
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Bamboo: Making Preemptible Instances Resilient
for Affordable Training of Large DNNs

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, and Yifan Qiao, UCLA;
Zhihao Jia, CMU; Minjia Zhang, Microsoft Research; Ravi Netravali,

Princeton University; Guoqing Harry Xu, UCLA
https://www.usenix.org/conference/nsdi23/presentation/thorpe

Bamboo: Making Preemptible Instances Resilient for Affordable Training
of Large DNNs

John Thorpe†♣ Pengzhan Zhao†♣ Jonathan Eyolfson† Yifan Qiao† Zhihao Jia‡

Minjia Zhang§ Ravi Netravali∗ Guoqing Harry Xu†

UCLA† CMU‡ Microsoft Research§ Princeton University∗

Abstract
DNN models across many domains continue to grow in size,

resulting in high resource requirements for effective training,
and unpalatable (and often unaffordable) costs for organi-
zations and research labs across scales. This paper aims to
significantly reduce training costs with effective use of pre-
emptible instances, i.e., those that can be obtained at a much
cheaper price while idle, but may be preempted whenever
requested by priority users. Doing so, however, requires new
forms of resiliency and efficiency to cope with the possibility
of frequent preemptions – a failure model that is drastically
different from the occasional failures in normal cluster set-
tings that existing checkpointing techniques target.

We present Bamboo, a distributed system that tackles these
challenges by introducing redundant computations into the
training pipeline, i.e., whereby one node performs compu-
tations over not only its own layers but also over some lay-
ers in its neighbor. Our key insight is that training large
models often requires pipeline parallelism where “pipeline
bubbles” naturally exist. Bamboo carefully fills redundant
computations into these bubbles, providing resilience at a low
cost. Across a variety of widely used DNN models, Bamboo
outperforms traditional checkpointing by 3.7× in training
throughput, and reduces costs by 2.4× compared to a setting
where on-demand instances are used.

1 Introduction
DNNs are becoming progressively larger to deliver improved
predictive performance across a variety of tasks, including
computer vision and natural language processing. For in-
stance, recent language models such as BERT [66] and GPT
[50] already have a massive number of parameters, and their
newer variants continue to grow at a rapid pace. For example,
BERT-large has 340 million parameters, GPT-2 has 1.5 bil-
lion, and GPT-3 increases to 175 billion; the next generation
of models embed upwards of trillions of parameters [17].

Of course, model growth also entails larger training costs.
For instance, GPT-3 consumes several thousand petaflop/s-
days, costing over $12 million to train on a public cloud
(needing hundreds of GPU servers) [6]. Unfortunately, such
costs are prohibitive for small organizations. Even for large
tech firms, training today’s models incurs an exceedingly
high monetary cost that eventually gets billed to the training

♣ Contributed equally.

department. While pretrained models may be reused and fine-
tuned for different applications, training new models is often
required to keep pace with changing or emerging workloads
and datasets.

Although there exists a body of work on improving the
training of large models [38, 39, 26, 9, 7, 11, 12, 18, 54, 53,
64, 72, 24, 28, 31], existing techniques focus primarily on
scalability and efficiency, with monetary costs often being
neglected. However, when affordability and accessibility are
considered, resource usage becomes a key concern and none
of these techniques were targeted at improving cost-efficiency
(e.g., performance-per-dollar) for training.
Preemptible Instances. This paper explores the possibil-
ity of using preemptible instances—a popular class of cheap
cloud resources—to reduce the cost of training large models.
There are several kinds of preemptible instances. For exam-
ple, major public clouds provide spot instances with a price
much cheaper than on-demand instances—e.g., the hourly
rate of a GPU-based spot instance is only ∼30% of that for
its on-demand counterpart on Amazon EC2 [3]. As another
example, large datacenters often maintain certain amounts of
compute resources that can be allocated for any non-urgent
tasks but will be preempted as urgent tasks arise [41, 5]. Simi-
larly, recent ML systems [27, 69, 4] allow training jobs to use
inference-dedicated machines to fully utilize GPU resources
but preempts those machines when high-priority inference
jobs arrive. The presentation of this paper focuses on spot
instances, but we note that our techniques are generally appli-
cable to any type of preemptible resources.

Despite their substantial cost benefits, preemptible in-
stances pose major challenges in reliability and efficiency
due the frequent and unpredictable nature of their preemp-
tions. When and how many instances get preempted depends
primarily on the number of priority jobs/users in a cluster. In
a public spot market, preemption can also result from the mar-
ket price exceeding the user’s bid price. While price-based
preemption can be avoided via a high bid price (e.g., the
on-demand price), capacity-based preemption is unavoidable.
Preemption patterns vary drastically across clouds and even
across families/zones on the same cloud (§3).

Given the unpredictable nature of spot instances, users can
often only run short, stateless jobs and simply restart these
jobs if they get preempted. Model training, on the contrary,
is stateful and time-consuming. Discarding the state (e.g.,
learned weights) upon each instance preemption not only

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 497

wastes computation but also prevents training from making
progress. Checkpointing-based techniques can reduce wasted
computation to a degree, but still spend a significant fraction
of the training time (e.g., 77% when training GPT-2 with 64
EC2 spot instances, see §3) on restarting and redoing prior
work in the presence of frequent preemptions [20, 21]—a
largely different scenario compared to conventional clusters
where failures are rare.
Bamboo. This paper presents Bamboo, a distributed system
that provides resilience and efficiency for DNN training over
preemptible instances. Bamboo supports both pipeline par-
allelism and (pure) data parallelism with the same approach.
Since pipeline parallelism is a more complex and general ap-
proach (for training large models), our discussion focuses on
pipeline parallelism; we briefly discuss our support for pure
data parallelism in §B. Bamboo currently does not support
model parallelism.
Redundant Computation. Key to the success of Bamboo
is a set of novel techniques centered around redundant com-
putation (RC), inspired by how disk redundancies such as
RAID [45] provide resilience in the presence of disk fail-
ures. A training system that uses pipeline parallelism runs a
set of data-parallel pipelines, each training on a partition of
the dataset. Each node1 in a data-parallel pipeline performs
(forward and backward) computations over a shard of NN
layers with a microbatch of data items [24]. Bamboo lets
each node in each data-parallel pipeline carry its own shard
of layers as well as its successor’s shard. Each node performs
normal computation over its own layers and redundant com-
putation over its successor’s layers. The reason why we use a
neighbor node (as opposed to a random node) to run RC is
to exploit data locality in pipeline parallelism (see §5). Upon
a node preemption, its predecessor has all the information
(e.g., layers, activations) needed for the training to progress;
continuing training requires running a failover schedule on
the predecessor node without wasting prior computations.

At first glance, running RC on every node appears infea-
sible due to concerns with both time and memory. Bamboo
overcomes these challenges by taking into account pipeline
characteristics to carefully reduce/hide these overheads.

First, to minimize the time overhead from RC, Bamboo
leverages a key insight that bubbles [24, 51] inherently exist in
systems using synchronous pipeline parallelism (§2). Bubbles
are idle times on each node due to the gaps between the
forward and backward processing of microbatches (Figure 1).
Bamboo schedules the forward redundant computation (FRC)
on each node asynchronously into the bubble. FRC entails
a node doing the forward pass over its successor’s layers
using the output of its own active layers and is the main
way Bamboo achieves redundancy. For the part of FRC that
cannot fit into the bubble, Bamboo overlaps it with the normal
computation. As a result, FRC incurs a tolerable overhead

1In this paper, “instance” and “node” both refer to a spot instance.

(i.e., no extra communication is needed due to locality, and
it can overlap with normal computation), and hence Bamboo
performs it eagerly in each epoch. If a node is preempted
during a forward pass, the pipeline continues after a node
rerouting step whose overhead is negligible.

In addition to FRC, the system must find a way to gen-
erate the redundant version of the intermediate data related
to backwards passes for the successor node. This can be ac-
complished by using the backward redundant computation
(BRC), or a backwards pass over the node’s redundant lay-
ers (its successor’s layers). Unfortunately, for BRC, such
a corresponding bubble does not exist. Eager BRC would
require much extra work and data-dense communication on
the critical path, which could delay training significantly (§5).
As such, Bamboo runs BRC lazily only when a preemption
actually occurs. If a node is preempted in a backward pass,
continuing the pipeline requires a pause for the node’s pre-
decessor to perform BRC to restore the lost state. However,
since FRC is performed eagerly, when BRC runs, much of
what it needs is already in memory, keeping pauses short.

Second, performing RC increases each node’s GPU mem-
ory usage. Note that the major source of the memory overhead
is storing intermediate results (activations and optimizer state)
from FRC, not the redundant layers, which take only little
extra memory. To mitigate the memory issue, we leverage
Bamboo’s unique way of performing RC described above.
Note that the purpose of saving intermediate results of a
forward pass is that these results are used by its backward
computation. However, in Bamboo, BRC is performed lazily
upon preemptions and the intermediate results of FRC are
thus not needed in normal backward passes. Hence, Bamboo
swaps out the intermediate results of each node’s FRC into
the node’s CPU memory, leading to substantial reduction in
GPU memory usage. These results are swapped back into
GPU memory for BRC only upon preemptions.

Bamboo continues normal training with the help of RC in
the presence of non-consecutive preemptions, i.e., preempted
instances are not neighbors in the same data-parallel pipeline.
Once consecutive instances are preempted, RC can no longer
provide resilience. More redundancies could be added to
provide stronger resilience, but this would incur (compute
and communication) overheads that are too significant to hide.
Instead, based on our empirical observation that most con-
current preemptions come from the same allocation group
(e.g., a zone), Bamboo takes care to ensure that consecutive
nodes in each pipeline come from different zones, minimiz-
ing the chance of consecutive preemptions at a small (<5%)
overhead (see §6.5).
Results. We built Bamboo atop DeepSpeed [51] and eval-
uated it by training 6 representative DNN models using
EC2 spot clusters comprised of p3 instances. Compared
to a baseline using on-demand instances, Bamboo delivers
a 3.6× cost reduction. Bamboo also outperforms a check-
pointing approach by 3.7×. We developed a simulation

498 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4

Node 0

Node 1

Node 2

Node 3

Forward Backward

1 2 3 4 1 1 5 2 2 6 3 3 7 4 4

1 2 3 4 1 1 2 2 5 3 3 6 4 4 7 5

1 2 3 4 1 1 2 2 3 3 5 4 4 6 5 5 7

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

Node 0

Node 1

Node 2

Node 3

Forward Backward

(a) Pipeline parallelism (b) GPipe scheduling (c) PipeDream scheduling
Figure 1: Illustration of pipeline parallelism on a 4-node cluster: (a) the model is divided into 4 shards, each with 2 layers; (b)
and (c) show the scheduling of two recent systems GPipe [24] and PipeDream [38].

framework that takes preemption traces from real spot clus-
ters and training parameters to simulate how training pro-
gresses with larger numbers of nodes. A deep-dive with
BERT across a wide range of preemption probabilities shows
that the value (i.e., performance-per-dollar) Bamboo pro-
vides stays constant and is much higher (2.48×) than that
of on-demand instances. Bamboo is publicly available at
https://github.com/uclasystem/bamboo.

2 Background

This section discusses necessary background for parallelism
strategies. Data parallelism keeps a replica of an entire DNN
on each device, which processes a subset of training sam-
ples and iteratively synchronizes model parameters with other
devices. This strategy is often used with models that can
fit entirely within a single GPU and used to both increase
throughput or expand to batch sizes that cannot fit within a
single GPU. Data parallelism can be combined with pipeline
and/or model parallelism to train large models that do not fit
on a single device. Model parallelism [13] partitions model
operators across training devices. For example, the weights
for a single matrix multiplication may reside across two sep-
arate GPUs, each performing a part of the full computation
and then combining the results. This technique allows the
model to expand beyond a single GPU by reducing the mem-
ory requirements of each operator. However, efficient model
parallelism algorithms are extremely hard to design, requir-
ing difficult choices among scaling capacity, flexibility, and
training efficiency. As such, model-parallel algorithms are
often architecture- and task-specific.

Pipeline parallelism [38, 24, 71] has gained much traction
recently due to its flexibility and applicability to a variety of
neural networks. Pipeline parallelism divides a model at the
granularity of layers and assigns a shard of layers to each
device. Figure 1(a) shows an example where the model is
partitioned into four shards and each worker hosts one shard
(with two layers). Each worker defines a computation stage
and the number of stages is referred to as the pipeline depth
(e.g., 4 in the example). One worker only communicates with
nodes holding its previous stage or next stage. Each input
batch is further divided into microbatches. In each iteration,
each microbatch goes through all stages in a forward pass
and then returns in an opposite direction in a backward pass.
There are often multiple microbatches residing in the pipeline

and different nodes can process different microbatches in
parallel to improve utilization.

A key challenge in efficient pipeline parallelism is how
to schedule microbatches. GPipe [24] schedules forward
passes of all microbatches before any backward pass, as
shown in Figure 1(b) where each node processes four mi-
crobatches. This approach leaves a "bubble" (i.e., white cells)
in the middle of the pipeline, leading to inefficient use of
compute devices. PipeDream [38] proposes the one-forward-
one-backward (1F1B) schedule to interleave the backward
and forward passes, as shown in Figure 1(c). 1F1B can reduce
the bubble size and the peak memory usage.

However, even with carefully-designed schedules, the
pipeline bubble is still hard to eliminate. A fundamental
reason is that it is extremely difficult to find the optimal
layer partitioning to have each stage processed at the same
rate. There exists a body of algorithms proposed recently
to optimize layer partitioning and most of them are model-
and hardware-specific [38, 16]. These algorithms are often
time-consuming for large models, unsuitable for preemptible
instances where the number of nodes keeps changing [2].

PipeDream [38] proposes asynchronous pipelining to elimi-
nate the bubble—a node is allowed to work with stale weights
to reduce the wait time. However, asynchronous microbatch-
ing introduces uncertainty in model convergence. In general,
the effectiveness of synchronous v.s. asynchronous training
is still open to debate. Furthermore, asynchronous training
introduces inconsistencies in model state, which can create
a more significant convergence issue when training occurs
on preemptible instances, due to the need of frequent recon-
figurations. For example, under synchronous microbatching,
a reconfiguration can be performed at the end of each opti-
mizer step (i.e., parameter update), and hence the reconfigured
pipelines can start with the up-to-date parameters. This is
impossible to do under asynchronous microbatching.

As a result, we built Bamboo atop synchronous micro-
batching where model state is always consistent. Instead of
attempting to reduce the bubble, we explore an orthogonal
direction—how to leverage the bubble to run RC efficiently.

3 Motivation
This section motivates Bamboo from two aspects: (1) high
preemption rates and unpredictability of spot instances, and
(2) high performance overheads of strawman approaches.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 499

https://github.com/uclasystem/bamboo

(a) P3 @ EC2 (b) G4dn @ EC2

(c) n1-standard-8 @ GCP (d) a2-highgpu-1g @ GCP

Figure 2: Preemptions traces for a target cluster of size 64
instances on EC2 and 80 instances on GCP. Each graph shows
a full-day trace for a GPU family in a cloud.

Preemptions of Spot Instances. We first studied failure
models with spot instances on major public clouds. Figure 2
shows a set of real preemption traces collected from running
spot instances in two public clouds: Amazon EC2 and Google
Cloud Platform (GCP). For EC2, we used two GPU families:
P3 (NVIDIA V100 GPUs with 32GB of memory) and G4dn
(NVIDIA T4 GPUs with 16GB of memory). For GCP, we
used n1-standard-8 (NVIDIA V100 GPUs with 16GB
GRAM) and a2-highgpu-1g (NVIDIA A100 GPUs with
40GB GRAM). For each family, we collected traces for a
24-hour window. In each experiment, we used an autoscal-
ing group to maintain a cluster of 64 with an exception of
us-east1-c in GCP, whose cluster size is 80. The autoscal-
ing group, provided by each cloud, automatically allocates
new instances upon preemptions to maintain the size (though
without any guarantee).

From both families, node preemptions and additions are
frequent and bulky (i.e., many nodes get preempted at each
time). This can make a checkpointing-based approach restart
many times in a short window of time, leading to large in-
efficiencies (discussed shortly). Furthermore, both preemp-
tions and allocations are unpredictable. While the autoscaling
group attempts to allocate new nodes to maintain the user-
specified size, allocations are committed incrementally; new
allocations are mixed with preemptions of existing instances,
making the spot cluster an extremely dynamic environment.

To understand the nature of the nodes that are preempted at
the same time, we carefully analyzed two 24-hour preemption
traces collected respectively from EC2 and GCP. For the EC2
trace, preemptions occur at 127 distinct timestamps, each of
which see many preempted nodes. Of these 127 timestamps,
only 7 see preemptions from multiple zones; at each of the
remaining 120 timestamps, all nodes preempted come from

Figure 3: Training GPT-2 using checkpointing/restart with
an autoscaling group of 64 P3 spot instances. Each color rep-
resents time spent in a distinct state,including Blue: training
actively made progress; Orange: the cluster made progress
that was then wasted; and Red: cluster restarting.

the same zone. A similar observation was made on the GCP
trace (12 out of 328 timestamps see cross-zone preemptions).
These results confirmed the observations made by existing
works [21, 20]: preemptions tend to be independent based on
each individual spot market and each availability zone has a
different and independent spot market—this is because each
availability zone maintains capacity separately and therefore
capacity preemptions in one zone are not associated with
capacity preemptions in another.

These observations motivate our design—even with 1-node
redundancies, Bamboo can recover from a majority of pre-
emptions if consecutive nodes are not preempted at the same
time; we maximize this possibility with a best-effort approach
that makes consecutive nodes in each pipeline come from dif-
ferent zones. Although this may increase communication
costs, it does not lead to visible performance impacts for
Bamboo because Bamboo only sends (small amounts of) acti-
vations data between nodes.
Strawman #1: Checkpointing. We next show why a tech-
nique based on checkpointing and restarting does not work.
We developed a new checkpointing system on top of Deep-
Speed [51], providing checkpointing and restarting functional-
ities similar to TorchElastic [47] and Varuna [2]. We modified
DeepSpeed to checkpoint continuously and asynchronously.
In particular, each worker moves a copy of any relevant model
state to CPU memory whenever the state is generated; the
CPU then asynchronously writes it to remote storage so that
training and checkpointing can fully overlap. During restart-
ing, our system automatically adapts the prior checkpoints to
the new pipeline configurations.

To understand how well this technique performs, we used
it to train GPT-2 over 64 p3.2xlarge GPU spot instances on
EC2. We profiled the training process and collected the check-

500 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Effects of sample dropping under different rates.

pointing times, reconfiguration overheads, and total execution
time. Figure 3 reports these results. The blue sections repre-
sent the times the system spent making actual progress for
training. The red sections represent the times on reconfig-
uring (i.e., restarting) while the orange sections show the
times for wasted work—the computation that was done but
not saved in checkpoints; the system ended up redoing these
computations after restarting. This is because preemptions
often occur during checkpointing, and hence, the system must
roll back to a previous checkpoint. Frequent rollbacks slows
down the training significantly. Note that systems such as
Varuna and TorchElastic share this property and would have
similar training patterns when facing regular preemptions.
As shown, although checkpointing itself can be done effi-
ciently, the restarting overheads (i.e., for adapting existing
checkpoints to new pipeline configurations) and the wasted
computations take 77% of the training time.
Strawman #2: Sample Dropping. An alternative approach
that has shown promise is to take advantage of the statistical
robustness of DNN training and allow some samples to be
dropped so that training can continue without significant loss
of accuracy [67, 36]. These techniques are also known as
elastic batching because dropping samples is equivalent to
changing the effective batch size at a training iteration (with
the learning rate dynamically adjusted).

In the case of pipeline parallelism, we implemented sample
dropping by suspending a pipeline upon losing an instance
while letting other data-parallel pipelines continue to run.
The system performs optimizer steps with the gradients of
whichever data-parallel pipelines are able to complete that
training step. Learning rate was adapted linearly with respect
to the effective batch size to make sure that the only effect on
the accuracy is the lost samples, but not a mismatch between
hyperparameters and training configurations. In doing so, the
training can continue for sometime without a reconfiguration
(which is needed upon allocations).

We conducted a set of experiments to simulate the effect of
sample dropping on model accuracy with a range of drop rates.

Note that we could not obtain these results with the actual
spot instances because we could not control the preemption
rate. We ran a pre-training benchmark with GPT-2 using
16 on-demand instances from the same EC2 family, which
form four data-parallel pipelines, each with four stages. To
consider a range of different failure models, we used different
rates of preemption to generate preemption events. Upon a
preemption event, we randomly selected a pipeline and zero
out the pipeline’s gradients in that iteration. We measured
the model’s evaluation accuracy every 5 training steps. These
results are shown in Figure 4 where each curve represents the
function of the number of steps needed to reach a given loss
for a particular drop rate.

Similarly to checkpointing, sample dropping works well for
low preemption rates, but when frequent preemptions occur,
many samples can be lost quickly and its impact on model ac-
curacy quickly grows to be too significant to overlook. While
this experiment was not an exact recreation of a sample drop-
ping scenario, these results represent an under-approximation
of the effect of the actual sample dropping (which can lose
more accuracy than reported by Figure 4). This is because
the actual sample dropping rate should be higher than the
instance preemption rate—a preempted instance would likely
be down for some time and consecutive samples would be
dropped in a real setting. Note that training samples are shuf-
fled before loading; hence, the effects of randomly dropping
consecutive samples (i.e., the actual scenario) and dropping
random samples sporadically (i.e., our experiment) should be
similar.

4 Overview

Goal and Non-Goal. Our goal is not to automatically de-
termine the cheapest way to train a given model (e.g., which
parallelism model can lead to the largest cost savings). In-
stead, Bamboo aims to enable efficient and preemption-safe
training over cheap spot instances.

User Interface. To use Bamboo, a user specifies two sys-
tem parameters D and P , as they normal would to use other
pipeline-parallel systems, where D is the number of data-
parallel pipelines and P is the pipeline depth. Due to the
need of storing redundant layers, Bamboo requires a larger
pipeline depth P than a normal pipeline-parallel system such
as PipeDream [38]. We observed, empirically, that to avoid
swapping data between CPU and GPU memory on the critical
path, Bamboo’s pipeline should be ∼1.5× (see §6.4) longer
than an on-demand pipeline due to the extra memory needed
to (1) hold the redundant layers and (2) accommodate poten-
tial pipeline adjustments. Given that spot instances are much
cheaper (e.g., 3-4× on EC2) than on-demand instances, train-
ing with 1.5× more nodes still leads to significantly reduced
costs. While we recommend 1.5× more nodes, the number
of active instances in a cluster is often much smaller due to
preemptions and incremental allocations.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 501

Bamboo
Agent

Bamboo
Worker

Monitors
Creat

es

Bamboo
Agent

Bamboo
Worker

Monitors
Creates

etcdKubernetes
Creates

…

Node 1

Node N

Figure 5: Bamboo runs one agent process per node (i.e.,
spot instance). An agent monitors worker processes (each
running a training script) that use our modified DeepSpeed.
All workers and agents coordinate through etcd [42].

Schedule
Generator

Bamboo
Runtime[instruction]

Pipeline Configuration

GPU
[kernel]

Exception

Figure 6: Bamboo worker.

P × D will be the size of the spot cluster Bamboo at-
tempts to maintain throughout training. Preemptions can
cause Bamboo to reduce the pipeline depth and/or the num-
ber of pipelines; in such cases, Bamboo would request more
instances to bring the size of the cluster back to P ×D. How-
ever, Bamboo would never try to scale the training beyond
P × D. In other words, P and D are the upper bound of
the pipeline depth and number of pipelines. It is important
to note that the goal of the autoscaling framework we build
for Bamboo is to adjust the pipelines passively in response to
node preemptions and additions that we cannot control, rather
than proactively finding an optimal cluster configuration to
achieve better performance. This distinguishes Bamboo from
existing works on autoscaling distributed training [43, 2, 25],
whose goal was to find better configurations.
System Overview. Figure 5 shows an overview of our system.
We built Bamboo on TorchElastic [47] and DeepSpeed [51].
In particular, we built the Bamboo agent, which runs on each
node to kill/add a data-parallel pipeline, on top of TorchElas-
tic. The agent monitors a Bamboo worker process on the
same node, which is a DeepSpeed application enhanced with
our support for redundant computation. Bamboo workers run
D data-parallel pipelines that use an all-reduce phase to
synchronize weights at the end of each iteration. Our spot in-
stances are managed by Kubernetes [33], which is configured
to automatically scale by launching a Bamboo agent on each
new allocation. Our agents communicate and store cluster
state on etcd [42], a distributed key-value store.

Each Bamboo worker uses a runtime to interpret the sched-
ule, which produces a sequence of instructions, as shown in
Figure 6. The schedule is generated statically based on the
stage ID of the current worker and pipeline configurations,
including the depth of pipeline and total number of micro-

batches. The instructions consist of a computation component
(i.e., forward, backward, and apply gradient), and a communi-
cation component (i.e., send/receive activation, send/receive
gradient, and all-reduce). The Bamboo runtime interprets
these instructions by launching their corresponding kernels
on GPU. Communication instructions can fail due to preemp-
tions. Upon a failure, the runtime throws an exception and
falls back to use a failover schedule.

5 Redundant Computation
For ease of presentation, our discussion focuses on one node
running one stage in the pipeline. Support for multi-GPU
nodes will be discussed shortly.

Preemption of a node is detected by its neighboring nodes
in the same pipeline during the execution of communication
instructions. If a node on one side of the communication is
preempted, the node on another side will catch an IO excep-
tion due to broken socket and update cluster state on etcd.
Bamboo detects preemptions based on socket timeout. Al-
though we could let a node to be preempted actively notify
its neighbors in the grace period before the preemption, the
length of this period varies across different clouds and hence
Bamboo does not use it currently.

Since the victim node communicates with two nodes in
the pipeline, both of its neighbors can catch the exception.
The observed exception will be shared between these two
nodes through etcd. This two-side detection is necessary
for Bamboo to understand which node fails and generate the
failover schedule. In addition to the two neighbors, nodes
in other pipelines involved in the all-reduce operation
also need to be informed. To safely perform all-reduce,
each node participating in all-reduce reads the up-to-date
cluster state on etcd and, if another pipeline has a failure,
waits until the failure is handled.

5.1 Redundant Layers and Computation

To quickly recover from preemptions, Bamboo replicates the
model partition on each worker node in each data-parallel
pipeline. Instead of saving these replicas to a centralized
remote storage (like checkpointing), Bamboo takes a decen-
tralized approach by letting each node replicate its own model
partition (i.e., layer shard) on its predecessor node in the same
pipeline. The first node has its layer replica stored on the last
node in the pipeline. Conceptually, the last node is considered
the “predecessor” of the first node. For simplicity of presen-
tation, we use forward stage IDs to identify nodes, that is, a
node that runs the forward stage n+1 is always considered as
a successor of a node running the forward stage n (although
in the backward pass, n+ 1 is a stage before n).

Our key idea is to let each node run normal (forward
and backward) computation over its own layers and redun-
dant (forward and backward) computation over the replica
layers for its successor node. Let FRCm

n /BRCm
n denote

the forward/backward redundant computation that is per-

502 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

formed on node m for node n, respectively. In Bamboo,
n = (m + 1) mod P where P is the pipeline depth. Let
FNCn/BNCn denote the forward/backward normal computa-
tion on node n. In Bamboo’s pipeline, FRCn

n+1/BRCn
n+1 is

exactly the same computation as FNCn+1/BNCn+1, working
with the same model parameters and optimizer states. To
enable the last node to perform RC for the first node, we let it
fetch input samples directly.

FNC1 FNC2 FNC3 FNC4

BNC1 BNC2 BNC3 BNC4

Input

Figure 7: Dependencies between normal pipeline stages.

Why Neighboring Nodes? Due to our focus on pipeline
parallelism, Bamboo performs RC on predecessor nodes to
exploit locality for increased efficiency. To see this, we first
need to understand the dependencies between different (back-
ward and forward) pipeline stages that a microbatch goes
through, as illustrated in Figure 7. For each forward stage
FNCn, it depends only on the output of its previous stage
FNCn−1. However, for each backward stage BNCn, it has
two dependencies: one on the output of stage BNCn+1 and
a second on its corresponding forward stage FNCn. The
first is a hard dependency without which BNCn cannot be
done, while the second is a soft dependency primarily for
efficiency—intermediate results produced by FNCn can be
reused to accelerate BNCn. Without such cached results,
BNCn has to recompute many tensors (i.e., tensor rematerial-
ization [8]), leading to inefficiencies.

Figure 8 shows dependencies on an RC-enable pipeline
where each node performs both normal and redundant (back-
ward and forward) computation. Here solid/dashed arrows
represent inter/intra-node dependencies. By running FRC for
node n+ 1 on node n, locality benefit can be clearly seen
because FRC only creates intra-node dependencies, which
do not incur any extra communication overhead. However,
in a backward pass, such a locality benefit does not exist for
BRCn

n+1, which requires the output of BNCn+2 and incurs
much extra communication. This motivates our eager-FRC-
lazy-BRC design which does not perform BRC until a pre-
emption occurs and hence eliminates the extra communication
cost in normal executions.

Note that we could also perform FRC lazily, but this would
significantly increase the pause time for recovery. This is
because (1) recovering from preemptions at both forward and
backward pass now require a pause; and (2) lazy FRC would
not produce intermediate results that can be used to speed up
BRC and hence BRC’s pause would be much longer. Since
FRC can be scheduled in the pipeline bubble and overlap with
FNC, performing it eagerly is a better choice.

The careful reader may think of an alternative approach
that places node n’s layer replica on node n+1 as opposed to

FNC1 FRC2 FNC2 FRC3 FNC3 FRC4 FNC4 FRC1
Input

Input

BNC4 BRC1BNC3 BRC4BNC2 BRC3BNC1 BRC2

Node1 Node2 Node3 Node4

Figure 8: Dependencies between RC-enabled pipeline stages:
solid/dashed arrows represent inter/intra-node dependen-
cies; for simplicity, FRCn/BRCn in the figure represents
FRCn−1

n /BRCn−1
n .

node n−1 (i.e., its successor rather than its predecessor). This
approach is symmetric to our design in that it turns inter-node
dependencies for BRC into intra-node dependencies, but intra-
node dependencies for FRC into inter-node dependencies. As
a result, it eliminates the extra backward communication at the
cost of increased forward communication. However, unlike
Bamboo’s design that can use lazy BRC to eliminate the extra
backward communication, it is not as easy to eliminate the
extra forward communication with lazy FRC—if FRC is not
done eagerly in each iteration, BRC (regardless of whether
it is eager or lazy) must perform tensor re-materialization,
which incurs a long delay.

Level of Redundancy. As with any redundancy-based sys-
tems, the more redundancies, the higher level of resilience.
For example, since Bamboo performs redundant computa-
tions only for one node, it cannot provide resilience when
preemptions occur on consecutive nodes in a pipeline, in
which case a reconfiguration is needed (see §A). However,
enabling RC for multiple nodes can significantly increase the
FRC time, making it much longer than what the bubbles can
accommodate. Furthermore, the locality benefit (i.e., FRC
only incurs intra-node dependency) does not hold anymore,
because FRC now depends on the outputs of multiple nodes.
This can slow down the training substantially.

Takeaway. Storing each node’s replica layers on its predeces-
sor and running eager-FRC-lazy-BRC achieves low-overhead
RC for pipeline parallelism. While this design does not sup-
port consecutive preemptions, Bamboo takes care to make
consecutive nodes come from different zones. As discussed
in §3, if multiple preemptions occur at the same time, the pre-
empted nodes are highly likely to be from the same zone. As
a result, our node assignment reduces the chance of consecu-
tive preemptions, making RC effective for most preemptions.
Although cross-zone data transfer can incur an overhead, this
overhead is negligible (e.g., <3%), as reported in Appendix
§6.5, because in pipeline-parallel training, each node only
passes a small amount of activation data to its neighbors.

We refer to the preempted node as the victim node, and the
node saving the replica of the victim as its shadow node.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 503

B

F

F

B

INode i

Node i+1

Barrier Barrier

B

F

2t t

1.2t 2.4t

0.6t

...

...

Forward Backward Idle

Figure 9: A closer examination of the pipeline bubble. Here
we assume the forward pass on node i and i+ 1 takes time t
and 1.2t, respectively. Hence, a bubble of 0.6t exists before
each communication barrier.

5.2 Schedule Redundant Computation

It is straightforward to see that RC incurs an overhead in both
time and memory. We propose to (1) schedule FRC into the
pipeline bubble to reduce forward computation overhead, (2)
perform BRC lazily to reduce backward computation/com-
munication overhead, and (3) offload unnecessary tensors to
CPU memory to reduce memory overhead.
Eager FRC. As discussed in §2, the pipeline bubble
can come from either imperfect scheduling or unbalanced
pipeline partitioning. To illustrate, consider Figure 9 with
PipeDream’s 1F1B schedule. Suppose there are two consec-
utive nodes in the pipeline where both the forward and the
backward computation of node i + 1 run 1.2× slower than
those of node i. The communication between these two nodes
serves as a barrier. Since node i runs faster, it always reaches
the barrier earlier and waits there until node i + 1 arrives.
This wait period is where we should schedule FRC.

Bamboo builds on the 1F1B schedule (Figure 1(a)) due to
its additional efficiency compared to GPipe’s schedule (Fig-
ure 1(b)). However, even for 1F1B, bubbles widely exist in a
pipeline—as a microbatch passes different pipeline stages, the
later a stage, the longer the (backward and forward) computa-
tion takes. This is because for the 1F1B schedule, the number
of active microbatches in a later stage is always smaller than
that in an earlier stage. In Figure 1 (c), for example, node 1
has 3 active microbatches while node 2 only has 2. Conse-
quently, later stages often consume less memory. To balance
memory usage, the layer partition on a later node is often
larger that that on an earlier node in the pipeline, and hence a
later stage runs slower. A detailed analysis of bubble size can
be be found in Appendix §C.1.
Scheduling. Based on this observation, we schedule FRC
on a node before the node starts communicating with its
successor node. This is where a bubble exists. In cases
where the FRC cannot fit entirely into the bubble (i.e., for the
last four stages in Figure 14), we overlap FRC and FNC as
much as we can. However, for the same microbatch, FRCn

n+1

depends on FNCn and they cannot run in parallel. To resolve
this dependency issue, we focus on different microbatches
for FNC and FRC. That is, Bamboo schedules FNCn for
the k-th microbatch and FRCn

n+1 for its previous (k − 1)-th

3

5

6

4

Node 1

Node 2

31 52 6142Node 1

Forwardstage Backwardstage Communication

Figure 10: An example of merged instruction sequences in
a failover schedule. We use PipeDream’s 1F1B schedule as
shown Figure 1(c), and assume node 2 is the victim node and
node 1 is the shadow node.

microbatch to run in parallel. Since there is no dependency
between them, their executions can overlap.

To reduce memory overhead, Bamboo follows a well-
known principle to offload less frequently used tensors to
CPU memory. Specially, since BRC is not performed in
normal training passes, FRC’s outputs and intermediate re-
sults are not needed until a preemption occurs and BRC is
triggered. As a result, we swap out these data after FRC is
done for each microbatch on each node. These data take the
majority of FRC’s memory consumption; swapping them out
significantly reduces FRC’s GPU memory usage [52]. How-
ever, we leave the redundant weights in GPU memory for
efficient FRC because these weights are needed for FRC on
each microbatch.

Lazy BRC and Recovery. BRC is executed by a failover
schedule which a node runs when detecting its successor node
fails. In particular, for the current iteration, all the lost gradi-
ents must be re-computed, while for the following iterations,
all instructions of the victim node must be executed by its
shadow node (until a reconfiguration occurs). Nodes that
originally communicate with the victim node are transpar-
ently rerouted to the shadow node. The failover schedule is
generated by merging the schedules of the victim and shadow
node. In particular, a schedule consists of a sequence of in-
structions and we divide it into two groups—(1) continuous
communication instructions, which is placed at the head of a
group and (2) computation instructions that can be executed
without remote data dependencies.

When the two instruction groups (from the victim and
shadow nodes) are merged, the instructions are interleaved
with the following rules. (1) Communication instructions are
still placed in the beginning of the merged groups. (2) Com-
munications that used to be inter-node between the victim
and the shadow are removed. (3) External communications
from the victim node are first performed. (4) Computation
instructions are ordered such that backward computation is
always executed earlier; after the backward computation is
done, the memory occupied by intermediate results is freed.
Figure 10 shows an example of merged instruction sequences
if node 2 is the victim node and node 1 is the shadow node.

504 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model Dataset Samples D P
ResNet-152 [22] ImageNet [32] 300,000 4 12
VGG-19 [63] ImageNet [32] 1,000,000 4 6
AlexNet [32] ImageNet [32] 1,000,000 4 6
GNMT-16 [68] WMT16 EN-De 200,000 4 6
BERT-Large [15] Wikicorpus En [15] 2,500,000 4 12
GPT-2 [49] Wikicorpus En [15] 500,000 4 12

Table 1: Our models, datasets, pipeline configurations.

Support for Multi-GPU Nodes. Bamboo’s RC works for
multi-GPU settings—this requires replicating all layers that
belong to the GPUs of one node in the GPUs of its prede-
cessor node. In other words, we use “group replicas” as
opposed to individual replicas. However, in the presence of
frequent preemptions, using multi-GPU would yield poorer
performance—losing one node (with multiple GPUs) is equiv-
alent to losing multiple nodes in the single-GPU setting. Our
evaluation (§6) shows that it is much harder to allocate new
multi-GPU nodes during training than single-GPU nodes.

Once Bamboo loses too many nodes or there are many
idle nodes (i.e., new allocations) waiting to join the pipelines,
Bamboo launches a reconfiguration. Details of the reconfigu-
ration process can be found in §A.
Support for Pure Data Parallelism. Bamboo supports
pure data parallelism (without model partitioning). Due to
space constraints, here we briefly discuss how it is supported.
We use the same redundant computation strategy—Bamboo
replicates the parameter and optimizer state of each node on
a different node and uses these replicas as redundancies to
provide quick recovery. For pure data parallelism, there is
no bubble time to schedule RC. Eager FRC would be equiv-
alent to overbatching (i.e., each node processes its original
minibatch plus a redundant minibatch). To reduce the FRC
overhead and make RC fit into the GPU memory constraints,
we over-provision spot instances (by 1.5×, in the same way as
discussed in §5) to make each node process a smaller batch.

Enabling eager FRC doubles the batch size. However, it
results only in a ∼1.5× increase in the computation time due
to the parallelism provided by GPUs. This overhead can be
effectively reduced by slightly over-provisioning (1.5 ×D)
nodes, increasing the degree of parallelism and decreasing the
impact of overbatching. This enables us to run FRC eagerly
without incurring much overhead (i.e., <10%).

Once Bamboo loses too many nodes or there are many
idle nodes (i.e., new allocations) waiting to join the pipelines,
Bamboo launches a reconfiguration. Details of the reconfigu-
ration process can be found in Appendix §A.

6 Evaluation
Bamboo is implemented in ∼7K LoC as a standard Python li-
brary. We evaluated Bamboo by pretraining a range of popular
vision and language models, as shown in Table 1. For the first
four (smaller) models that were also used in PipeDream [38]
(which actually used smaller versions of these models), we

took the values of D (the number of data-parallel pipelines)
and Pdemand (pipeline depth) from PipeDream [38]’s config-
urations.

As discussed earlier in §4, to avoid swapping Bamboo
needs 1.5× more instances for each pipeline and hence each
P reported in Table 1 equals 1.5×Pdemand. For BERT and
GPT2, we used 4 and 8×1.5=12 as D and P . We have
also evaluated with another pipeline depth Ph = Pdemand ×
Pricedemand

Pricespot
; these results can be found in §6.2.

We trained these models on a spot cluster from EC2’s p3
family where each instance has V100 GPU(s) with 16GB
GPU memory and 61GB CPU memory. Each on-demand
instance costs $3.06/hr per GPU while the price of its spot
counter-part (at the time of our experiments) is $0.918/hr. Our
evaluation uses two on-demand baselines: (1) p3 instances
each with four V100 GPUs (Demand-M) and (2) p3 instances
each with a single GPU (Demand-S). For both baselines,
the pipeline configuration was the same and all nodes were
obtained from one availability zone.

For all experiments, we trained each model to a target val-
idation accuracy, which is a particular number of samples
for the model. We did not train them to higher accuracies
because large models take a huge amount of time to train (e.g.,
weeks) to reasonable accuracies; using such a large amount
of resources (even spot instances) goes beyond our financial
capabilities. Furthermore, Bamboo uses synchronous train-
ing where the time per iteration is fixed; hence, training for
extended time would not change our results.

For on-demand instances, we used the largest per-GPU
minibatch that fits in one GPU’s memory—anything larger
yields out-of-memory exceptions. This ensures that we hit
peak achievable FLOPs on a single device. For data-parallel
runs with n workers, the global minibatch size is n× g where
g is the minibatch size. The global minibatch sizes we used
are consistent with those used by the ML community and
reported in the literature for these models. We used a per-GPU
minibatch size of 256 per GPU for VGG-19, 512 for AlexNet,
2048 for ResNet-152, 32 for GNMT-16, 256 for BERT-Large,
and 256 for GPT-2. For microbatch size, we always selected
a small value and tuned it for different models/configurations.
We trained the vision models with an initial learning rate of
0.001, respectively, with a vanilla SGD optimizer [29]. For
language models, we used the Adam optimizer [30] with an
initial learning rate of 6e−3. We used half (fp16) precision in
all our experiments.

6.1 Training Performance and Costs

Overall Performance. To thoroughly and deterministically
evaluate Bamboo’s performance over spot instances under
different preemption rates, we first ran a 48-node cluster (i.e.,
the configuration for ResNet, BERT, and GPT) and a 32-node
cluster (i.e., for VGG, AlexNet, and GNMT) on AWS and
collected a 24-hour preemption trace for each. On these traces,
the hourly preemption rate varies significantly, ranging from

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 505

Model System Time (Hours) Throughput Cost ($/hr) Value

ResNet D-M 2.78 30.00 97.92 0.31
D-S 2.60 32.00 97.92 0.33
B-M [4.31, 5.31, 10.14] [19.35, 15.69, 8.22] [44.33, 40.01, 37.21] [0.43, 0.39, 0.22]
B-S [3.85, 4.29, 6.87] [21.67, 19.41, 12.13] [42.23, 40.39, 36.72] [0.51, 0.48, 0.33]

VGG D-M 1.41 197.00 48.96 4.02
D-S 1.66 167.00 48.96 3.41
B-M [2.98, 3.67, 4.33] [93.34, 75.75, 64.22] [21.31, 19.55, 18.43] [4.38, 4.11, 3.48]
B-S [1.81, 2.22, 2.83] [153.31, 124.88, 98.21] [20.19, 19.28, 18.36] [7.59, 6.48, 5.35]

AlexNet D-M 0.77 359.00 48.96 7.33
D-S 0.78 336.00 48.96 6.86
B-M [1.02, 1.34, 1.93] [271.06, 207.43, 143.57] [21.31, 19.55, 18.43] [12.72, 10.61, 7.79]
B-S [0.82, 0.86, 0.99] [340.32, 321.65, 280.42] [20.19, 19.28, 18.36] [16.86, 16.68, 15.27]

GNMT D-M 2.06 27.00 48.96 0.55
D-S 2.31 24.00 48.96 0.49
B-M [3.98, 5.13, 8.78] [13.95, 10.82, 6.33] [21.31, 19.55, 18.43] [0.65, 0.55, 0.34]
B-S [2.94, 3.41, 6.31] [18.92, 16.31, 8.8] [20.19, 19.28, 18.36] [0.94, 0.85, 0.48]

BERT D-M 5.89 118.00 97.92 1.21
D-S 6.43 108.00 97.92 1.10
B-M [9.75, 12.31, 16.66] [71.22, 56.41, 41.68] [44.33, 40.01, 37.21] [1.61, 1.41, 1.12]
B-S [7.02, 8.3, 11.46] [98.87, 83.70, 60.59] [42.23, 40.39, 36.72] [2.34, 2.07, 1.65]

GPT D-M 4.34 32.00 97.92 0.32
D-S 4.63 30.00 97.92 0.30
B-M [7.83, 9.92, 12.04] [17.73, 14.00, 11.54] [44.33, 40.01, 37.21] [0.40, 0.35, 0.31]
B-S [4.64, 6.12, 10.08] [29.92, 22.68, 13.78] [42.23, 40.39, 36.72] [0.71, 0.56, 0.38]

Table 2: Comparisons between training with DeepSpeed over on-demand instances and Bamboo over spot instances. For
Bamboo, we trained each model three times, and their results are explicitly listed in the form of [a, b, c] for the 10% (average),
16%, and 33% preemption rates, respectively.

no preemption all the way to 16 nodes preempted (33%), with
an average rate of 4-6 nodes per hour (8-12%). To account for
such changes, we extracted from each trace three segments,
each with a different hourly preemption rate: 10%, 16%, and
33%. We used AWS’ fleet manager to trigger preemptions
by replaying these segments. Note that if we were to run
Bamboo over the uncontrolled spot cluster, there would be no
way to enable a direct comparison.

We trained ResNet, BERT, and GPT by replaying the three
segments from the 48-node trace, and VGG, AlexNet, and
GNMT by using the segements from the 32-node trace. These
results are reported in Table 2. In addition to the time and
monetary costs, we used a metric called value, which mea-
sures performance-per-dollar. Value is computed as V = T

C
where T is the training throughput, measured in terms of the
number of samples per second, and C is the monetary cost
per hour. Throughout the evaluation, we used both value and
throughput as our metrics.

Our first observation is Demand-M slightly outperforms
Demand-S due to reduced cross-node communication. How-
ever, the difference is marginal as the amount of data
(i.e., only activations) transferred over the network is small.
Bamboo-S significantly outperforms Bamboo-M (i.e., 1.4×
higher throughput and 1.5× higher value) because (1) multi-
GPU nodes are subject to more GPU failures with the same
number of preemptions and (2) it is much harder to to allocate
new nodes in a timely fashion.

For Bamboo-S, the results in each bracket of the form [a, b,
c] show Bamboo’s performance under the three preemption
rates. The higher the preemption rate, the worse Bamboo’s
throughput and value. Given that the average preemption
rate is ∼10%, the first number in each bracket (highlighted)
represents Bamboo’s performance on the used spot cluster.

On average, Bamboo’s throughput (under the 10% preemption
rate) is 15% lower than DeepSpeed running over D×Pdemand

instances. There are three major reasons.

First, the number of active instances in the spot cluster is
actually lower than the requested size D × P . For ResNet,
for example, the average number of instances throughout the
training is only 25.58 although the requested cluster size is
48 (and the on-demand cluster always has 32 nodes). The
autoscaling group keeps attempting to add new instances but
the total number of active instances only reaches the requested
size for a small period of time.

Second, Bamboo’s reconfiguration contributes to reduced
throughput—these overheads vary with environments and
take an average of 7% of the total training time.

Third, the time for each iteration increases due to eager
FRC. This is the major source of overhead for language mod-
els such as GPT-2. A detailed evaluation of RC’s overhead
can be found in §6.4.

Despite the small throughput reduction, Bamboo delivers
an overall of 1.95× higher value compared to training with
on-demand instances. The benefit in value remains clear
for five models (ResNet, VGG, AlexNet, BERT and GPUT)
even when the preemption rate increases to 33% (i.e., the
worst-case segment of the collected trace).

To have a closer examination of Bamboo-S’ training, we
showed the traces for BERT-large and VGG-19, and plotted
them in Figure 11. The two rows show (a) preemption traces
(under the 10% rate), (b) training throughputs, (c) monetary
costs, and (d) values, for BERT-large and VGG-19, respec-
tively. Since Bamboo-M underperforms Bamboo-S, we focus
on Bamboo-S in the rest of the evaluation.

506 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Trace (b) Training Throughput (c) Monetary Cost (d) Value

Figure 11: Bamboo’s training performance for BERT (top) and VGG (bottom), compared to on-demand instances (red lines).

Prob. Prmt (#) Inter. (hr) Life (hr) Fatal Fail. (#) Nodes (#) Thruput Cost ($/hr) Value
0.01 8.50 2.08 15.20 0.06 45.18 87.99 41.11 2.10
0.05 48.15 0.44 10.14 0.23 43.65 76.35 39.73 1.90
0.10 99.77 0.23 6.71 0.29 41.69 72.12 37.94 1.88
0.25 276.52 0.10 3.13 1.04 35.80 60.12 32.58 1.82
0.50 709.83 0.06 1.49 5.98 26.96 40.37 24.53 1.59

(a) Results of simulating training BERT until completion; each preemption probability ran
1,000 times.

Prob. Thruput Cost ($/hr) Value
0.01 54.87 90.73 0.60
0.05 50.66 87.43 0.58
0.10 49.18 83.23 0.59
0.25 40.59 71.24 0.57
0.50 26.24 53.05 0.49

(b) Simulation results of training
BERT-large with pipeline depth Ph

(which is 3.3×Pdemand).
Table 3: Simulation results for more configurations.

6.2 Different Failure Models

This section demonstrates Bamboo’s ability to affordably train
large DNNs across a wide range of failure models. To this
end, we developed an offline simulation framework that takes
as input (1) the preemption probability (including preemption
frequency and the number of preemptions in each bulk), (2)
per-iteration training time, and (3) Bamboo’s recovery and
reconfiguration time, automatically calculating training per-
formance, costs, and values. Here we focus on BERT-large
and simulated its training until completion.

We experimented using 5 different preemption probabili-
ties (i.e., preemption rate per hour), and kept the preemption
probability constant throughout the entire run (as opposed to
replaying traces). To mimic realistic spot instance creation
and preemption, we randomly generated different creation
probabilities per hour and also randomly picked zones for
allocations. For each preemption probability, Table 3a reports
the average numbers of preemptions, intervals (i.e., average
time, in hours, between preemption events), average lifetime
of an instance (in hours), average numbers of fatal failures
(which require a restart from a checkpoint), average num-
bers of instances in the cluster, throughput (i.e., #samples per
second), costs, and values, across 1,000 simulations.

Our simulations show that Bamboo’s values match our real-
world runs as just reported in §6.1. Further, regardless of the
preemption probability, the value of Bamboo remains stable
and is constantly higher than that of training with on-demand
instances (which is 1.1). This is because most preemptions
can be quickly recovered without introducing much overhead.

The higher the preemption probability, the less the active
instances running training jobs; this is the major source of the
performance slowdown. However, the cost is reduced also
proportionally, leading to stable values.
Simulation for Ph. To understand the tradeoff in choosing
P , we experimented with another value of P for BERT-large:
Ph, which is 3.06

0.918 × Pdemand. This configuration represents
the upper-bound of the spot training resources that can be
obtained within the cost of training with Pdemand on-demand
instances (while D remains unchanged). Note that in practice
the number of active instances can barely reach the requested
size and hence the cost of using a spot cluster of size Ph ×D
is often still much lower than training with an on-demand
cluster of size Pdemand ×D.

To avoid incurring a large monetary cost, we used the same
simulator to run this experiment. These results are reported
in Table 3b. As shown, using Ph actually decreases both
throughput (compared to 84 under P in Table 2) and value
(due to significantly increased costs). This is because using
too a large pipeline leads to poorer partitioning, underutilized
resources and inferior performance.

6.3 Comparisons with Other Systems

We have reported the performance of training GPT-2 with
asynchronous checkpointing and restart in Figure 3—the
checkpointing-based approach spent only 23% on actual train-
ing, while Bamboo increases this percentage to 84%. In fact,
as shown in Table 3a, even for the preemption rate of 0.5, there
are only 5.98 fatal failures that would require checkpoint-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 507

ing/restart under Bamboo. On the contrary, a checkpointing-
based approach would need to restart the pipeline for every
one of the 709.83 preemptions. Similarly, sample dropping
significantly slows down the training when the preemption
rate increases, as shown in Figure 4.
Varuna. Varuna [2] is a system developed concurrently
with Bamboo to enable training on spot instances. As with
other existing techniques, Varuna provides resilience with
checkpointing. We set up Varuna on the same spot cluster
on AWS EC2 as we used in § 6.1. We ran Varuna with
a D × P pipeline (i.e., the same as on-demand instances)
because Varuna does not use redundancies and hence not
need to over-provision resources.

We trained BERT on Varuna with the same configurations,
including the same datasets, model architectures, float preci-
sion, preemption rates, and hyperparameters. Varuna hung
under the 33% preemption rate. For the 10% and 16% pre-
emption rates, comparisons between Varuna and Bamboo-S
are reported in Figure 12. As shown, Bamboo-S outperforms
Varuna by 2.5× and 2.7× in throughput, respectively, under
the 10% and 16% rates; and by 1.67× and 1.64×, in value,
under the two rates. Note that value benefits are lower than
throughput benefits due to Varuna’s use of fewer instances. To
understand the cause of Varuna’s slowdown, see §3. Varuna
follows a similar pattern, having to frequently restart and redo
lost computations.

Figure 12: Throughput and value for Bamboo-S and Varuna
running BERT at different preemption levels. Varuna hung at
the 33% preemption rate.

6.4 Microbenchmarks of Redundant Computation

To fully understand the overhead introduced by RC, we com-
pared time and memory among three versions of RC: eager-
FRC-lazy-BRC (EFLB, Bamboo’s approach), eager-FRC-
eager-BRC (EFEB), and lazy-FRC-lazy-BRC (LFLB), when
training BERT and ResNet. Since the focus here is the RC
overhead, we ran this experiment over on-demand instances.

Table 4 reports RC’s time overheads for the three RC set-
tings. As expected, LFLB incurs the lowest per-iteration
overhead because neither FRC nor BRC is performed with
normal training iterations. The ∼7% overhead comes pri-
marily from the extra code executed to prepare for a failover

Redundancy Mode BERT ResNet
Lazy-FRC-Lazy-BRC 7.01% 7.65%
Eager-FRC-Lazy-BRC (Bamboo) 19.77% 9.51%
Eager-FRC-Eager-BRC 71.51% 64.24%
Table 4: Time overhead with different RC settings.

schedule. However, the recovery time is much longer under
LFLB than the other two settings (discussed shortly). On the
contrary, EFEB has the highest per-iteration overhead due
to the eager execution of both FRC and BRC. The overhead
incurred by EFLB, as used in Bamboo, is slightly higher than
LFLB but much lower than EFEB. This is because eager FRC
does not incur extra communication overhead and much its
computation overhead can be hidden by scheduling it into the
pipeline bubble and overlapping it with FNC.

Another interesting observation is the overhead for ResNet
is lower than for BERT. This is because ResNet’s layer parti-
tioning is much more imbalanced than that of BERT (which
is a transformer model where most the middle layers are
equivalent). As a result, the bubble in ResNet’s pipeline is
much larger and hence it can accommodate a more significant
fraction of FRC.

Eager FRC incurs an overall ∼1.5× overhead in GPU
memory (that is why Bamboo recommends creating pipelines
with 1.5× more nodes) while lazy FRC does not incur any
memory overhead.

(a) BERT (b) ResNet

Figure 13: Relative pause time for BERT and ResNet un-
der different RC settings. Bamboo runs into a pause when
a pipeline stops training and waits for the shadow node to
recover the lost state on the victim node.

To understand the pause time under these different RC set-
tings, Figure 13 shows the relative pause time (i.e., the actual
pause time relative to the time of each training iteration with-
out preemptions). As shown, lazy FRC reduces pause time
by ∼35% despite the slightly higher per-iteration overhead
it introduces. In summary, eager-FRC-lazy-BRC strikes the
right balance between overhead and pause time.

Model Config Throughput Total Transferred Bytes
BERT Spread 148.923 16.39 GiB
BERT Cluster 151.124 16.39 GiB

VGG19 Spread 160.12 11.213 GiB
VGG19 Cluster 165.77 11.213 GiB

Table 5: Comparison of throughput when running across
availability zones compared to running within a single zone.

508 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.5 Cross-Zone Communication

Because Bamboo allocates workers across availability zones
to minimize the probability of reconfigurations, we measured
the overhead incurred by cross-zone communication. We ran
Bamboo in two configurations: (1) with nodes distributed
across all zones (i.e., Spread) and (2) in a single availability
zone with AWS’ “Placement Group” option set to “Cluster”
(i.e., Cluster), and measured their performance differences.
As reported in Table 5, the differences between these two
configurations are quite low (i.e., usually less than 5%). This
demonstrates Bamboo’s choice of assigning nodes from dif-
ferent availability zones as consecutive nodes in each pipeline
has little impact on training performance.

7 Related Work
Parallel Training. Data parallelism [28, 14, 32, 7, 12, 72,
35, 72] is the most common parallelism model that partitions
the dataset and trains on each partition. The learned weights
are synchronized via either an all-reduce approach [7] or pa-
rameter servers [35, 10]. Model parallelism [14, 31, 43, 60,
62] partitions the operators in a DNN model across multiple
GPU devices, with each worker evaluating and performing
updates for only a subset of the model’s parameters for all
inputs. Recently, pipeline parallelism [24, 38, 71, 65] has
been proposed to train large models by partitioning layers
across workers and uses microbatches to saturate the pipeline.
Popular DL training libraries such as DeepSpeed [51] and
Megatron [40] support 3D parallelism, which combines data
parallelism, model parallelism, and pipeline parallelism to
train models at extremely large scale with improved com-
pute and memory efficiency. Furthermore, DeepSpeed offers
ZeRO-style data parallelism [52], which partitions model
states across GPUs and uses communication collectives to
gather individual parameters when needed.
Elastic Training. Distributed training experiences frequent
resource changes. There are a number of systems [43, 21, 47,
23, 48, 25] built to provide elasticity for training over chang-
ing resources. TorchElastic [47] is a PyTorch [44]-based
tool that can dynamically kill or add data-parallel workers.
Huang et al. [23] considers elasticity for declarative ML on
MapReduce, which does not work for modern deep learning
workloads. Litz [48] is a system that provides elasticity in the
context of CPU-based machine learning using the parameter
servers. Or at al. [43] presents an autoscaling system built on
top of TensorFlow [1] and Horovod [55], which dynamically
adapts the batch size and reuses existing processes.
Exploiting Spot Instances. Proteus [21] exploits dynamic
pricing on public clouds in order to lower costs for machine
learning workloads through elasticity. Since Proteus does not
explicitly consider modern deep learning workloads, Proteus
simply reprocesses the input of a preempted node with another
node. Varuna [2] is a system built concurrently with Bamboo
for distributed training over spot instances. However, Varuna

focuses on elasticity, not quick recovery from preemptions.
Bamboo, on the contrary, is designed specifically to deal with
frequent preemptions.

There exists a body of work on enabling low latency
and/or SLO guarantees when using preemptible spot instances.
Tributary [20] is an elastic control system that exploits pre-
emptible resources to reduce cost with SLO guarantees. King-
fisher [59] proposes a cost-aware resource acquisition scheme
that uses integer linear programming to determine a ser-
vice’s resource footprint among a heterogeneous set of non-
preemptible instances with fixed prices. Flint [56] is a system
that runs batch-based data-intensive jobs on transient servers.
SpotCheck [58] selects spot markets to acquire instances in
while always bidding at a configurable multiple of the spot
instance’s corresponding on-demand price. BOSS [70] hosts
key-value stores on spot instances by exploiting price differ-
ences across pools in different data-centers. ExoSphere [57]
is a virtual cluster framework for spot instances. These sys-
tems are all orthogonal to Bamboo that is built specifically
for deep learning training.
GPU Scheduling. There is also a large body of work on
GPU scheduling [61, 69, 74, 46, 37, 19, 39, 40, 34, 73] for
ML workloads. These techniques are orthogonal to Bamboo
—they all focus on efficiency and throughput while Bamboo
aims to perform redundant computation at a low cost.

8 Conclusion
Bamboo is the first distributed system that uses redundant
computation to provide resilience and fast recovery for train-
ing DNNs over preemptible instances. An evaluation with 6
representative models shows that Bamboo provides a much
higher value than (1) training on on-demand instances and (2)
training with checkpointing/restart on spot instances.

Acknowledgement
We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd Yiting
Xia for her feedback. This work is supported by NSF
grants CNS-1703598, CNS-1763172, CNS-1907352, CNS-
2007737, CNS-2006437, CNS-2128653, CNS-2106838,
CNS-2147909, CNS-2152313, CNS-2151630, CNS-
2140552, and CNS-2153449, ONR grant N00014-18-1-2037,
a Sloan Research Fellowship, and research grants from
Cisco.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P.
Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: a system for
large-scale machine learning. In OSDI, pages 265–283, 2016.

[2] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra. Varuna:
scalable, low-cost training of massive deep learning models. In Eu-
roSys, 2021.

[3] AWS. Amazon ec2 spot instances pricing.
https://aws.amazon.com/ec2/spot/pricing/, 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 509

[4] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin. PipeSwitch: fast pipelined
context switching for deep learning applications. In OSDI, pages 499–
514, 2020.

[5] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky. Lightweight
preemptible functions. In USENIX ATC, pages 465–477, 2020.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I.
Sutskever, and D. Amodei. Language Models are Few-Shot Learners.
In NIPS, 2020.

[7] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting dis-
tributed synchronous sgd. In ICLR Workshop Track, 2016.

[8] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with
sublinear memory cost, 2016.

[9] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer. cuDNN: efficient primitives for deep learning,
2014.

[10] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project
Adam: building an efficient and scalable deep learning training system.
In OSDI, pages 571–582, 2014.

[11] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang, P.
Bailis, K. Olukotun, C. Ré, and M. Zaharia. Analysis of dawnbench, a
time-to-accuracy machine learning performance benchmark. SIGOPS
Oper. Syst. Rev., 53(1):14–25, 2019.

[12] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS:
scalable deep learning on distributed GPUs with a gpu-specialized
parameter server. In EuroSys, 2016.

[13] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng.
Large scale distributed deep networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, pages 1223–1231, Lake Tahoe, Nevada. Curran
Associates Inc., 2012.

[14] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng.
Large scale distributed deep networks. In NIPS, pages 1223–1231,
2012.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018. URL: http://arxiv.org/abs/1810.
04805.

[16] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G.
Long, J. Yang, L. Xia, L. Diao, X. Liu, and W. Lin. DAPPLE: a
pipelined data parallel approach for training large models. In PPoPP,
pages 431–445, 2021.

[17] W. Fedus, B. Zoph, and N. Shazeer. Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity. CoRR,
2021.

[18] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch
SGD: training ImageNet in 1 hour. CoRR, abs/1706.02677, 2017.
URL: http://arxiv.org/abs/1706.02677.

[19] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo. Tiresias: a gpu cluster manager for distributed deep
learning. In NSDI, pages 485–500, 2019.

[20] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B. Gibbons.
Tributary: spot-dancing for elastic services with latency SLOs. In
USENIX ATC, pages 1–14, 2018.

[21] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons.
Proteus: agile ML elasticity through tiered reliability in dynamic
resource markets. In EuroSys, 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[23] B. Huang, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, and F. R.
Reiss. Resource elasticity for large-scale machine learning. In SIG-
MOD, pages 137–152, 2015.

[24] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z.
Chen. Gpipe: efficient training of giant neural networks using pipeline
parallelism. CoRR, abs/1811.06965, 2018. URL: http://arxiv.
org/abs/1811.06965.

[25] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park. Elastic resource
sharing for distributed deep learning. In NSDI, pages 721–739, 2021.

[26] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez,
K. Keutzer, and I. Stoica. Checkmate: breaking the memory wall with
optimal tensor rematerialization. In MLSys, pages 497–511, 2020.

[27] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F.
Yang. Analysis of Large-Scale Multi-Tenant GPU clusters for DNN
training workloads. In USENIX ATC, pages 947–960, 2019.

[28] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism
for deep neural networks. In MLSys, 2019.

[29] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of
a regression function. Annals of Mathematical Statistics, 23:462–466,
1952.

[30] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization,
2014.

[31] A. Krizhevsky. One weird trick for parallelizing convolutional neural
networks. CoRR, abs/1404.5997, 2014. URL: http://arxiv.
org/abs/1404.5997.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–
90, May 2017.

[33] Kubernetes: an open-source system for automating deploy-
ment, scaling, and management of containerized applications.
https://kubernetes.io/, 2021.

[34] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and
M. Interlandi. PRETZEL: opening the black box of machine learning
prediction serving systems. In OSDI, pages 611–626, 2018.

[35] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed ma-
chine learning with the parameter server. In OSDI, pages 583–598,
2014.

[36] H. Lin, H. Zhang, Y. Ma, T. He, Z. Zhang, S. Zha, and M. Li. Dynamic
Mini-batch SGD for Elastic Distributed Training: Learning in the
Limbo of Resources. CoRR, 2019.

[37] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman, A.
Akella, A. Phanishayee, and S. Chawla. Themis: fair and efficient
GPU cluster scheduling. In NSDI, pages 289–304, 2020.

[38] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia. PipeDream: generalized
pipeline parallelism for DNN training. In SOSP, pages 1–15, 2019.

[39] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia. Heterogeneity-aware cluster scheduling policies for deep
learning workloads. In OSDI, pages 481–498, 2020.

[40] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V.
Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia. Efficient large-scale language model
training on gpu clusters using Megatron-LM. In SC, 2021.

510 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997

[41] A. Newell, D. Skarlatos, J. Fan, P. Kumar, M. Khutornenko, M.
Pundir, Y. Zhang, M. Zhang, Y. Liu, L. Le, B. Daugherty, A. Samu-
dra, P. Baid, J. Kneeland, I. Kabiljo, D. Shchukin, A. Rodrigues, S.
Michelson, B. Christensen, K. Veeraraghavan, and C. Tang. RAS:
continuously optimized region-wide datacenter resource allocation.
In SOSP, pages 505–520, 2021.

[42] Operating etcd clusters for Kubernetes.
https://kubernetes.io/docs/tasks/administer-cluster/configure-
upgrade-etcd/, 2021.

[43] A. Or, H. Zhang, and M. Freedman. Resource elasticity in distributed
deep learning. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors,
MLSys, volume 2, pages 400–411, 2020.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: an imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32,
2019.

[45] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In SIGMOD, pages 109–116,
1988.

[46] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus: an efficient
dynamic resource scheduler for deep learning clusters. In EuroSys,
2018.

[47] PyTorch Developers. TorchElastic. 2021. URL: https : / /
pytorch.org/docs/stable/distributed.elastic.
html.

[48] A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson, and
E. P. Xing. Litz: elastic framework for High-Performance distributed
machine learning. In USENIX ATC 18, pages 631–644, 2018.

[49] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language models are unsupervised multitask learners. In 2019.

[50] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language Models are Unsupervised Multitask Learners, 2019.

[51] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. ZeRO: memory
optimizations toward training trillion parameter models. In SC, 2020.

[52] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: memory
optimizations toward training trillion parameter models. In SC20:
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[53] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. On parallelizability of
stochastic gradient descent for speech dnns. In ICASSP, pages 235–
239, 2014.

[54] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient
descent and application to data-parallel distributed training of speech
dnns. In Interspeech 2014, Sept. 2014.

[55] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep
learning in tensorflow. CoRR, abs/1802.05799, 2018. URL: http:
//arxiv.org/abs/1802.05799.

[56] P. Sharma, T. Guo, X. He, D. E. Irwin, and P. J. Shenoy. Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers. In Eu-
roSys, 2016.

[57] P. Sharma, D. Irwin, and P. Shenoy. Portfolio-driven resource man-
agement for transient cloud servers. In SIGMETRICS, page 59, 2017.

[58] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. SpotCheck:
designing a derivative IaaS cloud on the spot market. In EuroSys,
2015.

[59] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity
provisioning system for the cloud. In ICDCS, pages 559–570, 2011.

[60] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanan-
takool, P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. A.
Hechtman. Mesh-TensorFlow: Deep Learning for Supercomputers.
In NIPS, 2018.

[61] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Kr-
ishnamurthy, and R. Sundaram. Nexus: a GPU cluster engine for
accelerating DNN-based video analysis. In SOSP, pages 322–337,
2019.

[62] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B.
Catanzaro. Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. CoRR, 2019.

[63] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In Y. Bengio and Y. LeCun, editors,
ICLR, 2015.

[64] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective
communication operations in mpich. Int. J. High Perform. Comput.
Appl., 19(1):49–66, 2005.

[65] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora,
R. Netravali, M. Kim, and G. H. Xu. Dorylus: affordable, scalable, and
accurate GNN training with distributed CPU servers and serverless
threads. In OSDI, pages 495–514, 2021.

[66] I. Turc, M. Chang, K. Lee, and K. Toutanova. Well-Read Students
Learn Better: The Impact of Student Initialization on Knowledge
Distillation. CoRR, 2019.

[67] T. Wang, J. Huan, and B. Li. Data dropout: optimizing training data
for convolutional neural networks. In ICTAI, pages 39–46, 2018.

[68] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M.
Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J.
Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
Google’s neural machine translation system: bridging the gap between
human and machine translation. CoRR, abs/1609.08144, 2016. URL:
http://arxiv.org/abs/1609.08144.

[69] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia. AntMan: dynamic scaling on GPU clusters for deep learning.
In OSDI, pages 533–548, 2020.

[70] Z. Xu, C. Stewart, N. Deng, and X. Wang. Blending on-demand and
spot instances to lower costs for in-memory storage. In INFOCOM,
pages 1–9, 2016.

[71] B. Yang, J. Zhang, J. Li, C. Ré, C. R. Aberger, and C. D. Sa. PipeMare:
Asynchronous Pipeline Parallel DNN Training. In MLSys, 2019.

[72] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J.
Wei, P. Xie, and E. P. Xing. Poseidon: an efficient communication
architecture for distributed deep learning on GPU clusters. In USENIX
ATC, pages 181–193, 2017.

[73] H. Zhang, L. Stafman, A. Or, and M. J. Freedman. SLAQ: quality-
driven scheduling for distributed machine learning. In SoCC,
pages 390–404, 2017.

[74] Q. Zhang, R. Zhou, C. Wu, L. Jiao, and Z. Li. Online scheduling
of heterogeneous distributed machine learning jobs. In MobiHoc,
pages 111–120, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 511

https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1609.08144

A Pipeline Reconfiguration
Reconfiguration introduces a much longer pause to the train-
ing process than recovering using RC. The goal of recon-
figuration is to rebalance pipelines so they can withstand
more failures as training progresses and continue to yield
good performance. Reconfiguration also attempts to allocate
more instances to maintain the cluster size. As shown in §3,
asynchronous checkpointing is very efficient (but frequent
restarting is not), and hence, Bamboo periodically check-
points the model state. These checkpoints will not be used
unless Bamboo restarts the training from a rare fatal failure
(i.e., too many nodes are preempted so that training cannot
continue).
Reconfiguration Triggering. Reconfiguration is triggered
immediately when (1) consecutive preemptions occur simul-
taneously and (2) Bamboo determines that there is an urgent
need to rebalance the pipelines at the end of an optimizer step.
To do (2), the workers retrieve the cluster state from etcd,
allowing them to see how many preemptions have occurred
and in which pipeline they have occurred. They can also
see how many workers are currently waiting to join the next
rendezvous.

There are two main conditions for triggering reconfigu-
ration at the end of an optimizer step: (a) the cluster has
gained enough new nodes to reconstruct a new pipeline, and
(b) Bamboo has encountered many preemptions and is close
to a critical failure in the next step (e.g., encountering another
preemption would cause us to suspend training), in which
case we must pause the training to allocate more nodes.
Reconfiguration Policy. Bamboo attempts to maintain the
pipeline depth P specified by the user. Therefore, our top
priority at a reconfiguration is to reestablish a full pipeline of
depth P . In this case, if we have had F failures and J (> F)
nodes are waiting to join the cluster (i.e., new allocations
arrive as Bamboo runs on the “spare tire”), we can fully
recover all pipelines to depth P . The remaining (J−F) nodes
are placed in a standby queue to provide quick replacement
upon future failures. However, if the number of nodes joining
is smaller than F , we may end up having a number of N
nodes such that N%P ̸= 0. In this case, instead of creating
asymmetric pipelines (which complicates many operations),
we move some nodes into the standby queue and decrease the
total number of data-parallel pipelines. A final case is that the
number of nodes joining, together with those in the standby
queue, can form a new pipeline, and in this case we add a
new pipeline to the system. In all these cases, the redundant
layers are redistributed among the set of nodes participating
in the updated pipelines.
How to Reconfigure. Once a reconfiguration is triggered,
each node must be assigned a new stage (with new layers,
state, and redundancies); it also needs to figure out if it will
need to send or receive model and optimizer state from other
nodes. Whichever nodes hits the rendezvous barrier first

decides the new cluster configuration and puts the decision
on etcd for all other nodes to read. To minimize the amount
of data sent in layer transfer, Bamboo transfers layers in such
a way that each node can reuse its old model and optimizer
state as much as possible.

B Support for Pure Data Parallelism
Bamboo supports pure data parallelism (without model par-
titioning). Due to space constraints, here we briefly discuss
how it is supported. We use the same redundant computation
strategy—Bamboo replicates the parameter and optimizer
state of each node on a different node and uses these replicas
as redundancies to provide quick recovery. For pure data
parallelism, there is no bubble time to schedule RC. Eager
FRC would be equivalent to overbatching (i.e., each node
processes its original minibatch plus a redundant minibatch).
To reduce the FRC overhead and make RC fit into the GPU
memory constraints, we over-provision spot instances (by
1.5×, in the same way as discussed in §5) to make each node
process a smaller batch.

Enabling eager FRC doubles the batch size. However, it
results only in a ∼1.5× increase in the computation time due
to the parallelism provided by GPUs. This overhead can be
effectively reduced by slightly over-provisioning (1.5 ×D)
nodes, increasing the degree of parallelism and decreasing the
impact of overbatching. This enables us to run FRC eagerly
without incurring much overhead (i.e., <10%).

C Additional Experiments
C.1 Bubble Size

Figure 14: Comparison between bubble sizes and forward
computations.

We measured the sizes of the pipeline bubble and forward
computation of BERT with the same configuration as men-
tioned in Section 6, running on on-demand instances each
with a single GPU. We manually inserted a barrier before
each peer-to-peer communication, treating the time spent on
the corresponding NCCL kernel as the bubble size. These
results are reported in Figure 14.

To make memory evenly distributed across stages, more
layers are placed on the last few stages. This explains the
growth of forward computation. In this pipeline, for the first
4 stages, the bubble time is long enough to fit the entire FRC

512 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(i.e., the bubble at stage 1 should run the forward computation
for stage 2). For the last 4 stages, the bubble time is shorter
than the forward computation time—it can still cover ∼60%
of its FRC. The rest of the FRC on these nodes is run in
parallel with their regular forward computation, as discussed
in §5.2.

C.2 Bamboo for Pure Data Parallelism

We ran two relatively small models such as VGG and ResNet
using pure data parallelism with 8 workers (i.e., we parti-
tion the data but not the model). For Bamboo, we similarly
over-provisioned 1.5× additional workers. We implemented
another baseline Checkpoint, which periodically checkpoints
model state for each worker and restarts the worker on another
node when its original node is preemption. We used the same
global batch size for these models as reported in §6. The
comparisons between Bamboo, Checkpoint, and on-demand
training are shown in Table 6.

Note that our implementation of Checkpoint assumes that
there is always a standby node that is ready to join and load
the checkpoint (which is a unrealistic over-approximation of
the allocation model on any spot market); as such, the training
cost remains unchanged and its throughput is reduced as the
preemption rate increases.

Model System Throughput Cost ($/hr) Value

ResNet
Demand 24.51 24.48 1.01
Checkpoint [12.26, 8.42, 5.03] [7.34, 7.34, 7.34] [1.67, 1.15, 0.68]
Bamboo [21.22, 18.31, 12.31] [10.56, 10.09, 9.18] [2.01, 1.84, 1.34]

VGG
Demand 144.28 24.48 5.89
Checkpoint [83.21, 67.21, 45.31] [7.34, 7.34, 7.34] [11.33, 9.15, 6.17]
Bamboo [125.59, 96.51, 73.73] [10.56, 10.09, 9.18] [11.89, 9.56, 8.03]

Table 6: Comparison between pure data-parallel training over
on-demand instances, a checkpoint-based approach on spot
instances, Bamboo on spot instances. For Checkpoint and
Bamboo, we trained each model three times, and their re-
sults are explicitly listed in the form of [a, b, c] for the 10%
(average), 16%, and 33% preemption rates, respectively.

As shown, Bamboo outperforms Checkpoint by 1.64× and
1.22× in throughput and value. Both Checkpoint and Bamboo
deliver a higher value than on-demand training (by 2× and
1.79×).

We make two observations on these numbers. First, Bam-
boo incurs a higher cost than Checkpoint due to resource
over-provisioning. However, as discussed above, Checkpoint
assumes the availability of standby nodes. In practice, guar-
anteeing such availability requires over-provisioning as well,
but we did not take this into account when calculating costs
(because it is hard to know exactly how many nodes we
should over-provision). Hence, the cost and value reported
for Checkpoint are the lowerbound and upperbound of those
that can be achieved by any practical implementation of a
checkpoint-based approach.

Second, Checkpoint works much better for pure data paral-
lelism than for pipeline parallelism (as discussed in §3). This

is because recovering from a checkpoint in pure data-parallel
training is much easier than pipeline-parallel training where a
pipeline reconfiguration process is needed for each restart.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 513

	Introduction
	Background
	Motivation
	Overview
	Redundant Computation
	Redundant Layers and Computation
	Schedule Redundant Computation

	Evaluation
	Training Performance and Costs
	Different Failure Models
	Comparisons with Other Systems
	Microbenchmarks of Redundant Computation
	Cross-Zone Communication

	Related Work
	Conclusion
	Pipeline Reconfiguration
	Support for Pure Data Parallelism
	Additional Experiments
	Bubble Size
	Bamboo for Pure Data Parallelism

