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Abstract

Conventional host networking features various traf�c shaping
layers (e.g., buffers, schedulers, and pacers) with complex
interactions and wide implications for performance metrics.
These interactions can lead to large bursts at various time
scales. Understanding the nature of traf�c bursts is important
for optimal resource provisioning, congestion control, buffer
sizing, and traf�c prediction but is challenging due to the
complexity and feature velocity in host networking.

We develop Valinor, a traf�c measurement framework that
consists of eBPF hooks and measurement modules in a pro-
grammable network. Valinor offers visibility into traf�c bursti-
ness over a wide span of timescales (nanosecond- to second-
scale) at multiple vantage points. We deploy Valinor to ana-
lyze the burstiness of various classes of congestion control
algorithms, qdiscs, Linux process scheduling, NIC packet
scheduling, and hardware of�oading. Our analysis counters
the assumption that burstiness is primarily a function of the
application layer and preserved by protocol stacks, and high-
lights the pronounced role of lower layers in the formation
and suppression of bursts. We also show the limitations of
canonical burst countermeasures (e.g., TCP pacing and qdisc
scheduling) due to the intervening nature of segmentation
of�oading and �xed-function NIC scheduling. Finally, we
demonstrate that, far from a universal invariant, burstiness
varies signi�cantly across host stacks. Our �ndings under-
score the need for a measurement framework such as Valinor
for regular burst analysis.

1 Introduction
Measurement studies show that traf�c is bursty across a wide
range of timescales in diverse contexts such as Ethernet LANs
[38], WANs [56], data centers [25], and WWW traf�c [21]. In
particular, microsecond-scale congestion events, sometimes
calledmicrobursts, have been the focus of numerous measure-
ment and control papers recently [13, 18, 19, 25, 33, 37, 72].
However, the modulating effect of host networking on traf-

�c burstiness at various timescales is relatively less investi-
gated. This paper addresses this gap. We askwhat causes
the traf�c to emerge from hosts in bursts?Is burstiness an
scale-invariantproperty of traf�c, i.e., does the traf�c retain
its burstiness across a wide range of timescales, or do the
microbursts become smooth at coarse timescales? Are canon-
ical burst countermeasures such as TCP pacing and packet
scheduling effective in curtailing bursts?

These questions have far-reaching implications for net-
work performance and design. Controlling bursts at different
timescales requires deploying mechanisms that operate at the
corresponding pace. Microbursts, for instance, require real-
time techniques with sub-RTT control loops, whereas bursts
at longer timescales can be more effectively managed by re-
source provisioning techniques such as topology engineering
and routing that take seconds to minutes to complete [71].

Unfortunately, studying the impact of host networking on
bursts is complex. Take the Linux network stack as an ex-
ample: the egress traf�c that originates from the Linux ker-
nel stack passes through many layers and optimizations be-
fore arriving at the wire. Transport protocol internals like
initial window size, cumulative acknowledgments, queueing
disciplines (qdiscs), driver rings, segmentation of�oading, and
hardware packet scheduler at the NIC all handle the traf�c.
All these elements and their complex interactions can play a
role in forming or suppressing bursts at various timescales.
These challenges are further compounded by the heterogene-
ity, scale, and the velocity of evolution in today’s networks
that constantly change in response to increasing demand and
the rollout of new services [26,46,73].

To address this challenge, we build Valinor, a high-
resolution traf�c measurement framework that enables net-
work operators to systematically and periodically dissect the
elements of host networking, their impact on traf�c bursti-
ness in isolation, and importantly, their interactions with the
emergent traf�c patterns, all at different timescales. To ensure
visibility into the impact of the software stack and the shape
of the traf�c on the wire through time, Valinor is composed
of two main components: 1) An in-host timestamping frame-
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work (Valinor-H) based on eBPF that collects egress packet
metadata nearly at the last stage of software stack processing.
2) An in-network packet timestamping framework (Valinor-N)
that captures packet arrival timestamps in the programmable
switch data plane immediately after the NIC, and sends the
timestamp data to of�ine servers for collection, storage, and
burstiness analysis.

Our analysis of the impact of host networking on the shape
of traf�c using Valinor reveals some surprising results. As
an example, classical work paints a unifying and consistent
picture of scale-invariant burstiness, i.e, they show the same
degree of variability across a wide range of timescales in a
variety of different network types [21,38,56]. It has also been
established that this scale-invariant burstiness is primarily
caused byapplication layercharacteristics such as long-tailed
�ow size distributions and is �robust�: it holds for a variety
of transport protocols (e.g., TCP Reno, Vegas, and �ow con-
trolled UDP) and various network con�gurations [23,53].

In contrast, our investigations paint a more nuanced
and complex picture. We show that burstiness at various
timescales varies signi�cantly across host con�gurations
(hardware con�gurations, transport protocols, scheduling,
etc.). We also show the pronounced modulating effect of
below application layer elements on bursts. This implies that,
for the same heavy-tailed �ow size distribution, the ultimate
shape of traf�c on the wire depends heavily on the host con-
�guration such as the NIC scheduler. Plus, Valinor’s anal-
ysis of newer reliable transport protocols (e.g., Homa [47],
DCTCP [9], and BBR [17]) reveals the high degree of vari-
ability of burstiness for these protocols. As an example, BBR
is less bursty not just at �ne timescales (a result that is consis-
tent with the literature [47,52]) but also at coarse timescales.
The latter �nding (new to the best of our knowledge) im-
plies that techniques such as topology engineering [71] and
multi-timescale congestion control [66]�premised on the
long-range burstiness of traf�c�may yield limited perfor-
mance improvements under these new protocols.

Finally, given the impact of some variants of transport pro-
tocols on bursts, we quantify the effectiveness of TCP pacing
and active queue management paradigms such as CoDel [49]
in qdiscs (software packet schedulers) in mitigating bursts.
Our results show the pronounced impact of lower-layer func-
tions (residing in the driver and NIC) on forming the ulti-
mate shape of traf�c on the wire relative to the higher-layer
software operations of the TCP/IP stack and qdiscs. As an
example, active queue management techniques such as CoDel
and RED in the Linux kernel try to prevent the formation of
large and lasting bursts. However, our results show that their
impact is effectively erased by of�oading (TSO, serialization,
etc.) and the NIC scheduler. For example, while in isolation,
the frequency of large 300 KB bursts under CoDel is 500
times lower than FIFO, this difference is barely visible on the
wire after packets pass through the multi-queue NIC with seg-
mentation of�oading. Moreover, TCP pacing enforced in the

qdiscs generates between 1.8� -19� larger bursts when NIC
scheduler and of�oading are in action compared to when in
isolation.1 This result indicates that the countermeasures for
controlling bursts should be moved further down the packet
processing pipeline at the end hosts.

Our results on the variability of burstiness (based on hard-
ware con�gurations, transports, etc.)�combined with the
ever-evolving workloads and features in today’s networks�
highlight the need for periodic traf�c measurement and anal-
ysis. To facilitate this, we have released Valinor’s sources
and artifacts as open-source software.2 We next introduce the
mathematical notions developed for capturing bursts across
time, present their practical implications in networks (§2),
provide some background on host networking and the design
space of burst measurement frameworks (§3), and present the
design of Valinor (§4) before delving into our �ndings (§5).

2 Background: scale-invariant burstiness

Measurements of the Internet traf�c show periods of sustained
greater-than-average or lower-than-average traf�c rates across
a wide range of timescales [21,24,38,53,56]. This behavior,
sometimes calledscalingor self-similarity, has broad impli-
cations for performance. In this section, we �rst formalize the
notion of self-similarity and re-introduce the Hurst exponent,
a mathematical representation of self-similarity, before dis-
cussing the implications of self-similarity and characterizing
bursts at �ne timescales such as microbursts.

Self-similarity. Self-similarity is a notion pioneered by
Benoit Mandelbrot [45] which refers to a phenomenon where
a certain property of an object (such as an image or a time-
series) is preserved with respect to scaling in space and/or
time. If an object is self-similar, its parts, when magni�ed,
resemble the shape of the whole [55].

More formally, let(Xt )t2Z+ be a timeseries, e.g., this time-
series can represent a traf�c trace measured at some �xed
time granularity. The aggregated seriesX(m)

i is de�ned as

X(m)
i = 1=m(Xim� m+ 1 + :::+ Xim)

In other words,Xt is partitioned into blocks of sizem, their
values are averaged, andi denotes the index of these blocks.

Autocorrelationis a mathematical representation of the
degree of similarity between a timeseriesXt and a time-shifted
version ofXt over successive time intervals. It measures the
relationship between the current value of a timeseries and its

1 Despite making the traf�c bursty and hard to manage, these low-level
functions are essential for reducing the processing overhead and meeting the
increasingly high link rates. For example, disabling TCP segmentation of�oad
results in a 3� increase in CPU utilization, 71% lower throughput, and a
46% increase in median packet RTTs for a multi-�owIperf test. Relatedly,
disabling MQ results in a 4% decline in the throughput of the same workload.

2https://hopnets.github.io/valinor
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future values. A strong positive autocorrelation for a traf�c
volume timeseries, for example, suggests that if the volume
is high (i.e., higher than average) now, then it is likely to be
also high in the next time slot, whereas a strong negative
autocorrelation implies that a high-volume slot is likely to be
followed by a low volume one.

Let r(k) andr (m)(k) denote, respectively, the autocorrela-
tion functions (ACFs) ofXt andX(m)

i wherek is the time shift
from the original timeseries. We say thatXt is self-similar, or
more accuratelyasymptotically second-order self-similar, if
these conditions hold:

r(k) � c � k� b (1)

r (m)(k) � r(k) (2)

for largek andm, where0 < b < 1 andc is a constant, and
f (x) � g(x) asx ! a means thatlimx! a f (x)=g(x) = 1 [66].
Xt is self-similar in the sense that its ACFr(k) behaves hy-
perbolically withå ¥

k= 0 r(k) = ¥ (Eq. 1). This property is also
referred to aslong-range dependence. Equation 2 implies
that for self-similar timeseries, the autocorrelation structure
is preserved with respect to time aggregation.

In networks, the traf�c is called self-similar if the aggre-
gated traf�c over varying timescales remains bursty, regard-
less of the granularity of the timescale.

The Hurst exponent. Let H = 1 � b=2: H is called the
Hurst exponent.The Hurst exponent, a number in the(0;1)
range that is sometimes referred to as theindex of long-range
dependence, is a measure of the long-term memory of a time-
series. It characterizes the self-similarity and long-range de-
pendence of the timeseries:

� 0:5 < H < 1 indicates a self-similar timeseries with
long-term positive autocorrelations, i.e, a high value in
the series (e.g., higher than average traf�c volume) is
likely to be followed by another high value. Plus, the
values a long time into the future also tends to be high.
It follows from Eq. (1) above that the closerH is to 1, the
more long-range dependentXt is. Conversely,H values
closer to 0.5 show weaker long-range dependence.

� H = 0:5 indicates a completely uncorrelated series.
� 0 < H < 0:5 indicates amean-revertingtimeseries, i.e.,

one with long-term switching between high and low
values in adjacent pairs of time slots. That is, a single
high value in the timeseries is likely to be followed by a
low value.3

Various techniques (e.g., rescaled-range analysis and Peri-
odogram [67]) exist for estimatingH for an empirical dataset.
Similar to the seminal work on Bellcore Ethernet traf�c self-
similarity [38], we use the rescaled-range,R/S, for the results
presented in this paper. The details of this method are pre-
sented in Appendix §A.

3Note that the0< b < 1 condition in the equations above is a requirement
for self-similar, and not mean-reverting, series.
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(b) Auto-correlation
Figure 1: A self-similar timeseries with H=0.88.

Example: Figure 1a (the �rst row) shows a simulated sce-
nario where 32 TCP connections generate a synthetic work-
load using Pareto �ow size distribution with a mean of 4200
KB anda = 1:05and exponential arrivals that create 6 Gbps
offered load. We plot the traf�c rate (in Mbps) against time
where time granularity is 1s. A data point is the aggregated
traf�c volume over a10ms interval. The second row of the
same �gure depicts the same traf�c series where a randomly
selected second interval in the �rst timeseries (the highlighted
segment in the �rst row) is magni�ed by a factor of ten, re-
sulting in a granularity of100msin the truncated timeseries.
The last row similarly rescales a randomly selected slot by
10� . The �gures show that this trace is self-similar: when
traf�c is aggregated over varying timescales, the aggregate
traf�c pattern remains bursty, regardless of the granularity of
the timescale. This visual scaling is con�rmed by the Hurst
coef�cient, H = 0:88, and the autocorrelation functions of
the trace (Figure 1b) that show positive, slow (almost polyno-
mial) decaying, and consistently shaped correlations across
various timescales. Slow-decaying ACFs signify long-range
dependence in a timeseries.

Practical implications of self-similarity. Self-similarity
has broad implications on network design and performance,
e.g., it is shown to lead to increased delay and loss [5,6,22,
42,50,53,66]. We next discuss some of the key implications
of self-similarity:

� Queueing performance and buffer sizing. Self-
similarity greatly in�uences queueing performance.
From a queueing theory standpoint, the de�ning char-
acteristic of self-similarity is that the queue length dis-
tribution decays much more slowly than short-range-
dependent traf�c (polynomially vs. exponentially under
short-range dependent traf�c, e.g., Poisson processes)
[66]. For strongly self-similar traf�c, the mean queue
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length increases with the buffer size [54]. This implies
that networks with strongly self-similar traf�c should
deploy small buffers to control the queueing delay.

� Throughput and latency trade-off. Prior work [53,54]
shows that jointly provisioning low delay and high
throughput is adversely affected by self-similarity.

� Traf�c prediction and burst countermeasures. The
correlation structures present in self-similar traf�c can
be detected and exploited to predict future traf�c over
timescales larger than an RTT [66].4 Traf�c prediction
at long timescales, in turn, is invaluable for designing
the appropriate burst countermeasures. For instance, re-
source provisioning techniques with control loops larger
than an RTT (e.g., multi-scale congestion control [66],
re-routing, and topology rewiring [71]) enhance the per-
formance of self-similar traf�c.

Microbursts. Given their ubiquity and impact, in particular
in data centers, microsecond-scale traf�c surges, known as
microbursts[13,41,72], have been the focus of many recent
proposals [4,19,27,37,41,70].

The intensity of a microburst has often been measured
implicitly based on buffer utilization, or in more extreme
cases, packet loss. Related work also quanti�es microbursts
as the number of packets from one �ow that occupy a buffer at
a time snapshot [33], the evolution of switch queue length over
time [63], an uninterrupted sequence of packets with gaps of
smaller than a threshold [35], and/or sequence size of larger
than a threshold [68]. Using metrics that are independent of
network queues allows us to perform universal measurements
in the entire network, i.e., both at the hosts and the switches.
Yet, measurement systems intending to quantify microbursts
can leverage all the above de�nitions to provide a holistic
view of burstiness behavior.

From the technical perspective, we de�ne a burst as the cu-
mulative sum of packet bytes whose inter-arrivals are smaller
than a thresholdt . Setting the minimum value fort initially
depends on link speeds and MTUs. For example, in a fully
utilized 40 Gbps link with MTU = 1500 bytes, packets arrive
300 ns apart. Therefore, an initialt of 2-10� of this value
is small enough to detect microbursts and large enough not
to miss consecutive packets from �ows. To ensure thatt is
not affected by the network con�guration and the internal
characteristics of the workloads, we repeat our measurement
with a wide range of values fort .

3 Approaches to measuring traf�c bursts

In this section, we provide a brief background on host net-
working and present the design space of burst measurement
frameworks before discussing Valinor in §4.

4The prediction methods span diverse domains such as regression theory,
neural networks, and estimation theory [66].

Figure 2: Conventional network processing stack architecture
in a containerized Linux deployment.

3.1 Conventional host networking

Conventional network stacks consist of various processing
layers glued together via several optimization techniques. In
Linux, application data is passed to socket interfaces (buffer-
ing in the userspace), and then to the transport protocol pro-
cessing (transport buffers, short queues [20]). Transport pro-
tocols populatesk_buffs,5 a collection of data pointers and
header information. After performing routing,sk_buffseventu-
ally make their way towards interfaceqdiscs, the hierarchical
packet schedulers in Linux.qdiscsoperate in parallel on all
CPU cores and forward the scheduledsk_buffstowards driver
rings where another layer of buffering is performed before no-
tifying the NIC [65]. Finally, with the conventional of�oading
features enabled, the NIC performs scatter/gather [58], seg-
mentation, checksum, and sends the packets on the wire [16].
Figure 2 depicts an overview of the packet’s path through the
network processing pipeline in a Linux host.

3.2 Capturing timestamps

High-resolution timestamping is essential for burst analysis.
Various techniques exist for capturing packet arrivals:

NIC timestamps. Hardware timestamping is avail-
able in all commodity NICs. This feature is supported by the
Linux kernel via ancillary socket data. When a user requests
timestamping through a socket option, the transmission
timestamps are generated in the hardware before sending
the packet on the wire and are eventually sent to the source
socket. Therefore, the application is responsible for polling
the error queue and reading the timestamps. Hardware
timestamping supports most TCP and UDP connections,
however, it suffers from two main shortcomings. First, if the
operating system fails to poll the timestamp registers of the
NIC in time, e.g., in higher packet rates, the timestamp will
be overwritten by that of the next packet. Plus, modifying the
network application to receive timestamps may impact the
application’s workload pattern, and thus must be performed
with extra care.

5sk_buffstands for "Socket buffer" and is used to represent the socket
data that eventually is shaped into the packet.sk_buffs, therefore, may contain
a single or multiple packets.
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Modifying networking stack software. To study real-
istic network traf�c with higher arrival rates, hardware
timestamping is not ideal due to the need to change the
application internals and high overheads. An alternative
solution is to directly capture the timestamps closer to the
packet processing, e.g., the NIC driver, and either add the
timestamps to the packet payload or re-route them to the
userspace. Alas, accessing and modifying the packet data
requires of�oading features such as scatter-gather IO and
Segmentation Of�oading to be turned off. Additionally,
timestamps that are atsk_buffgranularity may not imitate the
inter-packet gaps on the wire due to the intervention of lower
layers.

eBPF hooks.eBPF offers a series of hooks inside the
Linux kernel and the NIC driver that allows fast execution
of arbitrary data plane logic. An eBPF program consists of
a data plane and a control-plane code targeting a speci�c
hook on the RX or TX path (XDP hook in the receive path of
NIC driver and traf�c control (tc) hook on the TX path of
the qdisc subsystem are two examples). eBPFtc programs
are registered to the kernel using thetc command and are
executed inside a lightweight RISC virtual machine. eBPF
also provides fast data structures that enable shared state
between the kernel and the userspace. This allows us to
perform burst measurements of�ine with any workload
con�guration without modifying the kernel source or packet
payloads.

While eBPF relieves us from directly modifying the packet
processing code in the kernel, it presents two shortcomings.
First, eBPF, similar to the previous solution, works atsk_buff
granularity since packet segmentation is almost always
of�oaded to the NIC. Therefore, the eBPF framework can
only measure the gaps between larger chunks of data, not
packets. Additionally, our measurements show that each
eBPF invocation incurs up to 1µ s of delay, mostly due to
memory accesses. While this overhead may be acceptable at
thesk_buffgranularity, the framework will lose its visibility
into nanosecond-scale events. Ultimately, eBPF provides
a convenient solution to plug into the network data path
with minor interference. Making it a viable burstiness
probing point on the egress path. We present the design and
implementation of the Valinor eBPF framework, Valinor-H,
in §4.1.

Timestamping in the switch data-plane. A holistic
method to capture the behavior of all host networking
components (including the NIC) is to perform measurements
immediately after transmitting the packets on the wire, i.e., at
the �rst network hop. Fortunately, the rise of programmable
switch architectures with high-resolution timestamping
enables capturing packet arrival timestamps and sending
this data off the critical communication path for of�ine
processing. This further ensures zero interference with the

ongoing communication and the ability to track the entire
egress host networking components. We describe the design
of our in-network measurement system, Valinor-N, in §4.2.

Programmable NICs share many of the strengths of
in-network measurements (e.g., timestamping close to the
wire, low overhead, and no interference) but do not provide
visibility into in-network queue occupancies. Plus, our
experience with commodity DPUs [15] shows inconsistencies
in the capabilities of existing devices. General-purpose SoC
NICs [15] are either bound to their slow ARM CPUs or do
not offer per-packet timestamping capabilities on their fast
path. Due to these practical issues as well as the greater
visibility that in-network measurements offer, alongside
its host module, Valinor currently leverages programmable
networks for capturing bursts on the wire.

4 Valinor measurement framework

For designing Valinor, we have three goals in mind:

1. Offering visibility into the host networking traf�c, as
well as the shape of the traf�c on the wire.

2. Offering high-resolution timestamping of packet arrivals
in line with the increasing link bandwidths and faster
packet processing pipelines.

3. Providing insights on traf�c shape and burstiness at dif-
ferent scales and time ranges.

We design and implement Valinor, a measurement frame-
work that consists of two main timestamping prongs to study
packet arrivals from the host and network vantage points.
First, we design Valinor-H to study the host’s view of its
egress traf�c by choosingtc eBPF hooks. For capturing the
external picture of traf�c burstiness, we design Valinor-N, a
timestamping module for programmable fabric.

4.1 Valinor-H: burst measurement in hosts
Valinor-H offers visibility into the impact of the software
stack on traf�c, immediately before the traf�c is passed to the
NIC. The insight into the characteristics of the traf�c entering
the hardware can help the design of the functions of�oaded
to the NIC. This becomes increasingly important as more and
more functions migrate to the NIC, driven by the dire need to
reduce software overhead.6

Figure 3 presents the design of our eBPF framework. Our
framework consists of two separate programs. The data plane
program follows a strict set of C-like instructions that are exe-
cuted at thetc qdisc, every time ask_buffarrives. We design

6As network speeds increase at a faster pace than CPU speeds, software
overhead is increasingly the performance bottleneck [52]. This has moti-
vated the of�oading of various functions such as segmentation, serialization,
scheduling, and even transport protocol processing to the NIC [11,58,64].
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Figure 3: The eBPF measurement framework’s architecture.
Valinor-h consists of a data plane and a control plane, communi-
cating via lock-free ring buffers.

circular buffers capable of storing up to216 arbitrary data
entries shared with the control plane. Then, thewrite handle
determines the correct location for adding new timestamp
entries and updates the data structure. In the control plane,
we initialize the data plane and the circular buffer and start
polling the buffer for new data. The data entries carry the
sk_bufflengths as well as the �ow hash and protocol header
information. Theread handle, retrieves the timestamp entries
one by one and hands them to the Redis workers for persistent
storage.

One challenge that arises when using a shared data struc-
ture is synchronization between the data plane and the control
plane. This scenario generally needs locking mechanisms to
prevent a race condition, however, the nature of the times-
tamping data, being strictly increasing, lifts this heavy burden.
Therefore, in the control plane, Valinor-H only reads and in-
crements its write handle if the timestamp value is larger than
the previous value read. Another synchronization issue arises
when multiple CPUs attempt to store packet metadata in the
shared memory. Luckily, eBPF offers per-CPU structures to
prevent race conditions in the data plane. The Valinor-H con-
trol plane uses separate threads to read from per-CPU buffers
simultaneously.

With the in-host measurement framework, network oper-
ators can verify the operation of higher-level network pro-
cessing layers on the transmission path of the sender hosts.
Valinor-H, at this stage, can capture the ingress traf�c into the
NIC which includes the traf�c egress from qdiscs, the trans-
port layer, and the applications. To capture the traf�c behavior
in the core of the network, and on a per-packet granularity,
we introduce Valinor-N in the following section.

4.2 Valinor-N: in-network burst measurement

Software-based measurements in the host stack are bound
to the coarse-grainedsk_buffarrivals and are implemented
before NIC functions (i.e., ring schedulers and segmentation
of�oads). Hence, the captured traf�c behavior might not
match that of the wire. To �ll this gap, we introduce the
in-network variant of Valinor based on programmable switch

data planes. Valinor-N consists of three pieces: 1) the switch
component, 2) the collector data plane, and 3) the analysis
component. Valinor-N is able to I) capture per-packet arrival
timestamps with zero overhead outside the critical path, II)
collect and store timestamp entries arriving at line rate, and
III) perform various analyses on timestamp data to provide
an in-depth image of the traf�c burstiness at different scales.

Valinor Switch. The switch data plane program uses
mirroring andtimestampingfunctionalities available in the
PISA architecture. For every packet that matches user-de�ned
�ow �lters, Valinor-N appends the arrival timestamp, queuing
delay, and the size of the original packet along with its
layer l-4 header information to a special IP packet with
a pre-de�ned Valinor header. The packet is then sent to a
collector server. The server machine, deployed outside the
critical path of the communication between traf�c endpoints,
aggregates the timestamp information and performs the
of�ine analysis.

Timestamp collection. The collector machine features a
userspace packet processing framework based on DPDK
that parses the arrived packets and stores the timestamp
information along with �ow metadata into an in-memory
Redis [3] instance. Analysis of the timestamp data is then
performed by querying the data store. Receiving timestamp
packets at line rate and storing them in persistent storage
poses several scalability challenges to the design of the
collector component. To ensure that software can drain NIC
buffers at line rate, we designate multiple worker threads
to read and process the incoming packets. After parsing
timestamp headers, the worker threads extract the timestamp
data and send them to additional worker threads that are
responsible for communicating with Redis. The stored
metadata is then retrieved by the analysis framework to
perform burst analysis using timestamps.

Valinor-N’s Redis workers issue batched commands during
idle periods to minimize interference with packet processing
workers. We use Redis sorted sets to store timestamp entries
sorted by arrival times since the packets that arrive at
the collector may have a different order from the packets
that arrive at the Valinor-N switch data plane. We use 1G
hugepagesand large memory pools to ensure that timestamp
packets are not dropped at higher rates (Up to 40 Gbps in our
testbed).

Of�ine timestamp processing. The last piece of Vali-
nor’s design is the of�ine timestamp analysis framework
that queries the Redis data structures and performs analysis
on timestamp data. Our framework is able to report various
statistics on traf�c burstiness by measuring the packet
inter-arrivals. For example, in the next section, we report
our �ndings on the scaling behavior, caused by various
packet processing components in the sender machine. We
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Figure 4: Deployment overview of Valinor framework.

report actual burst sizes in bytes, inter-arrival distributions,
queueing delays, and various burstiness time series analyses.
We implement the of�ine processing framework in Python.

5 Findings

We deploy Valinor to analyze the burstiness of various work-
loads and con�gurations. Our results show:

� Host networking, largely overlooked in prior self-
similarity studies, plays a major role in forming and
suppressing bursts.

� Lower layers of the network processing stack (such as
segmentation of�oading and NIC scheduling) compro-
mise the effectiveness of software-based traf�c shaping
and active queue management solutions.

� Software pacing has major limitations. For workloads
with a mixture of short and large �ows, lower layers
of the network processing stack mask the impact of
software-based traf�c pacing. For workloads with very
short �ows, software pacing can blunt bursts but leads
to a major increase in RTT and signi�cant throughput
reduction.

� NIC driver buffer sizing and process scheduling can re-
shape bursts.

Experiment setup. Figure 4 demonstrates how Valinor
framework components come together in a basic deployment.
For evaluating Valinor, we use a wide range of workload
distributions. We deploy Iperf instances alongside Homa’s
open-source load generator [47] inside Linux containers and
con�gure the workload generators to simulate different trace-
driven workload patterns including Facebook’s ETC, Google
search, aggregated Google data center, DCTCP’s web search,
and Facebook’s intra-cluster and intra-rack Hadoop traces
[9,12,47,60]. Unless stated otherwise, all application contain-
ers are connected via anOVS[2] virtual bridge to the external
interface. Our testbed consists of servers featuring Intel Xeon
E5-2620 v4 processors, 64 GB of memory, and Intel XL710
40G NICs. We connect the servers via a Wedge-100 To�no
switch running Valinor-N timestamping framework. We de-
ploy Valinor-H on Linux kernel 5.17 with the latest version of
libbpf andiproute2installed. The collector machine features

Setting Default Value Parameter Range
Transport TCP cubic cubic, reno, BBR, DCTCP, Homa
Qdisc fq fq, fq_codel, p�fo_fast, HHF, SFQ
Byte Queue Limit Dynamic [100B-10MB]
MTU 1500 1500, 9000
Process scheduler CFS CFS, FIFO, Microquanta

Table 1: Default system con�guration and tested parameter
ranges.
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Figure 5: Two sets of workloads used throughout the experi-
ments. The �gures show the complementary cumulative distri-
bution functions (CCDFs) of �ow sizes.

Valinor’s userspace data plane based onDPDK v20. We dis-
able idle states on all servers and set the frequency governor
to performanceto minimize the interference of power-saving
features on networking performance. The default settings for
the evaluated components are summarized in Table 1.

Finally, to calculate microburst lengths, since we use
40Gbps links, we set the burst inter-arrival threshold to 500ns
for the presented results (see §2). Valinor also computes mi-
croburst lengths for other threshold settings (ranging from
5ns to 10µ s). While the threshold setting impacts the size and
quantity of observed bursts, we did not notice any difference
in relative burstiness when comparing multiple cases.

5.1 Revisiting structural causality

Where does traf�c burstiness come from? Prior work [23,53,
54] shows that the heavy-tailed property of the �ow size dis-
tribution directly determines link-level traf�c self-similarity,
a phenomenon that is sometimes referred to asstructural
causality. Heavy-tailed �ow size distributions are shown to be
the suf�cient condition for generating scale-invariant bursti-
ness and the network stack is shown to play a negligible
role in self-similarity [23, 53]. For instance, for traf�c gen-
erated by TCP Reno for a heavy-tailed Pareto �le size dis-
tribution with the shape parametera, there exists an almost
linear relation betweenH anda: the estimatedH is close to
(3 � a)=2.7 Heavier tailed distributions (i.e.,a close to 1) are
more strongly self-similar (H closer to 1). The self-similarity
of traf�c with heavy-tailed �ow sizes is in contrast to the lack

7TheH = ( 3 � a)=2 relation shows the values ofH predicted by the a
theoretical ON/OFF model in the idealized case corresponding to a frac-
tional Gaussian noise process with independent traf�c sources with constant
ON/OFF amplitude [54]. This captures an ideal self-similar process.
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Figure 6: Microburst sizes and Hurst exponents of different
synthetic workloads for simulated and testbed experiments. The
interference of host networking elements is visible in the differ-
ence between the three scenarios.

of correlation structures for short-tailed �ow size distributions
such as an exponential distribution (H close to 0.5).

We �rst replicate this result using OMNET [1], an exten-
sively used simulator [8, 14, 47], and observe an almost lin-
ear relation betweena andH�consistent with the �ndings
of prior work [53], the estimatedH values closely track the
(3� a)=2 line. In a setup where the two simulated servers are
connected via a network switch, we establish 32 long-running
TCP connections and use Pareto and exponential �ow size
distributions (Figure 5a shows the �ow size distributions). To
achieve a target offered load of 6 Gbps, �ows are initiated ex-
ponentially with a mean interarrival time of 87µ s. We repeat
each experiment �ve times. In the box and whisker plots, each
box depicts the1st and3rd quartiles, the whiskers represent
the upper and lower extremes, the circles are outlier points,
and the orange dashes show the median Hurst estimates. Fig-
ure 6b shows that heavy-tailed �ow size distributions generate
self-similar traf�c. Figure 6a shows that these distributions
also result in larger microbursts with heavier tails.

Next, we repeat the above scenario in a testbed, using Vali-
nor to analyze burstiness after the software stack and on the
wire. Using Valinor-H for in-host analysis, we observe that

�1�0�1 �1�0�3 �1�0�5 �1�0�7

�B�u�r�s�t� �l�e�n�g�t�h� �(�B�)

�1�0"� �6

�1�0"� �4

�1�0"� �2

�1�0�0

�C
�C

�D
�F

�F�B� �E�T�C

�G�o�o�g�l�e� �S�e�a�r�c�h

�G�o�o�g�l�e� �D�C

�F�B� �H�a�d�o�o�p

�W�e�b� �S�e�a�r�c�h

(a) Simulation microburst sizes

�1�0�1 �1�0�3 �1�0�5 �1�0�7

�B�u�r�s�t� �l�e�n�g�t�h� �(�B�)

�1�0"� �6

�1�0"� �4

�1�0"� �2

�1�0�0

�C
�C

�D
�F

(b) In-network microburst sizes

�1�0�1 �1�0�3 �1�0�5 �1�0�7

�B�u�r�s�t� �l�e�n�g�t�h� �(�B�)

�1�0"� �6

�1�0"� �4

�1�0"� �2

�1�0�0

�C
�C

�D
�F

(c) In-host microburst sizes

�F�B
�E�T�C

�G�o�o�g�l�e
�S�e�a�r�c�h

�G�o�o�g�l�e
�D�C

�F�B
�H�a�d�o�o�p

�W�e�b
�S�e�a�r�c�h

�0�.�0

�0�.�2

�0�.�4

�0�.�6

�0�.�8

�H
�u

�r
�s

�t�
 �E

�s
�t�

i�m
�a

�t�
e

�S�i�m�u�l�a�t�i�o�n�s

�T�e�s�t�b�e�d� �n�e�t�w�o�r�k

�T�e�s�t�b�e�d� �e�B�P�F

(d) Estim. Hurst exponents

Figure 7: Self-similarity and microburst sizes vary across work-
loads and between testbed and simulation results. Positioned be-
fore the NIC, Valinor-H captures a smoother snapshot of traf�c
than in-network measurements.

the impact of the heavy-tailed distributions on self-similarity
is barely visible at this stage with distributions with varyinga
parameters behaving similarly and close to a light-tail expo-
nential distribution (Figure 6d), e.g., the software stack greatly
diminishes the degree of self-similarity of heavy-tailed Pareto
distribution witha = 1:05 fromH = 0:88 in the simulations
(Figure 6b) toH = 0:64 at the eBPF hook (Figure 6d). We
observe a similar effect on the microburst size distributions
that are much more similar across different workloads and
have shorter tails (Figure 6c).

We next use Valinor-N for analyzing traf�c as observed
on the wire. The patterns again change in interesting and
non-uniform ways. Similar to in-host measurements, the in-
network measurements indicate that the in�uence of �ow size
on self-similarity is lower than the simulated experiments,
e.g.,H = 0:80 andH = 0:78 for a = 1:05 anda = 1:65, re-
spectively, on the wire in the testbed experiments compared
to H = 0:88 andH = 0:63 for the same workloads in the
simulated experiments (Figure 6f). The more ampli�ed long-
range burstiness in the network compared to in-host experi-
ments is due to the intervention of driver and NIC functions
(such as segmentation of�oading scheduling) that reside be-
low Valinor-H. We investigate the roles of these functions in
§5.3. Figure 6e shows that the �ow size distribution has a rel-
atively subdued impact on the ultimate size of microbursts on
the wire once the traf�c traverses the host networking stack.

Summary: The shape of the traf�c in the testbed experi-
ments (in-network and in-host) is substantially different com-
pared to the simulated experiments with identical setups. This
suggests that host networking elements (e.g., qdiscs, process
schedulers, and NIC schedulers, not modeled in common sim-
ulators) alter burstiness.
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5.2 Impact of workloads

Next, we repeat the above experiments (using both the simu-
lator and the testbed) by replaying the traces of �ve classes
of workloads from [47]: (1) Facebook’s ETC workload, (2)
Google search workload, (3) Google’s aggregated internal
data center workload, (4) Facebook’s Hadoop workload, (5)
DCTCP’s web search workload [9]. Figure 5b shows the �ow
size distributions of these traces. Similar to the previous ex-
periments, in simulations, there exists a direct correlation
between the �ow size distributions, self-similarity, and the
burst lengths (Figure 7). In the testbed, however, the differ-
ence in burst lengths starts to fade away as host networking
components come into play. We also observe that the scal-
ing behavior varies substantially across different workloads
and between the simulated and testbed experiments. Hurst
coef�cients are larger for the more heavy-tailed distributions
in the network but mostly homogeneous before reaching the
driver. For example, the self-similarity estimates for the ETC
workload (p99th �ow size = 1.8 KB), the Google DC work-
load (p99th �ow size = 31 KB), and the web search workload
(p99th �ow size = 27 MB) are 0.57, 0.75, and 0.85, respec-
tively for in-network measurements and 0.50, 0.57, and 0.65,
respectively for in-host measurements.

5.3 Sources and implications of burstiness

The previous section shows the aggregate impact of host
networking elements on bursts. In this section, we measure the
impact of each element, starting with the transport layer and
moving to the elements that operatebelowthe TCP/IP stack
(e.g., qdiscs) andin parallel to it (e.g., the process scheduler).

5.3.1 Transports and congestion control

Starting with transports, we evaluate four TCP congestion
control variants under a mixture of background traf�c and a
small-scale incast traf�c pattern where two sender machines
target one receiver. The background traf�c consists of two
iperf �ows each taking 18Gbps of bottleneck link bandwidth.
The incast traf�c follows the map-reduce workload size distri-
bution. For this experiment only, we run both the workload
generators and the applications outside the container envi-
ronment. Figure 8a shows how TCP Cubic [28], TCP Reno,
DCTCP [9], and BBR [17] react to queue buildups in the
network. Compared to Reno, TCP Cubic (the default con-
gestion control setting in recent versions of Linux kernels)
uses a more aggressive function for increasing its congestion
window upon receiving acknowledgments. Therefore, it ex-
periences larger queueing oscillations than Reno. BBR uses
round-trip times to adjust its transmission window and varies
its pacing rate to keep the in-�ight bytes near its estimated
bandwidth-delay product. Thus, it experiences a more steady
queueing behavior while trying to keep the buffer half full.
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Figure 8: (a) Valinor captures the in-network buffer occupancy
for different transport protocols. (b), (c) Timeseries and H coef-
�cients show that burstiness (at both short and long timescales)
varies signi�cantly across transport protocols. (d) A receiver-
driven transport, Homa, is less bursty than TCP Cubic.

Finally, DCTCP uses explicit congestion noti�cations from
switches to maintain consistently low queuing.

Figure 8b presents the throughput timeseries of the four
congestion control variants at different timescales followed
by their Hurst exponent estimates in Figure 8c. With the help
of pacing and RTT estimations, BBR is able to maintain a
steady throughput and a non-bursty traf�c shape, re�ected
by H = 0:40. On the other hand, Cubic’s less conservative
transmissions incur a self-similarity estimate of 0.60.

Finally, we deploy Homa’s kernel module [47] as a rep-
resentative implementation of receiver-driven transports in
the Linux kernel. In receiver-driven transports, the destina-
tion initiates more packets by issuinggrant control packets
for the sending host. In our setup, Homa sends the �rst 90
KB of each �ow unscheduled as an attempt to initiate the
communication and retrieve the path’s congestion status. The
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Figure 9: Burst behavior of Linux queueing disciplines in the absence and presence of of�oading (Of�oading) and NIC scheduling
(SQ=single-queue, MQ=multi-queue). Both MQ and TCP segmentation of�oad compromise the intended shape of software packet
scheduling.

following packets are then scheduled using grants. Due to
its limited implementation scope, the Homa module is not
able to achieve line rate performance. Therefore, we limit
our observation to the map-reduce workload tuned down to
6 Gbps offered load. Figure 8d presents the burst lengths for
Homa and TCP Cubic as observed by Valinor-H eBPF frame-
work. We observe that the p99 burst length under Homa is 9�
lower than Cubic which might re�ect two facts. First, unlike
Cubic which sends up to 64 KB long data chunks, Homa’s
preparedsk_buffchunks are mostly as large as its MTU (9
KB in this experiment). This is also due to the fact that Homa
kernel module is not making use of TSO because of certain
Intel NIC limitations. Secondly, Homa uses pacing to keep
the NIC fully saturated in its Linux implementation which
further controls the spacing between its transmissions [52].
Combined, these factors result in Homa’s less bursty behavior
compared to TCP Cubic, not just at small timescales (Fig-
ure 8d) but also at large timescales (H = 0:54 for Homavs.
0.62 for Cubic). However, we suspect a different behavior
from Homa on different setups that can make use of NIC
of�oading.

5.3.2 Software switching

Linux leverages queueing disciplines (qdiscs) to enforce
scheduling among segments originating from different ap-
plications in the system. If generic segmentation of�oad is
not in use,qdiscsare the last software components to decide
the order of data entities on NIC’s FIFO rings. We study �ve
representative queueing disciplines implemented in Linux:
1) Fair queue (fq) is the default scheduler in recent Linux
kernels and is mainly used to enforce pacing on a per-�ow
(per socket) basis. The appropriate pace among �ows is either
explicitly enforced via socket options, or is determined by
the TCP congestion control (e.g., BBR). By default,fq uses
de�cit round-robin with a default quantum of 3028 bytes to
drain �ow queues, with an initial quantum equalling TCP’s
initial 10-packet window.
2) fq_CoDel.The controlled delay (CoDel) algorithm, com-
bined with fair queue, enforces CoDel on per-�ow sub-queues.
CoDel, a more recent AQM algorithm, uses packet sojourn

time inside each �ow queue to detect slow �ows and prevents
the queueing delay to exceed a user-speci�ed target by drop-
ping excess traf�c.
3) Stochastic Fair Queueing (SFQ)extends �ow-queuing
with random-early marking/drop semantics with small default
queue sizing to control the queueing delay. Similar tofq, it
uses round-robin scheduling on per-�ow sub-queues. SFQ
uses a default de�cit of one MTU.
4) p�fo_fast is a First-In First-Out priority queue. Higher
priority packets are distinguished by their Type of Service
(TOS) �elds in IP headers which are set by upper layers.
5) Heavy Hitter Filter (HHF) attempts to identify and sep-
arate short �ows from heavy hitters to prevent head-of-the-
line blocking and increased delays for latency-sensitive �ows.
Such �ows are given a higher de�cit compared to heavy hitters
in each transmission round.

We study qdiscs under three scenarios: First, to see the
actual contribution of qdiscs to the traf�c shape, we disable
segmentation of�oad and serialization of�oad and limit the
number of the transmit rings to one (single-queue). Segmenta-
tion is the process of breaking largesk_buffsinto MTU-sized
segments and is usually deferred to the last processing stages
to reduce CPU utilization and improve �ow performance. Seg-
mentation of�oad can either be performed in the hardware
(TCP Segmentation Of�oad or TSO) or just before passing the
data to the hardware (Generic Segmentation Of�oad or GSO).
Additionally, in a multi-queue architecture, the network stack
communicates to the NIC via separate ring buffers pinned to
each CPU core to reduce inter-core communication overheads
and improve throughput. When enabled, a (reportedly, round-
robin [65]) packet scheduler in the hardware will decide the
order in which packets are drained from ring buffers.

Initially, we run 1000 Iperf instances spread across 200
containers, simulating the map-reduce workload on the single-
queue server without of�oading. Figure 9a demonstrates how,
in isolation, per-�ow queuing can signi�cantly shorten the
size of egress bursts. Techniques suchp�fo_fast, and HHF
use one large buffer containing packets from all egress �ows,
allowing multiple data segments of one �ow to be enqueued
simultaneously. On the other hand, per-�ow queueing allows
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Figure 10: Hurst estimates for different queueing disciplines.

the scheduler to interleave among packets of different �ows,
primarily to maintain fairness and prevent head-of-the-line
blocking [62].

To verify the impact of round-robin scheduling on blunting
bursts, we repeat the same experiment withfq qdisc, increas-
ing the per-�ow de�cit from one MTU (1514 bytes) to 16
MTUs, and observe a linear correlation between fq de�cits
and burst lengths. For example, the 90th percentile of burst
lengths under a de�cit of 16 packets is increased to 25 KB
from 13 KB under that of 8 MTUs (92% increase).

While qdisc is the last layer to perform packet scheduling
in the software, the traf�c ultimately often passes through
segmentation of�oading and NIC scheduling before reaching
the wire. Is the impact of qdiscs on the wire preservedafter
the interactionwith these lower layers? To investigate, we en-
able all the of�oading features and perform our measurements
again. Figure 9b demonstrates the impact of of�oading seg-
mentation and serialization on lengthening the egress bursts.
With TSO at work, qdiscs no longer serve packets. Instead,
they schedule between dynamically sizedsk_buffs. Hardware
of�oading then helps increase the throughput by nearly 50%
for all cases while moving the buffering to the hardware where
large segments are broken into MTU-sized packets and sent
on the wire. This signi�cantly undermines qdisc’s decisions
on shaping the traf�c. With of�oading in action, the median
burst sizes forfq, fq_codel, andp�fo_fast are, 132 KB, 127
KB, and 127 KB, respectively. While without of�oading, these
systems experienced a median burst length of 76 KB, 76 KB,
and 172 KB8, respectively.

To further ruf�e the output of qdiscs, we enable the default
multi-ring root qdisc which assigns a separate qdisc instance
to each CPU core and enables the NIC scheduler to perform
last-level scheduling on transmit rings (multi-queue architec-
ture). Figure 9c presents the outcome.With NIC scheduling
and segmentation of�oading at work, the shape of the qdisc’s
outgoing traf�c is barely preserved on the wire.That is be-
cause, NICs are equipped with internal round-robin sched-
ulers to drain the software rings, further reducing the chances
of creating long bursts. Finally, Figure 10 demonstrates the
estimated Hurst exponents for the three scenarios. Without

8p�fo_fast combined with of�oading can exacerbate burstiness as both
layers are prone to creating large, uncontrolled bursts.

segmentation of�oading, the degree of burstiness is consid-
erably reduced (H < 0.5) for all but one case. Onlyp�fo_fast
which does not offer any form of fair queueing suffers from
heavier burstiness (H = 0:8) under the single-queue scenario.
Implications of disabling of�oading and multi-ring
scheduling.Apart from burstiness, both of�oading and NIC
scheduling have a profound impact on �ow performance met-
rics. Our measurements demonstrate that disabling TCP seg-
mentation of�oad for a workload consisting of 1000 same-
size �ows results in 71% decline in median �ow throughput,
46% increase in median packet RTTs, and 3� increase in
sender CPU utilization. Therefore, disabling of�oading, in
order to enable software control is not always a viable option.
Multi-queue NICs are also considered a quick solution with
potential side effects. While enabling multi-queue reduces
resource contention, they can increase response times and are
usually �xed-function [65].

5.3.3 Software pacing

The above observations raise another important question on
host networking design decisions. While many congestion
control techniques [7, 17, 37, 47, 57] advocate for pacing in
order to achieve accurate control over in-transit data, existing
pacing implementation in the Linux kernel is deeply away
from the wire, at fq qdisc.Are qdiscs a suitable place for
enforcing pacing?To investigate, we repeat the map-reduce
(M/R) workloads on the server with both of�oading and NIC
scheduling enabled and observe thatfor workloads with large
�ows (intra-rack M/R), pacing doesn’t have a signi�cant im-
pact on burstiness, and for those with short �ows (intra-cluster
M/R), pacing results in throughput reduction.Overall, our re-
sults highlight the limitations of software pacing for data
center workloads.

Concretely, we con�gurefq to pace 200 �ows based on their
fair share of bandwidth (200 Mbps), and gradually increase
the portion of the �ows that are counted as heavy hitters from
0% (no �ow is paced) up to 100% (all �ows are paced). Figure
11 compares the bursts for (a) workload with mostly large
�ows and (b) workload with a mix of small and large �ows.
In the former workload, we observe that while the impact of
pacing ratio is less evident, pacing allows for better bandwidth
allocation and the line rate is preserved for all rows. On the
other hand, in the latter workload, the throughput is reduced
by 22% under pacing. This is because short �ows are not able
to make up for the freed bandwidth that pacing creates. We
also compare packet RTTs and �nd that pacing large heavy-
hitters helps reduce median RTTs by two orders of magnitude
as short �ows experience less head-of-the-line blocking. This
behavior changes in the intra-cluster workload as we do more
pacing, as the increased RTT of paced �ows drives the overall
median RTT up by 160%. Further details on the theoretical
analysis of burstiness under software pacing can be found in
Appendix §B.
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Figure 11: Software pacing is workload dependent. For work-
loads consisting of large �ows, its impact on smoothing bursts
is unmade by lower layers. For workloads with both short and
long �ows, it reduces throughput.

5.3.4 Byte Queue Limits

Linux kernel employs buffers at various stages of network
stack processing to streamline the data movement among
various components. The NIC driver queue is the last buffer-
ing stage before triggering the hardware. A �xed-size driver
queue (a.k.a., TX ring) would ensure that the NIC can always
�nd ready-to-send packets without communicating with the
OS. However, due to the unpredictable size of packet buffers
in the Linux kernel (ranging from 64B up to tens of kilobytes),
the queueing time will considerably add to the overall RTT of
packets. To prevent that, OS developers propose a dynamic
bound on TX rings that adjusts the limit based on NIC’s trans-
mission rate and the availability of data in the TX rings [29].
To that end, after every transmission, BQL uses time intervals
to check whether the NIC was starved in previous transmis-
sions. If the NIC was not fully utilized during any interval
while data was available at higher layers, the BQL algorithm
increases the limit on the TX ring. Otherwise, if the NIC was
fully busy, the BQL is decreased to reduce the queueing over-
heads. Enforcing smaller queue limits also ensures that the
main queuing occurs at the qdisc-level where more advanced
queuing disciplines can be employed.

Apart from Linux, NIC buffer sizing is also an important
consideration for kernel-bypass runtimes that are less inclined
to distribute TX processing among multiple ring buffers [36,
51]. Figure 12 demonstrates the impact of driver queue size
on performance and burstiness. Intuitively, as we increase the
size of the driver’s buffer, we greatly increase the queueing
time experienced by egress traf�c, therefore, preventing the
bursts of packets from arriving at the NIC. On the other hand,
a larger driver queue is more prone to creating longer bursts as
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Figure 12: Larger BQL settings produce longer bursts. Also,
the dynamic BQL algorithm presents a similar behavior to a
large static ring size.

it is more susceptible to triggering segmentation of�oad (99th

percentile burst length for 1 KB buffers and 1 MB buffers
are 68 KB and 9 KB, respectively, but 99.99th lengths shift
to 68 KB and 86 KB, respectively). The microburst length
distributions in Figure 12b further suggest that the default
dynamic buffer sizing algorithm tends to maintain larger ring
buffers which leads to longer bursts.

5.3.5 Linux process scheduling

Apart from the network stack, the operating system features
various internal components that might change the traf�c
shape. For example, Linux offers a range of process schedul-
ing classes suited for various use cases:
Completely Fair Scheduler (CFS)is the default process
scheduling class in Linux which aims at achieving fairness
among active processes in the system while maintaining re-
sponsiveness for I/O-bound applications. when running a mix
of compute-intensive and network-intensive workloads, CFS
attempts to proportionally share the CPU among workloads
leading to longer response times [39].
Real-time schedulersupports two policies:Round-robinand
First-In-First-Out (FIFO)scheduling. Both policies give strict
priority to I/O-bound applications (if con�gured properly).
By default, the round-robin policy preempts high-priority pro-
cesses every 100ms while the FIFO policy is non-preemptive.
We also deploy Microquanta [46] a semi-real-time scheduling
class with microsecond time precision.

Valinor’s picture of traf�c burstiness is consistently similar
when the network application is running alone as Hurst esti-
mates vary between 0.51 and 0.54 for all the schedulers. How-
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Figure 13: Impact of process scheduling on traf�c bursts.

ever, when the background process is introduced, a course-
grained process scheduler like CFS must enforce fair CPU
time sharing, resulting in the leap of its H estimate to 0.74
while other schedulers are able to schedule the network ap-
plication’s threads in short timescales and result in smooth
transmissions. To validate the self-similarity estimates, we
plot the time series of CFS (running only the network work-
load), CFS+BG (running the network workload alongside
background threads), and the real-time FIFO scheduler run-
ning both applications (FIFO+BG) in Figure 13. The self-
similar nature of the CFS+BG scenario is noticeable in the
leftmost column as CFS causes the network packets to be
sent in larger chunks, causing intermittent but larger bursts
at short time spans.

6 Related work

Traf�c self-similarity. A large group of studies rely on quan-
tifying bursts by using the notion of self-similarity in the time
series [5,24,38,50,53� 55] but overlook the role of host net-
working on shaping bursts. Valinor leverages the theoretical
frameworks developed in these works to uncoverthe impact
of host networking on bursts.
Detecting bursts.A growing number of proposals try to iden-
tify what �ows are bursty [18, 19, 40, 48] but they cannot
identify why those �ows are bursty. Crucially, they cannot
identify the elements on the traf�c path that contribute to or
blunt traf�c burstiness. Frameworks such as BurstRadar [33]
and SynDB [34] rely on buffer congestion or external triggers
to capture packet arrivals, which prevents them from capturing
long-range dependency patterns in host egress traf�c.

Similar to Valinor, a few proposals study the causes of
bursts. Some papers pinpoint transport protocol internals
such as segmentation, slow start, bulk acknowledgments, and
fast re-transmit as potential sources of bursts at the source
level [10, 31, 69]. Another category of works study the im-
pact of of�oading techniques like segmentation of�oad on
microbursts [35, 72]. Speci�cally, [35] investigates the im-
pact of application behavior, operating system syscalls, and

NIC of�oading features on both sender and receiver hosts
on burstiness and further show that burstiness imposed by
TCP segmentation of�oad can marginally be controlled by
con�guring the kernel’s maximum GSO size. Compared to
these studies, Valinor has a broader scope; it studies the im-
pact of various host elements (not just transport protocols),
the effects of low-level of�oading mechanisms on software
scheduling and pacing, and bursts at various timescales (not
just microsecond-scale). Finally, [25] introduces Millisam-
pler, a host-centric burst characterization tool to study the im-
pact of service placement on buffer contention and packet loss.
Valinor uses its switch framework to detect synchronized �ow
arrivals at points of interest and unlike Millisampler which
operates atsk_buffgranularity, can attribute bursts at packet
resolution. We believe that Valinor and Millisampler com-
bined can assist data center network operators in accurately
detecting the sources of bursty traf�c at various timescales.
Burst control. A large and growing number of proposals
[9, 27, 32, 37, 41, 43, 44, 59, 61, 62, 70] focus oncontrolling
bursts, e.g., via rate-limiting at the switch [44], �ne-grained
pacing [61], and high-precision transport protocols [37,41].
These studies are orthogonal to Valinor. Understanding the
temporal properties of bursts and the causal mechanisms con-
tributing to burstiness will bene�t the design of effective burst
control mechanisms.

7 Conclusions

We presented the design of Valinor, a burst measurement
framework that consists of an in-host eBPF framework and an
in-network timestamping module for programmable switches.
Valinor can capture burstiness at different scales (ranging from
nanoseconds to seconds). We use Valinor to demonstrate how
host networking elements affect bursts. We show that the scal-
ing behavior of traf�c at long timescales and burstiness at �ne
timescales vary signi�cantly across different host networking
con�gurations (process schedulers, congestion control algo-
rithms, single vs. multi-queue NICs, etc.) and across different
classes of practical workloads. In particular, we show the
impact of hardware-resident functions (e.g., NIC schedulers)
that are largely overlooked in characterizing burstiness. This
variability of burstiness and the implications of bursts on per-
formance underscore the need for measurement systems to
perform periodic burst analysis.
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A Rescaled-range analysis for estimating H

For a weak stationary stochastic processX = ( Xt : t =
0;1;2; :::;N), the mean-adjusted series is de�ned asY, Yt =
Xt � m wherem is the empirical mean of the processX. Let
Z denote the cumulative deviate ofY whereZt = å N

t= 1Yt . We
also de�nemt as the cumulative mean of the seriesX through
time t.

The rescaled range ofX is denoted by

(R=S)t =
Rt

St
; t 2 f 0;1;2; :::;Ng (3)

where the Range seriesR is de�ned as

Rt = Max(Z1;Z2; :::;ZN) � Min(Z1;Z2; :::;ZN);
t 2 f 0;1;2; :::;Ng

(4)

and the standard deviation seriesS is de�ned as

St =

s
1
t

t

å
i= 1

(Xi � mt )2; t 2 f 0;1;2; :::;Ng (5)

According to [30],R=Sscales with the power law oft. There-
fore, to estimateH, the slope of the least-squares linear re-
gression ofR=Sovert in a log-log scale is used. The resulting
exponent is in the 0-1 range and a value between 0.5 to 1 in-
dicates low to strong long-range dependence (self-similarity),
respectively. In other words, an H estimate close to one indi-
cates a strong desire to maintain the previous trend or more
burstiness. As the H estimate nears 0.5, the time series be-
comes indistinguishable from random noise, and a value close
to zero signi�es the traf�c’s aim at reverting to its mean value.

B Theoretical analysis of software pacing un-
der different workloads

We presented the size of per-�ow bursts for explicit software
pacing in §5.3.3. To further verify our �ndings using the
notion of self-similarity, we �rst plot the time-series of packet
arrivals in 1s, 100ms, and 10ms time scales in Figure 14 for
both the intra-cluster (Figure 14a) and intra-rack (Figure 14b)
workloads. One can notice the gradual decay of burstiness
in all time scales as higher degrees of pacing are enforced to
the intra-cluster workload. On the other hand, we can observe
that the intra-rack traf�c follows a non-bursty, steady trend in
all time scales regardless of pacing.

Next, we calculate the Hurst exponents for the intra-rack
and intra-cluster workloads. According to Figure 14c, self-
similarity in the latter workload follows the degree of pacing
(i.e., percentage of the paced �ows) where 100% pacing re-
sults in 31% reduction in the Hurst estimate compared to the
no-pacing case. For example, the Hurst estimates are 0.91,
0.73, and 0.63 for 0%, 40%, and 100% pacing ratios, respec-
tively. However, under the intra-rack workload pacing seems
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Figure 14: Time-series graphs and Hurst exponents for the
software pacing experiments presenting the traf�c behavior at
three time ranges.

to have little to no effect as the egress traf�c follows a mean-
reverting behavior during 1-second time ranges (H < 0.20 for
all the cases).

Finally, Figure 15 presents the corresponding auto-
correlation functions (ACFs) for the above time series. While
the cycling trend of bars between positive and negative cor-
relations suggests a strong mean-reverting behavior for the
intra-rack workload (Figures 15e-15h), the intra-cluster ACF
features a slow-decaying, strong positive correlations across
time lags, suggesting strong self-similarity (Figures 15a-15d).
As we increase the pacing ratio (from 0% gradually to 100%),
the correlations start to decline.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    253



�0 �2�0 �4�0 �6�0
"��1�.�0

"��0�.�5

�0�.�0

�0�.�5

�1�.�0
�1�s� �r�a�n�g�e

�0 �1�0 �2�0 �3�0 �4�0 �5�0
"��1�.�0

"��0�.�5

�0�.�0

�0�.�5

�1�.�0
�1�0�0�m�s� �r�a�n�g�e

�0 �1�0 �2�0 �3�0 �4�0 �5�0
�T�i�m�e� �l�a�g

"��1�.�0

"��0�.�5

�0�.�0

�0�.�5

�1�.�0
�1�0�m�s� �r�a�n�g�e

(a) Intra-cluster 0% paced
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(b) Intra-cluster 20% paced
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(c) Intra-cluster 60% paced
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(d) Intra-cluster 100% paced
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(e) Intra-rack 0% paced
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(f) Intra-rack 20% paced
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(g) Intra-rack 60% paced
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(h) Intra-rack 100% paced

Figure 15: Comparing the auto-correlation functions (ACFs) for two workloads when we increase the ratio of paced �ows from 0%
to 100%. For the intra-cluster workload, enforcing pacing on �ows can signi�cantly reduce the self-similarities. For the intra-rack
workload, the correlations between consecutive time lags oscillate between positive and negative numbers, signifying the mean-reverting
nature of the workload irrespective of the pacing.
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