/10/05/technology/facebook-outage-cause.html
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
http://www.routeviews.org/routeviews/
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://techcrunch.com/2020/06/15/t-mobile-calling-outage/
https://techcrunch.com/2020/06/15/t-mobile-calling-outage/

[47] Xieyang Xu, Ryan Beckett, Karthick Jayaraman, Ratul
Mahajan, and David Walker. Test coverage metrics for
the network. In Proceedings of SIGCOMM ’21, page
775–787. ACM, 2021.

[48] Hongkun Yang and Simon S. Lam. Real-time verifi-
cation of network properties using atomic predicates.
IEEE/ACM Trans. Netw., 24(2):887–900, April 2016.

[49] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu,
Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu,
Tianchen Guo, Cheng Jin, Duncheng She, Qing Ma,
Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and
Rodrigo Fonseca. Accuracy, scalability, coverage: A
practical configuration verifier on a global WAN. In
Proceedings of SIGCOMM ’20, page 599–614. ACM,
2020.

[50] Hongyi Zeng, Peyman Kazemian, George Varghese,
and Nick McKeown. Automatic test packet genera-
tion. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies,
pages 241–252, 2012.

[51] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar
Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, and
Amin Vahdat. Libra: Divide and conquer to verify for-
warding tables in huge networks. In Proceedings of
NSDI 14, pages 87–99. USENIX Association, 2014.

[52] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li,
Boon Thau Loo, and Yun Mao. Efficient querying and
maintenance of network provenance at internet-scale.
In Proceedings of SIGMOD ’10, pages 615–626. ACM,
2010.

1732 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background on Network Testing
	Configuration Coverage: Overview
	Defining coverage
	Our approach

	Design of NetCov
	Information flow model
	Inferring the IFG on demand
	Handling uncertainty
	Future Extensions

	Implementation
	Case Studies
	Case Study I: The Internet2 backbone
	Test suite coverage
	Coverage-guided test development

	Case study II: Datacenter networks

	Performance Evaluation
	Comparison to Data Plane Coverage
	Related Work
	Summary

