
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Understanding the impact of host networking
elements on traffic bursts

Erfan Sharafzadeh and Sepehr Abdous, Johns Hopkins University;
Soudeh Ghorbani, Johns Hopkins University and Meta

https://www.usenix.org/conference/nsdi23/presentation/sharafzadeh

Understanding the impact of host networking elements on traffic bursts

Erfan Sharafzadeh1, Sepehr Abdous1, Soudeh Ghorbani1,2

1Johns Hopkins University , 2Meta

Abstract

Conventional host networking features various traffic shaping
layers (e.g., buffers, schedulers, and pacers) with complex
interactions and wide implications for performance metrics.
These interactions can lead to large bursts at various time
scales. Understanding the nature of traffic bursts is important
for optimal resource provisioning, congestion control, buffer
sizing, and traffic prediction but is challenging due to the
complexity and feature velocity in host networking.

We develop Valinor, a traffic measurement framework that
consists of eBPF hooks and measurement modules in a pro-
grammable network. Valinor offers visibility into traffic bursti-
ness over a wide span of timescales (nanosecond- to second-
scale) at multiple vantage points. We deploy Valinor to ana-
lyze the burstiness of various classes of congestion control
algorithms, qdiscs, Linux process scheduling, NIC packet
scheduling, and hardware offloading. Our analysis counters
the assumption that burstiness is primarily a function of the
application layer and preserved by protocol stacks, and high-
lights the pronounced role of lower layers in the formation
and suppression of bursts. We also show the limitations of
canonical burst countermeasures (e.g., TCP pacing and qdisc
scheduling) due to the intervening nature of segmentation
offloading and fixed-function NIC scheduling. Finally, we
demonstrate that, far from a universal invariant, burstiness
varies significantly across host stacks. Our findings under-
score the need for a measurement framework such as Valinor
for regular burst analysis.

1 Introduction
Measurement studies show that traffic is bursty across a wide
range of timescales in diverse contexts such as Ethernet LANs
[38], WANs [56], data centers [25], and WWW traffic [21]. In
particular, microsecond-scale congestion events, sometimes
called microbursts, have been the focus of numerous measure-
ment and control papers recently [13, 18, 19, 25, 33, 37, 72].
However, the modulating effect of host networking on traf-

fic burstiness at various timescales is relatively less investi-
gated. This paper addresses this gap. We ask what causes
the traffic to emerge from hosts in bursts? Is burstiness an
scale-invariant property of traffic, i.e., does the traffic retain
its burstiness across a wide range of timescales, or do the
microbursts become smooth at coarse timescales? Are canon-
ical burst countermeasures such as TCP pacing and packet
scheduling effective in curtailing bursts?

These questions have far-reaching implications for net-
work performance and design. Controlling bursts at different
timescales requires deploying mechanisms that operate at the
corresponding pace. Microbursts, for instance, require real-
time techniques with sub-RTT control loops, whereas bursts
at longer timescales can be more effectively managed by re-
source provisioning techniques such as topology engineering
and routing that take seconds to minutes to complete [71].

Unfortunately, studying the impact of host networking on
bursts is complex. Take the Linux network stack as an ex-
ample: the egress traffic that originates from the Linux ker-
nel stack passes through many layers and optimizations be-
fore arriving at the wire. Transport protocol internals like
initial window size, cumulative acknowledgments, queueing
disciplines (qdiscs), driver rings, segmentation offloading, and
hardware packet scheduler at the NIC all handle the traffic.
All these elements and their complex interactions can play a
role in forming or suppressing bursts at various timescales.
These challenges are further compounded by the heterogene-
ity, scale, and the velocity of evolution in today’s networks
that constantly change in response to increasing demand and
the rollout of new services [26, 46, 73].

To address this challenge, we build Valinor, a high-
resolution traffic measurement framework that enables net-
work operators to systematically and periodically dissect the
elements of host networking, their impact on traffic bursti-
ness in isolation, and importantly, their interactions with the
emergent traffic patterns, all at different timescales. To ensure
visibility into the impact of the software stack and the shape
of the traffic on the wire through time, Valinor is composed
of two main components: 1) An in-host timestamping frame-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 237

work (Valinor-H) based on eBPF that collects egress packet
metadata nearly at the last stage of software stack processing.
2) An in-network packet timestamping framework (Valinor-N)
that captures packet arrival timestamps in the programmable
switch data plane immediately after the NIC, and sends the
timestamp data to offline servers for collection, storage, and
burstiness analysis.

Our analysis of the impact of host networking on the shape
of traffic using Valinor reveals some surprising results. As
an example, classical work paints a unifying and consistent
picture of scale-invariant burstiness, i.e, they show the same
degree of variability across a wide range of timescales in a
variety of different network types [21,38,56]. It has also been
established that this scale-invariant burstiness is primarily
caused by application layer characteristics such as long-tailed
flow size distributions and is “robust”: it holds for a variety
of transport protocols (e.g., TCP Reno, Vegas, and flow con-
trolled UDP) and various network configurations [23, 53].

In contrast, our investigations paint a more nuanced
and complex picture. We show that burstiness at various
timescales varies significantly across host configurations
(hardware configurations, transport protocols, scheduling,
etc.). We also show the pronounced modulating effect of
below application layer elements on bursts. This implies that,
for the same heavy-tailed flow size distribution, the ultimate
shape of traffic on the wire depends heavily on the host con-
figuration such as the NIC scheduler. Plus, Valinor’s anal-
ysis of newer reliable transport protocols (e.g., Homa [47],
DCTCP [9], and BBR [17]) reveals the high degree of vari-
ability of burstiness for these protocols. As an example, BBR
is less bursty not just at fine timescales (a result that is consis-
tent with the literature [47, 52]) but also at coarse timescales.
The latter finding (new to the best of our knowledge) im-
plies that techniques such as topology engineering [71] and
multi-timescale congestion control [66]—premised on the
long-range burstiness of traffic—may yield limited perfor-
mance improvements under these new protocols.

Finally, given the impact of some variants of transport pro-
tocols on bursts, we quantify the effectiveness of TCP pacing
and active queue management paradigms such as CoDel [49]
in qdiscs (software packet schedulers) in mitigating bursts.
Our results show the pronounced impact of lower-layer func-
tions (residing in the driver and NIC) on forming the ulti-
mate shape of traffic on the wire relative to the higher-layer
software operations of the TCP/IP stack and qdiscs. As an
example, active queue management techniques such as CoDel
and RED in the Linux kernel try to prevent the formation of
large and lasting bursts. However, our results show that their
impact is effectively erased by offloading (TSO, serialization,
etc.) and the NIC scheduler. For example, while in isolation,
the frequency of large 300 KB bursts under CoDel is 500
times lower than FIFO, this difference is barely visible on the
wire after packets pass through the multi-queue NIC with seg-
mentation offloading. Moreover, TCP pacing enforced in the

qdiscs generates between 1.8×-19× larger bursts when NIC
scheduler and offloading are in action compared to when in
isolation.1 This result indicates that the countermeasures for
controlling bursts should be moved further down the packet
processing pipeline at the end hosts.

Our results on the variability of burstiness (based on hard-
ware configurations, transports, etc.)—combined with the
ever-evolving workloads and features in today’s networks—
highlight the need for periodic traffic measurement and anal-
ysis. To facilitate this, we have released Valinor’s sources
and artifacts as open-source software.2 We next introduce the
mathematical notions developed for capturing bursts across
time, present their practical implications in networks (§2),
provide some background on host networking and the design
space of burst measurement frameworks (§3), and present the
design of Valinor (§4) before delving into our findings (§5).

2 Background: scale-invariant burstiness

Measurements of the Internet traffic show periods of sustained
greater-than-average or lower-than-average traffic rates across
a wide range of timescales [21, 24, 38, 53, 56]. This behavior,
sometimes called scaling or self-similarity, has broad impli-
cations for performance. In this section, we first formalize the
notion of self-similarity and re-introduce the Hurst exponent,
a mathematical representation of self-similarity, before dis-
cussing the implications of self-similarity and characterizing
bursts at fine timescales such as microbursts.

Self-similarity. Self-similarity is a notion pioneered by
Benoit Mandelbrot [45] which refers to a phenomenon where
a certain property of an object (such as an image or a time-
series) is preserved with respect to scaling in space and/or
time. If an object is self-similar, its parts, when magnified,
resemble the shape of the whole [55].

More formally, let (Xt)t∈Z+ be a timeseries, e.g., this time-
series can represent a traffic trace measured at some fixed
time granularity. The aggregated series X (m)

i is defined as

X (m)
i = 1/m(Xim−m+1 + ...+Xim)

In other words, Xt is partitioned into blocks of size m, their
values are averaged, and i denotes the index of these blocks.

Autocorrelation is a mathematical representation of the
degree of similarity between a timeseries Xt and a time-shifted
version of Xt over successive time intervals. It measures the
relationship between the current value of a timeseries and its

1 Despite making the traffic bursty and hard to manage, these low-level
functions are essential for reducing the processing overhead and meeting the
increasingly high link rates. For example, disabling TCP segmentation offload
results in a 3× increase in CPU utilization, 71% lower throughput, and a
46% increase in median packet RTTs for a multi-flow Iperf test. Relatedly,
disabling MQ results in a 4% decline in the throughput of the same workload.

2https://hopnets.github.io/valinor

238 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://hopnets.github.io/valinor

future values. A strong positive autocorrelation for a traffic
volume timeseries, for example, suggests that if the volume
is high (i.e., higher than average) now, then it is likely to be
also high in the next time slot, whereas a strong negative
autocorrelation implies that a high-volume slot is likely to be
followed by a low volume one.

Let r(k) and r(m)(k) denote, respectively, the autocorrela-
tion functions (ACFs) of Xt and X (m)

i where k is the time shift
from the original timeseries. We say that Xt is self-similar, or
more accurately asymptotically second-order self-similar, if
these conditions hold:

r(k)∼ c× k−β (1)

r(m)(k)∼ r(k) (2)

for large k and m, where 0 < β < 1 and c is a constant, and
f (x)∼ g(x) as x → a means that limx→a f (x)/g(x) = 1 [66].
Xt is self-similar in the sense that its ACF r(k) behaves hy-
perbolically with ∑

∞
k=0 r(k) = ∞ (Eq. 1). This property is also

referred to as long-range dependence. Equation 2 implies
that for self-similar timeseries, the autocorrelation structure
is preserved with respect to time aggregation.

In networks, the traffic is called self-similar if the aggre-
gated traffic over varying timescales remains bursty, regard-
less of the granularity of the timescale.

The Hurst exponent. Let H = 1− β/2. H is called the
Hurst exponent. The Hurst exponent, a number in the (0,1)
range that is sometimes referred to as the index of long-range
dependence, is a measure of the long-term memory of a time-
series. It characterizes the self-similarity and long-range de-
pendence of the timeseries:

• 0.5 < H < 1 indicates a self-similar timeseries with
long-term positive autocorrelations, i.e, a high value in
the series (e.g., higher than average traffic volume) is
likely to be followed by another high value. Plus, the
values a long time into the future also tends to be high.
It follows from Eq. (1) above that the closer H is to 1, the
more long-range dependent Xt is. Conversely, H values
closer to 0.5 show weaker long-range dependence.

• H = 0.5 indicates a completely uncorrelated series.
• 0 < H < 0.5 indicates a mean-reverting timeseries, i.e.,

one with long-term switching between high and low
values in adjacent pairs of time slots. That is, a single
high value in the timeseries is likely to be followed by a
low value.3

Various techniques (e.g., rescaled-range analysis and Peri-
odogram [67]) exist for estimating H for an empirical dataset.
Similar to the seminal work on Bellcore Ethernet traffic self-
similarity [38], we use the rescaled-range, R/S, for the results
presented in this paper. The details of this method are pre-
sented in Appendix §A.

3Note that the 0 < β < 1 condition in the equations above is a requirement
for self-similar, and not mean-reverting, series.

0 10 20 30 40 50 60 70 80 90 1000

100000

200000

300000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

)

1s range

0 10 20 30 40 50 60 70 80 90 1000

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
 (M

bi
ts

)

100ms range

0 10 20 30 40 50 60 70 80 90 100
Time bin

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
 (M

bi
ts

)

10ms range

(a) Time-series

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0 1s range

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0 100ms range

0 10 20 30 40 50
Time lag

0.0

0.2

0.4

0.6

0.8

1.0 10ms range

(b) Auto-correlation
Figure 1: A self-similar timeseries with H=0.88.

Example: Figure 1a (the first row) shows a simulated sce-
nario where 32 TCP connections generate a synthetic work-
load using Pareto flow size distribution with a mean of 4200
KB and α = 1.05 and exponential arrivals that create 6 Gbps
offered load. We plot the traffic rate (in Mbps) against time
where time granularity is 1s. A data point is the aggregated
traffic volume over a 10ms interval. The second row of the
same figure depicts the same traffic series where a randomly
selected second interval in the first timeseries (the highlighted
segment in the first row) is magnified by a factor of ten, re-
sulting in a granularity of 100ms in the truncated timeseries.
The last row similarly rescales a randomly selected slot by
10×. The figures show that this trace is self-similar: when
traffic is aggregated over varying timescales, the aggregate
traffic pattern remains bursty, regardless of the granularity of
the timescale. This visual scaling is confirmed by the Hurst
coefficient, H = 0.88, and the autocorrelation functions of
the trace (Figure 1b) that show positive, slow (almost polyno-
mial) decaying, and consistently shaped correlations across
various timescales. Slow-decaying ACFs signify long-range
dependence in a timeseries.

Practical implications of self-similarity. Self-similarity
has broad implications on network design and performance,
e.g., it is shown to lead to increased delay and loss [5, 6, 22,
42, 50, 53, 66]. We next discuss some of the key implications
of self-similarity:

• Queueing performance and buffer sizing. Self-
similarity greatly influences queueing performance.
From a queueing theory standpoint, the defining char-
acteristic of self-similarity is that the queue length dis-
tribution decays much more slowly than short-range-
dependent traffic (polynomially vs. exponentially under
short-range dependent traffic, e.g., Poisson processes)
[66]. For strongly self-similar traffic, the mean queue

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 239

length increases with the buffer size [54]. This implies
that networks with strongly self-similar traffic should
deploy small buffers to control the queueing delay.

• Throughput and latency trade-off. Prior work [53, 54]
shows that jointly provisioning low delay and high
throughput is adversely affected by self-similarity.

• Traffic prediction and burst countermeasures. The
correlation structures present in self-similar traffic can
be detected and exploited to predict future traffic over
timescales larger than an RTT [66].4 Traffic prediction
at long timescales, in turn, is invaluable for designing
the appropriate burst countermeasures. For instance, re-
source provisioning techniques with control loops larger
than an RTT (e.g., multi-scale congestion control [66],
re-routing, and topology rewiring [71]) enhance the per-
formance of self-similar traffic.

Microbursts. Given their ubiquity and impact, in particular
in data centers, microsecond-scale traffic surges, known as
microbursts [13, 41, 72], have been the focus of many recent
proposals [4, 19, 27, 37, 41, 70].

The intensity of a microburst has often been measured
implicitly based on buffer utilization, or in more extreme
cases, packet loss. Related work also quantifies microbursts
as the number of packets from one flow that occupy a buffer at
a time snapshot [33], the evolution of switch queue length over
time [63], an uninterrupted sequence of packets with gaps of
smaller than a threshold [35], and/or sequence size of larger
than a threshold [68]. Using metrics that are independent of
network queues allows us to perform universal measurements
in the entire network, i.e., both at the hosts and the switches.
Yet, measurement systems intending to quantify microbursts
can leverage all the above definitions to provide a holistic
view of burstiness behavior.

From the technical perspective, we define a burst as the cu-
mulative sum of packet bytes whose inter-arrivals are smaller
than a threshold τ. Setting the minimum value for τ initially
depends on link speeds and MTUs. For example, in a fully
utilized 40 Gbps link with MTU = 1500 bytes, packets arrive
300 ns apart. Therefore, an initial τ of 2-10× of this value
is small enough to detect microbursts and large enough not
to miss consecutive packets from flows. To ensure that τ is
not affected by the network configuration and the internal
characteristics of the workloads, we repeat our measurement
with a wide range of values for τ.

3 Approaches to measuring traffic bursts

In this section, we provide a brief background on host net-
working and present the design space of burst measurement
frameworks before discussing Valinor in §4.

4The prediction methods span diverse domains such as regression theory,
neural networks, and estimation theory [66].

Application

T
C

P
/IP

Qdiscs

 N
IC

 O
ff

loads

Wire

Network Interface

TX Rings

Container
Virtual
Switch
(bridge) Application

Application

Application

App Containers

N
IC

 Sch
edu

ler

Figure 2: Conventional network processing stack architecture
in a containerized Linux deployment.

3.1 Conventional host networking

Conventional network stacks consist of various processing
layers glued together via several optimization techniques. In
Linux, application data is passed to socket interfaces (buffer-
ing in the userspace), and then to the transport protocol pro-
cessing (transport buffers, short queues [20]). Transport pro-
tocols populate sk_buffs,5 a collection of data pointers and
header information. After performing routing, sk_buffs eventu-
ally make their way towards interface qdiscs, the hierarchical
packet schedulers in Linux. qdiscs operate in parallel on all
CPU cores and forward the scheduled sk_buffs towards driver
rings where another layer of buffering is performed before no-
tifying the NIC [65]. Finally, with the conventional offloading
features enabled, the NIC performs scatter/gather [58], seg-
mentation, checksum, and sends the packets on the wire [16].
Figure 2 depicts an overview of the packet’s path through the
network processing pipeline in a Linux host.

3.2 Capturing timestamps

High-resolution timestamping is essential for burst analysis.
Various techniques exist for capturing packet arrivals:

NIC timestamps. Hardware timestamping is avail-
able in all commodity NICs. This feature is supported by the
Linux kernel via ancillary socket data. When a user requests
timestamping through a socket option, the transmission
timestamps are generated in the hardware before sending
the packet on the wire and are eventually sent to the source
socket. Therefore, the application is responsible for polling
the error queue and reading the timestamps. Hardware
timestamping supports most TCP and UDP connections,
however, it suffers from two main shortcomings. First, if the
operating system fails to poll the timestamp registers of the
NIC in time, e.g., in higher packet rates, the timestamp will
be overwritten by that of the next packet. Plus, modifying the
network application to receive timestamps may impact the
application’s workload pattern, and thus must be performed
with extra care.

5sk_buff stands for "Socket buffer" and is used to represent the socket
data that eventually is shaped into the packet. sk_buffs, therefore, may contain
a single or multiple packets.

240 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Modifying networking stack software. To study real-
istic network traffic with higher arrival rates, hardware
timestamping is not ideal due to the need to change the
application internals and high overheads. An alternative
solution is to directly capture the timestamps closer to the
packet processing, e.g., the NIC driver, and either add the
timestamps to the packet payload or re-route them to the
userspace. Alas, accessing and modifying the packet data
requires offloading features such as scatter-gather IO and
Segmentation Offloading to be turned off. Additionally,
timestamps that are at sk_buff granularity may not imitate the
inter-packet gaps on the wire due to the intervention of lower
layers.

eBPF hooks. eBPF offers a series of hooks inside the
Linux kernel and the NIC driver that allows fast execution
of arbitrary data plane logic. An eBPF program consists of
a data plane and a control-plane code targeting a specific
hook on the RX or TX path (XDP hook in the receive path of
NIC driver and traffic control (tc) hook on the TX path of
the qdisc subsystem are two examples). eBPF tc programs
are registered to the kernel using the tc command and are
executed inside a lightweight RISC virtual machine. eBPF
also provides fast data structures that enable shared state
between the kernel and the userspace. This allows us to
perform burst measurements offline with any workload
configuration without modifying the kernel source or packet
payloads.

While eBPF relieves us from directly modifying the packet
processing code in the kernel, it presents two shortcomings.
First, eBPF, similar to the previous solution, works at sk_buff
granularity since packet segmentation is almost always
offloaded to the NIC. Therefore, the eBPF framework can
only measure the gaps between larger chunks of data, not
packets. Additionally, our measurements show that each
eBPF invocation incurs up to 1 µs of delay, mostly due to
memory accesses. While this overhead may be acceptable at
the sk_buff granularity, the framework will lose its visibility
into nanosecond-scale events. Ultimately, eBPF provides
a convenient solution to plug into the network data path
with minor interference. Making it a viable burstiness
probing point on the egress path. We present the design and
implementation of the Valinor eBPF framework, Valinor-H,
in §4.1.

Timestamping in the switch data-plane. A holistic
method to capture the behavior of all host networking
components (including the NIC) is to perform measurements
immediately after transmitting the packets on the wire, i.e., at
the first network hop. Fortunately, the rise of programmable
switch architectures with high-resolution timestamping
enables capturing packet arrival timestamps and sending
this data off the critical communication path for offline
processing. This further ensures zero interference with the

ongoing communication and the ability to track the entire
egress host networking components. We describe the design
of our in-network measurement system, Valinor-N, in §4.2.

Programmable NICs share many of the strengths of
in-network measurements (e.g., timestamping close to the
wire, low overhead, and no interference) but do not provide
visibility into in-network queue occupancies. Plus, our
experience with commodity DPUs [15] shows inconsistencies
in the capabilities of existing devices. General-purpose SoC
NICs [15] are either bound to their slow ARM CPUs or do
not offer per-packet timestamping capabilities on their fast
path. Due to these practical issues as well as the greater
visibility that in-network measurements offer, alongside
its host module, Valinor currently leverages programmable
networks for capturing bursts on the wire.

4 Valinor measurement framework

For designing Valinor, we have three goals in mind:

1. Offering visibility into the host networking traffic, as
well as the shape of the traffic on the wire.

2. Offering high-resolution timestamping of packet arrivals
in line with the increasing link bandwidths and faster
packet processing pipelines.

3. Providing insights on traffic shape and burstiness at dif-
ferent scales and time ranges.

We design and implement Valinor, a measurement frame-
work that consists of two main timestamping prongs to study
packet arrivals from the host and network vantage points.
First, we design Valinor-H to study the host’s view of its
egress traffic by choosing tc eBPF hooks. For capturing the
external picture of traffic burstiness, we design Valinor-N, a
timestamping module for programmable fabric.

4.1 Valinor-H: burst measurement in hosts
Valinor-H offers visibility into the impact of the software
stack on traffic, immediately before the traffic is passed to the
NIC. The insight into the characteristics of the traffic entering
the hardware can help the design of the functions offloaded
to the NIC. This becomes increasingly important as more and
more functions migrate to the NIC, driven by the dire need to
reduce software overhead.6

Figure 3 presents the design of our eBPF framework. Our
framework consists of two separate programs. The data plane
program follows a strict set of C-like instructions that are exe-
cuted at the tc qdisc, every time a sk_buff arrives. We design

6As network speeds increase at a faster pace than CPU speeds, software
overhead is increasingly the performance bottleneck [52]. This has moti-
vated the offloading of various functions such as segmentation, serialization,
scheduling, and even transport protocol processing to the NIC [11, 58, 64].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 241

Network Application

Network Socket

TCP/IP

Queuing disciplines

Valinor-H Data-plane

Valinor-H Control-plane

Netdev

NIC

Linux Virtual
File System

Write handle

Shared
control

data

sk_buff

Packets to the network

Compiler, verifier and libbpf

Per-CPU buffers

Valinor_data {
u64 flow_identifier;
u64 timestamp_ns;
u64 data_size;
}

Read
handle

Poller Threads

Redis
Backend

Flow filters Timestamper Stat Analytics

Figure 3: The eBPF measurement framework’s architecture.
Valinor-h consists of a data plane and a control plane, communi-
cating via lock-free ring buffers.

circular buffers capable of storing up to 216 arbitrary data
entries shared with the control plane. Then, the write handle
determines the correct location for adding new timestamp
entries and updates the data structure. In the control plane,
we initialize the data plane and the circular buffer and start
polling the buffer for new data. The data entries carry the
sk_buff lengths as well as the flow hash and protocol header
information. The read handle, retrieves the timestamp entries
one by one and hands them to the Redis workers for persistent
storage.

One challenge that arises when using a shared data struc-
ture is synchronization between the data plane and the control
plane. This scenario generally needs locking mechanisms to
prevent a race condition, however, the nature of the times-
tamping data, being strictly increasing, lifts this heavy burden.
Therefore, in the control plane, Valinor-H only reads and in-
crements its write handle if the timestamp value is larger than
the previous value read. Another synchronization issue arises
when multiple CPUs attempt to store packet metadata in the
shared memory. Luckily, eBPF offers per-CPU structures to
prevent race conditions in the data plane. The Valinor-H con-
trol plane uses separate threads to read from per-CPU buffers
simultaneously.

With the in-host measurement framework, network oper-
ators can verify the operation of higher-level network pro-
cessing layers on the transmission path of the sender hosts.
Valinor-H, at this stage, can capture the ingress traffic into the
NIC which includes the traffic egress from qdiscs, the trans-
port layer, and the applications. To capture the traffic behavior
in the core of the network, and on a per-packet granularity,
we introduce Valinor-N in the following section.

4.2 Valinor-N: in-network burst measurement
Software-based measurements in the host stack are bound
to the coarse-grained sk_buff arrivals and are implemented
before NIC functions (i.e., ring schedulers and segmentation
offloads). Hence, the captured traffic behavior might not
match that of the wire. To fill this gap, we introduce the
in-network variant of Valinor based on programmable switch

data planes. Valinor-N consists of three pieces: 1) the switch
component, 2) the collector data plane, and 3) the analysis
component. Valinor-N is able to I) capture per-packet arrival
timestamps with zero overhead outside the critical path, II)
collect and store timestamp entries arriving at line rate, and
III) perform various analyses on timestamp data to provide
an in-depth image of the traffic burstiness at different scales.

Valinor Switch. The switch data plane program uses
mirroring and timestamping functionalities available in the
PISA architecture. For every packet that matches user-defined
flow filters, Valinor-N appends the arrival timestamp, queuing
delay, and the size of the original packet along with its
layer l-4 header information to a special IP packet with
a pre-defined Valinor header. The packet is then sent to a
collector server. The server machine, deployed outside the
critical path of the communication between traffic endpoints,
aggregates the timestamp information and performs the
offline analysis.

Timestamp collection. The collector machine features a
userspace packet processing framework based on DPDK
that parses the arrived packets and stores the timestamp
information along with flow metadata into an in-memory
Redis [3] instance. Analysis of the timestamp data is then
performed by querying the data store. Receiving timestamp
packets at line rate and storing them in persistent storage
poses several scalability challenges to the design of the
collector component. To ensure that software can drain NIC
buffers at line rate, we designate multiple worker threads
to read and process the incoming packets. After parsing
timestamp headers, the worker threads extract the timestamp
data and send them to additional worker threads that are
responsible for communicating with Redis. The stored
metadata is then retrieved by the analysis framework to
perform burst analysis using timestamps.

Valinor-N’s Redis workers issue batched commands during
idle periods to minimize interference with packet processing
workers. We use Redis sorted sets to store timestamp entries
sorted by arrival times since the packets that arrive at
the collector may have a different order from the packets
that arrive at the Valinor-N switch data plane. We use 1G
hugepages and large memory pools to ensure that timestamp
packets are not dropped at higher rates (Up to 40 Gbps in our
testbed).

Offline timestamp processing. The last piece of Vali-
nor’s design is the offline timestamp analysis framework
that queries the Redis data structures and performs analysis
on timestamp data. Our framework is able to report various
statistics on traffic burstiness by measuring the packet
inter-arrivals. For example, in the next section, we report
our findings on the scaling behavior, caused by various
packet processing components in the sender machine. We

242 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Server Machine

Collector Machine

Traffic generator machine
(client)

Programmable
Switch

Valinor-H
eBPF framework

N
I
C

Iperf

Containers
Iperf

Container
Iperf

Container
Network

Applications

N
I
C

N
I
C

 Network Load
generators

Valinor-N timestamp
collector

Data Analysis Machine

Valinor data analysis
framework

Cloud Storage

Software
Switch

Valinor-
H

Control
plane

Valinor-N
 In-network
Framework

Figure 4: Deployment overview of Valinor framework.

report actual burst sizes in bytes, inter-arrival distributions,
queueing delays, and various burstiness time series analyses.
We implement the offline processing framework in Python.

5 Findings

We deploy Valinor to analyze the burstiness of various work-
loads and configurations. Our results show:

• Host networking, largely overlooked in prior self-
similarity studies, plays a major role in forming and
suppressing bursts.

• Lower layers of the network processing stack (such as
segmentation offloading and NIC scheduling) compro-
mise the effectiveness of software-based traffic shaping
and active queue management solutions.

• Software pacing has major limitations. For workloads
with a mixture of short and large flows, lower layers
of the network processing stack mask the impact of
software-based traffic pacing. For workloads with very
short flows, software pacing can blunt bursts but leads
to a major increase in RTT and significant throughput
reduction.

• NIC driver buffer sizing and process scheduling can re-
shape bursts.

Experiment setup. Figure 4 demonstrates how Valinor
framework components come together in a basic deployment.
For evaluating Valinor, we use a wide range of workload
distributions. We deploy Iperf instances alongside Homa’s
open-source load generator [47] inside Linux containers and
configure the workload generators to simulate different trace-
driven workload patterns including Facebook’s ETC, Google
search, aggregated Google data center, DCTCP’s web search,
and Facebook’s intra-cluster and intra-rack Hadoop traces
[9,12,47,60]. Unless stated otherwise, all application contain-
ers are connected via an OVS [2] virtual bridge to the external
interface. Our testbed consists of servers featuring Intel Xeon
E5-2620 v4 processors, 64 GB of memory, and Intel XL710
40G NICs. We connect the servers via a Wedge-100 Tofino
switch running Valinor-N timestamping framework. We de-
ploy Valinor-H on Linux kernel 5.17 with the latest version of
libbpf and iproute2 installed. The collector machine features

Setting Default Value Parameter Range
Transport TCP cubic cubic, reno, BBR, DCTCP, Homa
Qdisc fq fq, fq_codel, pfifo_fast, HHF, SFQ
Byte Queue Limit Dynamic [100B-10MB]
MTU 1500 1500, 9000
Process scheduler CFS CFS, FIFO, Microquanta

Table 1: Default system configuration and tested parameter
ranges.

100 101 102 103 104 105 106 107 108
Flow Size (B)

10−4

10−3

10−2

10−1

100

CC
DF

α= 1.05
α= 1.15
α= 1.25
α= 1.35
α= 1.65
α= 1.95
exponential

(a) Synthetic workload

100 101 102 103 104 105 106 107 108
Flow Size (B)

10−5

10−3

10−1

CC
DF FB ETC

Google Search
Google DC
FB Hadoop
Web Search

(b) Trace-driven workload

Figure 5: Two sets of workloads used throughout the experi-
ments. The figures show the complementary cumulative distri-
bution functions (CCDFs) of flow sizes.

Valinor’s userspace data plane based on DPDK v20. We dis-
able idle states on all servers and set the frequency governor
to performance to minimize the interference of power-saving
features on networking performance. The default settings for
the evaluated components are summarized in Table 1.

Finally, to calculate microburst lengths, since we use
40Gbps links, we set the burst inter-arrival threshold to 500ns
for the presented results (see §2). Valinor also computes mi-
croburst lengths for other threshold settings (ranging from
5ns to 10µs). While the threshold setting impacts the size and
quantity of observed bursts, we did not notice any difference
in relative burstiness when comparing multiple cases.

5.1 Revisiting structural causality

Where does traffic burstiness come from? Prior work [23, 53,
54] shows that the heavy-tailed property of the flow size dis-
tribution directly determines link-level traffic self-similarity,
a phenomenon that is sometimes referred to as structural
causality. Heavy-tailed flow size distributions are shown to be
the sufficient condition for generating scale-invariant bursti-
ness and the network stack is shown to play a negligible
role in self-similarity [23, 53]. For instance, for traffic gen-
erated by TCP Reno for a heavy-tailed Pareto file size dis-
tribution with the shape parameter α, there exists an almost
linear relation between H and α: the estimated H is close to
(3−α)/2.7 Heavier tailed distributions (i.e., α close to 1) are
more strongly self-similar (H closer to 1). The self-similarity
of traffic with heavy-tailed flow sizes is in contrast to the lack

7The H = (3−α)/2 relation shows the values of H predicted by the a
theoretical ON/OFF model in the idealized case corresponding to a frac-
tional Gaussian noise process with independent traffic sources with constant
ON/OFF amplitude [54]. This captures an ideal self-similar process.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 243

102 104 106 108
Burst length (B)

10−6

10−4

10−2

100

CC
DF

α= 1.05
α= 1.15
α= 1.25
α= 1.35
α= 1.65
α= 1.95
exponential

(a) Simulation microburst sizes

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95 ex
p

Distribution (Pareto alpha / exponential)

0.5

0.6

0.7

0.8

0.9

1.0

Es
tim

at
ed

 H

R/S
(3 - alpha)/2

(b) Simulation Hurst exponents

102 104 106 108
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(c) In-host microburst sizes

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95 ex
p

Distribution (Pareto alpha / exponential)

0.5

0.6

0.7

0.8

0.9

1.0
Es

tim
at

ed
 H

(d) In-host Hurst exponents

102 104 106 108
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(e) In-network microburst sizes

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95 ex
p

Distribution (Pareto alpha / exponential)

0.5

0.6

0.7

0.8

0.9

1.0

Es
tim

at
ed

 H

(f) In-network Hurst exponents

Figure 6: Microburst sizes and Hurst exponents of different
synthetic workloads for simulated and testbed experiments. The
interference of host networking elements is visible in the differ-
ence between the three scenarios.

of correlation structures for short-tailed flow size distributions
such as an exponential distribution (H close to 0.5).

We first replicate this result using OMNET [1], an exten-
sively used simulator [8, 14, 47], and observe an almost lin-
ear relation between α and H—consistent with the findings
of prior work [53], the estimated H values closely track the
(3−α)/2 line. In a setup where the two simulated servers are
connected via a network switch, we establish 32 long-running
TCP connections and use Pareto and exponential flow size
distributions (Figure 5a shows the flow size distributions). To
achieve a target offered load of 6 Gbps, flows are initiated ex-
ponentially with a mean interarrival time of 87µs. We repeat
each experiment five times. In the box and whisker plots, each
box depicts the 1st and 3rd quartiles, the whiskers represent
the upper and lower extremes, the circles are outlier points,
and the orange dashes show the median Hurst estimates. Fig-
ure 6b shows that heavy-tailed flow size distributions generate
self-similar traffic. Figure 6a shows that these distributions
also result in larger microbursts with heavier tails.

Next, we repeat the above scenario in a testbed, using Vali-
nor to analyze burstiness after the software stack and on the
wire. Using Valinor-H for in-host analysis, we observe that

101 103 105 107
Burst length (B)

10−6

10−4

10−2

100

CC
DF

FB ETC
Google Search
Google DC
FB Hadoop
Web Search

(a) Simulation microburst sizes

101 103 105 107
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(b) In-network microburst sizes

101 103 105 107
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(c) In-host microburst sizes

FB
ETC

Google
Search

Google
DC

FB
Hadoop

Web
Search

0.0

0.2

0.4

0.6

0.8

Hu
rs

t E
st

im
at

e

Simulations
Testbed network

Testbed eBPF

(d) Estim. Hurst exponents

Figure 7: Self-similarity and microburst sizes vary across work-
loads and between testbed and simulation results. Positioned be-
fore the NIC, Valinor-H captures a smoother snapshot of traffic
than in-network measurements.

the impact of the heavy-tailed distributions on self-similarity
is barely visible at this stage with distributions with varying α

parameters behaving similarly and close to a light-tail expo-
nential distribution (Figure 6d), e.g., the software stack greatly
diminishes the degree of self-similarity of heavy-tailed Pareto
distribution with α = 1.05 from H = 0.88 in the simulations
(Figure 6b) to H = 0.64 at the eBPF hook (Figure 6d). We
observe a similar effect on the microburst size distributions
that are much more similar across different workloads and
have shorter tails (Figure 6c).

We next use Valinor-N for analyzing traffic as observed
on the wire. The patterns again change in interesting and
non-uniform ways. Similar to in-host measurements, the in-
network measurements indicate that the influence of flow size
on self-similarity is lower than the simulated experiments,
e.g., H = 0.80 and H = 0.78 for α = 1.05 and α = 1.65, re-
spectively, on the wire in the testbed experiments compared
to H = 0.88 and H = 0.63 for the same workloads in the
simulated experiments (Figure 6f). The more amplified long-
range burstiness in the network compared to in-host experi-
ments is due to the intervention of driver and NIC functions
(such as segmentation offloading scheduling) that reside be-
low Valinor-H. We investigate the roles of these functions in
§5.3. Figure 6e shows that the flow size distribution has a rel-
atively subdued impact on the ultimate size of microbursts on
the wire once the traffic traverses the host networking stack.

Summary: The shape of the traffic in the testbed experi-
ments (in-network and in-host) is substantially different com-
pared to the simulated experiments with identical setups. This
suggests that host networking elements (e.g., qdiscs, process
schedulers, and NIC schedulers, not modeled in common sim-
ulators) alter burstiness.

244 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.2 Impact of workloads

Next, we repeat the above experiments (using both the simu-
lator and the testbed) by replaying the traces of five classes
of workloads from [47]: (1) Facebook’s ETC workload, (2)
Google search workload, (3) Google’s aggregated internal
data center workload, (4) Facebook’s Hadoop workload, (5)
DCTCP’s web search workload [9]. Figure 5b shows the flow
size distributions of these traces. Similar to the previous ex-
periments, in simulations, there exists a direct correlation
between the flow size distributions, self-similarity, and the
burst lengths (Figure 7). In the testbed, however, the differ-
ence in burst lengths starts to fade away as host networking
components come into play. We also observe that the scal-
ing behavior varies substantially across different workloads
and between the simulated and testbed experiments. Hurst
coefficients are larger for the more heavy-tailed distributions
in the network but mostly homogeneous before reaching the
driver. For example, the self-similarity estimates for the ETC
workload (p99th flow size = 1.8 KB), the Google DC work-
load (p99th flow size = 31 KB), and the web search workload
(p99th flow size = 27 MB) are 0.57, 0.75, and 0.85, respec-
tively for in-network measurements and 0.50, 0.57, and 0.65,
respectively for in-host measurements.

5.3 Sources and implications of burstiness

The previous section shows the aggregate impact of host
networking elements on bursts. In this section, we measure the
impact of each element, starting with the transport layer and
moving to the elements that operate below the TCP/IP stack
(e.g., qdiscs) and in parallel to it (e.g., the process scheduler).

5.3.1 Transports and congestion control

Starting with transports, we evaluate four TCP congestion
control variants under a mixture of background traffic and a
small-scale incast traffic pattern where two sender machines
target one receiver. The background traffic consists of two
iperf flows each taking 18Gbps of bottleneck link bandwidth.
The incast traffic follows the map-reduce workload size distri-
bution. For this experiment only, we run both the workload
generators and the applications outside the container envi-
ronment. Figure 8a shows how TCP Cubic [28], TCP Reno,
DCTCP [9], and BBR [17] react to queue buildups in the
network. Compared to Reno, TCP Cubic (the default con-
gestion control setting in recent versions of Linux kernels)
uses a more aggressive function for increasing its congestion
window upon receiving acknowledgments. Therefore, it ex-
periences larger queueing oscillations than Reno. BBR uses
round-trip times to adjust its transmission window and varies
its pacing rate to keep the in-flight bytes near its estimated
bandwidth-delay product. Thus, it experiences a more steady
queueing behavior while trying to keep the buffer half full.

0 600 1200 1800 2400 3000
Time (μs)

0

100

200

De
la

y
(μ

s)

Cubic Reno DCTCP BBR

(a) Buffer occupancy under Incast

0

200000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

) Cubic - 1s range Reno - 1s range DCTCP - 1s range BBR - 1s range

0

20000

40000

Th
ro

ug
hp

ut
 (M

bi
ts

) Cubic - 100ms range Reno - 100ms range DCTCP - 100ms range BBR - 100ms range

0 20 40 60 80 100
Time bin

0

2000

4000

6000

Th
ro

ug
hp

ut
 (M

bi
ts

) Cubic - 10ms range

0 20 40 60 80 100
Time bin

Reno - 10ms range

0 20 40 60 80 100
Time bin

DCTCP - 10ms range

0 20 40 60 80 100
Time bin

BBR - 10ms range

(b) Timeseries of packet arrivals

cubic reno DCTCP BBR0.00

0.25

0.50

0.75

1.00

Hu
rs

t E
st

im
at

e

(c) H estimates for TCP variants

102 104 106
Burst length (B)

10−4

10−2

100

CC
DF

Homa TCP cubic

(d) Homa vs Cubic bursts

Figure 8: (a) Valinor captures the in-network buffer occupancy
for different transport protocols. (b), (c) Timeseries and H coef-
ficients show that burstiness (at both short and long timescales)
varies significantly across transport protocols. (d) A receiver-
driven transport, Homa, is less bursty than TCP Cubic.

Finally, DCTCP uses explicit congestion notifications from
switches to maintain consistently low queuing.

Figure 8b presents the throughput timeseries of the four
congestion control variants at different timescales followed
by their Hurst exponent estimates in Figure 8c. With the help
of pacing and RTT estimations, BBR is able to maintain a
steady throughput and a non-bursty traffic shape, reflected
by H = 0.40. On the other hand, Cubic’s less conservative
transmissions incur a self-similarity estimate of 0.60.

Finally, we deploy Homa’s kernel module [47] as a rep-
resentative implementation of receiver-driven transports in
the Linux kernel. In receiver-driven transports, the destina-
tion initiates more packets by issuing grant control packets
for the sending host. In our setup, Homa sends the first 90
KB of each flow unscheduled as an attempt to initiate the
communication and retrieve the path’s congestion status. The

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 245

102 103 104 105 106
Burst length (B)

10−5

10−4

10−3

10−2

10−1

100

CC
DF pfifo_fast

SFQ
fq
HHF
fq_codel

(a) SQ w/out Offloading

102 103 104 105 106
Burst length (B)

10−6

10−5

10−4

10−3

10−2

10−1

100

CC
DF HHF

fq_codel
pfifo_fast
fq
SFQ

(b) SQ w/ Offloading

102 103 104 105 106
Burst length (B)

10−6

10−5

10−4

10−3

10−2

10−1

100

CC
DF HHF

pfifo_fast
fq
SFQ
fq_codel

(c) MQ w/ Offloading

Figure 9: Burst behavior of Linux queueing disciplines in the absence and presence of offloading (Offloading) and NIC scheduling
(SQ=single-queue, MQ=multi-queue). Both MQ and TCP segmentation offload compromise the intended shape of software packet
scheduling.

following packets are then scheduled using grants. Due to
its limited implementation scope, the Homa module is not
able to achieve line rate performance. Therefore, we limit
our observation to the map-reduce workload tuned down to
6 Gbps offered load. Figure 8d presents the burst lengths for
Homa and TCP Cubic as observed by Valinor-H eBPF frame-
work. We observe that the p99 burst length under Homa is 9×
lower than Cubic which might reflect two facts. First, unlike
Cubic which sends up to 64 KB long data chunks, Homa’s
prepared sk_buff chunks are mostly as large as its MTU (9
KB in this experiment). This is also due to the fact that Homa
kernel module is not making use of TSO because of certain
Intel NIC limitations. Secondly, Homa uses pacing to keep
the NIC fully saturated in its Linux implementation which
further controls the spacing between its transmissions [52].
Combined, these factors result in Homa’s less bursty behavior
compared to TCP Cubic, not just at small timescales (Fig-
ure 8d) but also at large timescales (H = 0.54 for Homa vs.
0.62 for Cubic). However, we suspect a different behavior
from Homa on different setups that can make use of NIC
offloading.

5.3.2 Software switching

Linux leverages queueing disciplines (qdiscs) to enforce
scheduling among segments originating from different ap-
plications in the system. If generic segmentation offload is
not in use, qdiscs are the last software components to decide
the order of data entities on NIC’s FIFO rings. We study five
representative queueing disciplines implemented in Linux:
1) Fair queue (fq) is the default scheduler in recent Linux
kernels and is mainly used to enforce pacing on a per-flow
(per socket) basis. The appropriate pace among flows is either
explicitly enforced via socket options, or is determined by
the TCP congestion control (e.g., BBR). By default, fq uses
deficit round-robin with a default quantum of 3028 bytes to
drain flow queues, with an initial quantum equalling TCP’s
initial 10-packet window.
2) fq_CoDel. The controlled delay (CoDel) algorithm, com-
bined with fair queue, enforces CoDel on per-flow sub-queues.
CoDel, a more recent AQM algorithm, uses packet sojourn

time inside each flow queue to detect slow flows and prevents
the queueing delay to exceed a user-specified target by drop-
ping excess traffic.
3) Stochastic Fair Queueing (SFQ) extends flow-queuing
with random-early marking/drop semantics with small default
queue sizing to control the queueing delay. Similar to fq, it
uses round-robin scheduling on per-flow sub-queues. SFQ
uses a default deficit of one MTU.
4) pfifo_fast is a First-In First-Out priority queue. Higher
priority packets are distinguished by their Type of Service
(TOS) fields in IP headers which are set by upper layers.
5) Heavy Hitter Filter (HHF) attempts to identify and sep-
arate short flows from heavy hitters to prevent head-of-the-
line blocking and increased delays for latency-sensitive flows.
Such flows are given a higher deficit compared to heavy hitters
in each transmission round.

We study qdiscs under three scenarios: First, to see the
actual contribution of qdiscs to the traffic shape, we disable
segmentation offload and serialization offload and limit the
number of the transmit rings to one (single-queue). Segmenta-
tion is the process of breaking large sk_buffs into MTU-sized
segments and is usually deferred to the last processing stages
to reduce CPU utilization and improve flow performance. Seg-
mentation offload can either be performed in the hardware
(TCP Segmentation Offload or TSO) or just before passing the
data to the hardware (Generic Segmentation Offload or GSO).
Additionally, in a multi-queue architecture, the network stack
communicates to the NIC via separate ring buffers pinned to
each CPU core to reduce inter-core communication overheads
and improve throughput. When enabled, a (reportedly, round-
robin [65]) packet scheduler in the hardware will decide the
order in which packets are drained from ring buffers.

Initially, we run 1000 Iperf instances spread across 200
containers, simulating the map-reduce workload on the single-
queue server without offloading. Figure 9a demonstrates how,
in isolation, per-flow queuing can significantly shorten the
size of egress bursts. Techniques such pfifo_fast, and HHF
use one large buffer containing packets from all egress flows,
allowing multiple data segments of one flow to be enqueued
simultaneously. On the other hand, per-flow queueing allows

246 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SQ SQ
+ offloading

MQ
+ offloading

0.0

0.2

0.4

0.6

0.8

1.0
Hu

rs
t E

st
im

at
e

pfifo_fast fq fq_codel HHF SFQ

Figure 10: Hurst estimates for different queueing disciplines.

the scheduler to interleave among packets of different flows,
primarily to maintain fairness and prevent head-of-the-line
blocking [62].

To verify the impact of round-robin scheduling on blunting
bursts, we repeat the same experiment with fq qdisc, increas-
ing the per-flow deficit from one MTU (1514 bytes) to 16
MTUs, and observe a linear correlation between fq deficits
and burst lengths. For example, the 90th percentile of burst
lengths under a deficit of 16 packets is increased to 25 KB
from 13 KB under that of 8 MTUs (92% increase).

While qdisc is the last layer to perform packet scheduling
in the software, the traffic ultimately often passes through
segmentation offloading and NIC scheduling before reaching
the wire. Is the impact of qdiscs on the wire preserved after
the interaction with these lower layers? To investigate, we en-
able all the offloading features and perform our measurements
again. Figure 9b demonstrates the impact of offloading seg-
mentation and serialization on lengthening the egress bursts.
With TSO at work, qdiscs no longer serve packets. Instead,
they schedule between dynamically sized sk_buffs. Hardware
offloading then helps increase the throughput by nearly 50%
for all cases while moving the buffering to the hardware where
large segments are broken into MTU-sized packets and sent
on the wire. This significantly undermines qdisc’s decisions
on shaping the traffic. With offloading in action, the median
burst sizes for fq, fq_codel, and pfifo_fast are, 132 KB, 127
KB, and 127 KB, respectively. While without offloading, these
systems experienced a median burst length of 76 KB, 76 KB,
and 172 KB8, respectively.

To further ruffle the output of qdiscs, we enable the default
multi-ring root qdisc which assigns a separate qdisc instance
to each CPU core and enables the NIC scheduler to perform
last-level scheduling on transmit rings (multi-queue architec-
ture). Figure 9c presents the outcome. With NIC scheduling
and segmentation offloading at work, the shape of the qdisc’s
outgoing traffic is barely preserved on the wire. That is be-
cause, NICs are equipped with internal round-robin sched-
ulers to drain the software rings, further reducing the chances
of creating long bursts. Finally, Figure 10 demonstrates the
estimated Hurst exponents for the three scenarios. Without

8pfifo_fast combined with offloading can exacerbate burstiness as both
layers are prone to creating large, uncontrolled bursts.

segmentation offloading, the degree of burstiness is consid-
erably reduced (H < 0.5) for all but one case. Only pfifo_fast
which does not offer any form of fair queueing suffers from
heavier burstiness (H = 0.8) under the single-queue scenario.
Implications of disabling offloading and multi-ring
scheduling. Apart from burstiness, both offloading and NIC
scheduling have a profound impact on flow performance met-
rics. Our measurements demonstrate that disabling TCP seg-
mentation offload for a workload consisting of 1000 same-
size flows results in 71% decline in median flow throughput,
46% increase in median packet RTTs, and 3× increase in
sender CPU utilization. Therefore, disabling offloading, in
order to enable software control is not always a viable option.
Multi-queue NICs are also considered a quick solution with
potential side effects. While enabling multi-queue reduces
resource contention, they can increase response times and are
usually fixed-function [65].

5.3.3 Software pacing

The above observations raise another important question on
host networking design decisions. While many congestion
control techniques [7, 17, 37, 47, 57] advocate for pacing in
order to achieve accurate control over in-transit data, existing
pacing implementation in the Linux kernel is deeply away
from the wire, at fq qdisc. Are qdiscs a suitable place for
enforcing pacing? To investigate, we repeat the map-reduce
(M/R) workloads on the server with both offloading and NIC
scheduling enabled and observe that for workloads with large
flows (intra-rack M/R), pacing doesn’t have a significant im-
pact on burstiness, and for those with short flows (intra-cluster
M/R), pacing results in throughput reduction. Overall, our re-
sults highlight the limitations of software pacing for data
center workloads.

Concretely, we configure fq to pace 200 flows based on their
fair share of bandwidth (200 Mbps), and gradually increase
the portion of the flows that are counted as heavy hitters from
0% (no flow is paced) up to 100% (all flows are paced). Figure
11 compares the bursts for (a) workload with mostly large
flows and (b) workload with a mix of small and large flows.
In the former workload, we observe that while the impact of
pacing ratio is less evident, pacing allows for better bandwidth
allocation and the line rate is preserved for all rows. On the
other hand, in the latter workload, the throughput is reduced
by 22% under pacing. This is because short flows are not able
to make up for the freed bandwidth that pacing creates. We
also compare packet RTTs and find that pacing large heavy-
hitters helps reduce median RTTs by two orders of magnitude
as short flows experience less head-of-the-line blocking. This
behavior changes in the intra-cluster workload as we do more
pacing, as the increased RTT of paced flows drives the overall
median RTT up by 160%. Further details on the theoretical
analysis of burstiness under software pacing can be found in
Appendix §B.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 247

1,
58

0-
1,

93
7

1,
93

7-
2,

37
5

2,
37

5-
2,

91
3

2,
91

3-
3,

57
2

3,
57

2-
4,

38
1

4,
38

1-
5,

37
2

5,
37

2-
6,

58
8

6,
58

8-
8,

07
9

8,
07

9-
9,

90
8

Burst length (B)

0%
20%
40%
60%
80%

100%

Pa
ce

d
flo

ws
 %

100

101

102

103

104

105

106

of

 b
ur

st
s

0 20 40 60 80 10
0

Paced flows %

0.1

1

10

60

Bo
xe

s:
 R

TT
 (m

s)

1

2

3

4
5

Lin
e:

 T
hr

ou
gh

pu
t (

M
pp

s)

(a) Intra-Rack M/R

66
8-

1,
48

3
1,

48
3-

3,
29

4
3,

29
4-

7,
31

7
7,

31
7-

16
,2

51
16

K-
36

K
36

K-
80

K
80

K-
17

8K
17

8K
-3

95
K

39
5K

-8
78

K

Burst length (B)

0%
20%
40%
60%
80%

100%

Pa
ce

d
flo

ws
 %

100

101

102

103

104

105

of

 b
ur

st
s

0 20 40 60 80 10
0

Paced flows %

0.1

1

10

60

Bo
xe

s:
 R

TT
 (m

s)

1

2

3

4
5

Lin
e:

 T
hr

ou
gh

pu
t (

M
pp

s)

(b) Intra-cluster M/R

Figure 11: Software pacing is workload dependent. For work-
loads consisting of large flows, its impact on smoothing bursts
is unmade by lower layers. For workloads with both short and
long flows, it reduces throughput.

5.3.4 Byte Queue Limits

Linux kernel employs buffers at various stages of network
stack processing to streamline the data movement among
various components. The NIC driver queue is the last buffer-
ing stage before triggering the hardware. A fixed-size driver
queue (a.k.a., TX ring) would ensure that the NIC can always
find ready-to-send packets without communicating with the
OS. However, due to the unpredictable size of packet buffers
in the Linux kernel (ranging from 64B up to tens of kilobytes),
the queueing time will considerably add to the overall RTT of
packets. To prevent that, OS developers propose a dynamic
bound on TX rings that adjusts the limit based on NIC’s trans-
mission rate and the availability of data in the TX rings [29].
To that end, after every transmission, BQL uses time intervals
to check whether the NIC was starved in previous transmis-
sions. If the NIC was not fully utilized during any interval
while data was available at higher layers, the BQL algorithm
increases the limit on the TX ring. Otherwise, if the NIC was
fully busy, the BQL is decreased to reduce the queueing over-
heads. Enforcing smaller queue limits also ensures that the
main queuing occurs at the qdisc-level where more advanced
queuing disciplines can be employed.

Apart from Linux, NIC buffer sizing is also an important
consideration for kernel-bypass runtimes that are less inclined
to distribute TX processing among multiple ring buffers [36,
51]. Figure 12 demonstrates the impact of driver queue size
on performance and burstiness. Intuitively, as we increase the
size of the driver’s buffer, we greatly increase the queueing
time experienced by egress traffic, therefore, preventing the
bursts of packets from arriving at the NIC. On the other hand,
a larger driver queue is more prone to creating longer bursts as

13
3-

35
5

35
5-

95
1

95
1-

2,
54

4
2,

54
4-

6,
80

4
7K

-1
8K

18
K-

49
K

49
K-

13
0K

13
0K

-3
48

K
34

8K
-9

31
K

Burst length (B)

10
100

1,000
10,000

100,000
1,000,000

10,000,000
Dynamic

BQ
L

va
lu

e
(B

)

100

102

104

106

of

 b
ur

st
s

(a) Burstiness heatmap

103 105 107 109
Burst length (B)

10−4

10−2

100

CC
DF

default
10
100
1000
10000
100000
1000000
10000000

(b) Microburst CCDF

Dyn
am

ic 10
B

10
0B 1k

B
10

kB
10

0k
B

1M
B

10
MB

Buffer size

0
1
2
3
4
5
6
7
8

Fl
ow

 G
oo

gp
ut

 (G
bp

s)

(c) Flow goodput

Dyn
am

ic 10
B

10
0B 1k

B
10

kB
10

0k
B

1M
B

10
MB

Buffer size

0

200

400

600

800

1000

Pa
ck

et
 R

TT
 (μ

s)

(d) Packet RTTs

Figure 12: Larger BQL settings produce longer bursts. Also,
the dynamic BQL algorithm presents a similar behavior to a
large static ring size.

it is more susceptible to triggering segmentation offload (99th

percentile burst length for 1 KB buffers and 1 MB buffers
are 68 KB and 9 KB, respectively, but 99.99th lengths shift
to 68 KB and 86 KB, respectively). The microburst length
distributions in Figure 12b further suggest that the default
dynamic buffer sizing algorithm tends to maintain larger ring
buffers which leads to longer bursts.

5.3.5 Linux process scheduling

Apart from the network stack, the operating system features
various internal components that might change the traffic
shape. For example, Linux offers a range of process schedul-
ing classes suited for various use cases:
Completely Fair Scheduler (CFS) is the default process
scheduling class in Linux which aims at achieving fairness
among active processes in the system while maintaining re-
sponsiveness for I/O-bound applications. when running a mix
of compute-intensive and network-intensive workloads, CFS
attempts to proportionally share the CPU among workloads
leading to longer response times [39].
Real-time scheduler supports two policies: Round-robin and
First-In-First-Out (FIFO) scheduling. Both policies give strict
priority to I/O-bound applications (if configured properly).
By default, the round-robin policy preempts high-priority pro-
cesses every 100ms while the FIFO policy is non-preemptive.
We also deploy Microquanta [46] a semi-real-time scheduling
class with microsecond time precision.

Valinor’s picture of traffic burstiness is consistently similar
when the network application is running alone as Hurst esti-
mates vary between 0.51 and 0.54 for all the schedulers. How-

248 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

2500

5000

7500

10000

pa

ck
et

s/
Ti

m
e

Un
it CFS +BG - 1s range FIFO +BG - 1s range CFS - 1s range

0

250

500

750

1000

pa

ck
et

s/
Ti

m
e

Un
it CFS +BG - 100ms range FIFO +BG - 100ms range CFS - 100ms range

0

25

50

75

100

pa

ck
et

s/
Ti

m
e

Un
it CFS +BG - 10ms range FIFO +BG - 10ms range CFS - 10ms range

Figure 13: Impact of process scheduling on traffic bursts.

ever, when the background process is introduced, a course-
grained process scheduler like CFS must enforce fair CPU
time sharing, resulting in the leap of its H estimate to 0.74
while other schedulers are able to schedule the network ap-
plication’s threads in short timescales and result in smooth
transmissions. To validate the self-similarity estimates, we
plot the time series of CFS (running only the network work-
load), CFS+BG (running the network workload alongside
background threads), and the real-time FIFO scheduler run-
ning both applications (FIFO+BG) in Figure 13. The self-
similar nature of the CFS+BG scenario is noticeable in the
leftmost column as CFS causes the network packets to be
sent in larger chunks, causing intermittent but larger bursts
at short time spans.

6 Related work

Traffic self-similarity. A large group of studies rely on quan-
tifying bursts by using the notion of self-similarity in the time
series [5, 24, 38, 50, 53–55] but overlook the role of host net-
working on shaping bursts. Valinor leverages the theoretical
frameworks developed in these works to uncover the impact
of host networking on bursts.
Detecting bursts. A growing number of proposals try to iden-
tify what flows are bursty [18, 19, 40, 48] but they cannot
identify why those flows are bursty. Crucially, they cannot
identify the elements on the traffic path that contribute to or
blunt traffic burstiness. Frameworks such as BurstRadar [33]
and SynDB [34] rely on buffer congestion or external triggers
to capture packet arrivals, which prevents them from capturing
long-range dependency patterns in host egress traffic.

Similar to Valinor, a few proposals study the causes of
bursts. Some papers pinpoint transport protocol internals
such as segmentation, slow start, bulk acknowledgments, and
fast re-transmit as potential sources of bursts at the source
level [10, 31, 69]. Another category of works study the im-
pact of offloading techniques like segmentation offload on
microbursts [35, 72]. Specifically, [35] investigates the im-
pact of application behavior, operating system syscalls, and

NIC offloading features on both sender and receiver hosts
on burstiness and further show that burstiness imposed by
TCP segmentation offload can marginally be controlled by
configuring the kernel’s maximum GSO size. Compared to
these studies, Valinor has a broader scope; it studies the im-
pact of various host elements (not just transport protocols),
the effects of low-level offloading mechanisms on software
scheduling and pacing, and bursts at various timescales (not
just microsecond-scale). Finally, [25] introduces Millisam-
pler, a host-centric burst characterization tool to study the im-
pact of service placement on buffer contention and packet loss.
Valinor uses its switch framework to detect synchronized flow
arrivals at points of interest and unlike Millisampler which
operates at sk_buff granularity, can attribute bursts at packet
resolution. We believe that Valinor and Millisampler com-
bined can assist data center network operators in accurately
detecting the sources of bursty traffic at various timescales.
Burst control. A large and growing number of proposals
[9, 27, 32, 37, 41, 43, 44, 59, 61, 62, 70] focus on controlling
bursts, e.g., via rate-limiting at the switch [44], fine-grained
pacing [61], and high-precision transport protocols [37, 41].
These studies are orthogonal to Valinor. Understanding the
temporal properties of bursts and the causal mechanisms con-
tributing to burstiness will benefit the design of effective burst
control mechanisms.

7 Conclusions

We presented the design of Valinor, a burst measurement
framework that consists of an in-host eBPF framework and an
in-network timestamping module for programmable switches.
Valinor can capture burstiness at different scales (ranging from
nanoseconds to seconds). We use Valinor to demonstrate how
host networking elements affect bursts. We show that the scal-
ing behavior of traffic at long timescales and burstiness at fine
timescales vary significantly across different host networking
configurations (process schedulers, congestion control algo-
rithms, single vs. multi-queue NICs, etc.) and across different
classes of practical workloads. In particular, we show the
impact of hardware-resident functions (e.g., NIC schedulers)
that are largely overlooked in characterizing burstiness. This
variability of burstiness and the implications of bursts on per-
formance underscore the need for measurement systems to
perform periodic burst analysis.

Acknowledgements

We would like to thank our shepherd, Srinivas Narayana, and
the anonymous NSDI reviewers for their insightful feedback.
We would also like to thank John Ousterhout for his input and
feedback, and Xin Jin for his equipment support. This project
was partially supported by an Intel Fast Forward award, a Face-
book faculty research award, and NSF CNS grant 1910821.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 249

References

[1] Omnet++ simulator. https://omnetpp.org/, 2022.

[2] Open vswitch. http://openvswitch.org/, 2022.

[3] Redis: an open source, in-memory data structure store.
https://redis.io, 2022.

[4] ABDOUS, S., SHARAFZADEH, E., AND GHORBANI,
S. Burst-tolerant datacenter networks with Vertigo. In
CoNEXT (2021).

[5] ADAS, A., AND MUKHERJEE, A. On resource man-
agement and qos guarantees for long range dependent
traffic. In INFOCOM (1995).

[6] ADDIE, R. G., ZUKERMAN, M., AND NEAME, T. Frac-
tal traffic: measurements, modelling and performance
evaluation. In INFOCOM (1995).

[7] AGGARWAL, A., SAVAGE, S., AND ANDERSON, T. Un-
derstanding the performance of TCP pacing. In INFO-
COM (2000).

[8] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM,
V. T., MATUS, F., PAN, R., YADAV, N., AND VARGH-
ESE, G. CONGA: distributed congestion-aware load
balancing for datacenters. In SIGCOMM (2014).

[9] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP).
In SIGCOMM (2010).

[10] ALLMAN, M., AND BLANTON, E. Notes on burst miti-
gation for transport protocols. SIGCOMM CCR (2005).

[11] ARASHLOO, M. T., LAVROV, A., GHOBADI, M., REX-
FORD, J., WALKER, D., AND WENTZLAFF, D. En-
abling programmable transport protocols in high-speed
NICs. In NSDI (2020).

[12] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG,
S., AND PALECZNY, M. Workload analysis of a large-
scale key-value store. In SIGMETRICS (2012).

[13] BENSON, T., AKELLA, A., AND MALTZ, D. A. Net-
work traffic characteristics of data centers in the wild.
In IMC (2010).

[14] BESTA, M., SCHNEIDER, M., KONIECZNY, M., CYNK,
K., HENRIKSSON, E., GIROLAMO, S. D., SINGLA, A.,
AND HOEFLER, T. FatPaths: Routing in supercomputers
and data centers when shortest paths fall short. In SC
(2020).

[15] BURSTEIN, I. Nvidia data center processing unit (DPU)
architecture. In IEEE HCS (2021).

[16] CAI, Q., CHAUDHARY, S., VUPPALAPATI, M.,
HWANG, J., AND AGARWAL, R. Understanding host
network stack overheads. In SIGCOMM (2021).

[17] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH,
S. H., AND JACOBSON, V. BBR: congestion-based
congestion control. ACM Queue (2016).

[18] CHEN, X., FEIBISH, S. L., KORAL, Y., REXFORD, J.,
AND ROTTENSTREICH, O. Catching the microburst
culprits with snappy. In SelfDN (2018).

[19] CHEN, X., FEIBISH, S. L., KORAL, Y., REXFORD, J.,
ROTTENSTREICH, O., MONETTI, S. A., AND WANG,
T.-Y. Fine-grained queue measurement in the data plane.
In CoNEXT (2019).

[20] CORBET, J. TCP small queues. https://lwn.net/
Articles/507065/, 2012.

[21] CROVELLA, M. E., AND BESTAVROS, A. Self-
similarity in World Wide Web traffic: evidence and pos-
sible causes. ToN (1997).

[22] DUFFIELD, N. G., AND O’CONNELL, N. Large devia-
tions and overflow probabilities for the general single-
server queue, with applications. In Mathematical
Proceedings of the Cambridge Philosophical Society
(1995).

[23] FELDMANN, A., GILBERT, A. C., HUANG, P., AND
WILLINGER, W. Dynamics of ip traffic: A study of
the role of variability and the impact of control. In
SIGCOMM (1999).

[24] GARRETT, M. W., AND WILLINGER, W. Analysis,
modeling and generation of self-similar VBR video traf-
fic. SIGCOMM CCR (1994).

[25] GHABASHNEH, E., ZHAO, Y., LUMEZANU, C.,
SPRING, N., SUNDARESAN, S., AND RAO, S. A
microscopic view of bursts, buffer contention, and loss
in data centers. In IMC (2022).

[26] GOVINDAN, R., MINEI, I., KALLAHALLA, M., KO-
LEY, B., AND VAHDAT, A. Evolve or die: high-
availability design principles drawn from googles net-
work infrastructure. In SIGCOMM (2016).

[27] GOYAL, SHAH, ZHAO, NIKOLAIDIS, AND OTHERS.
Backpressure flow control. In NSDI (2022).

[28] HA, S., RHEE, I., AND XU, L. CUBIC: a new TCP-
friendly high-speed TCP variant. SOSR (2008).

[29] HERBERT, T. bql: Byte Queue Limits. https://lwn.
net/Articles/469652/, 2011.

250 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://omnetpp.org/
http://openvswitch.org/
https://redis.io
https://lwn.net/Articles/507065/
https://lwn.net/Articles/507065/
https://lwn.net/Articles/469652/
https://lwn.net/Articles/469652/

[30] HURST H. E. Long-Term storage capacity of reservoirs.
Trans. of the American Soc. of Civil Eng. (1951).

[31] JIANG, H., AND DOVROLIS, C. Source-level IP packet
bursts. In IMC (2003).

[32] JIN, P., GUO, J., XIAO, Y., SHI, R., NIU, Y., LIU, F.,
QIAN, C., AND WANG, Y. PostMan: Rapidly mitigating
bursty traffic by offloading packet processing. In SoCC
(2019).

[33] JOSHI, R., QU, T., CHAN, M. C., LEONG, B., AND
LOO, B. T. BurstRadar: Practical real-time microburst
monitoring for datacenter networks. In APSys (2018).

[34] KANNAN, P. G., BUDHDEV, N., JOSHI, R., AND
CHAN, M. C. Debugging transient faults in data centers
using synchronized network-wide packet histories. In
NSDI (2021).

[35] KAPOOR, R., SNOEREN, A. C., VOELKER, G. M.,
AND PORTER, G. Bullet trains: a study of NIC burst
behavior at microsecond timescales. In CoNEXT (2013).

[36] KAUFMANN, A., STAMLER, T., PETER, S., SHARMA,
N. K., KRISHNAMURTHY, A., AND ANDERSON, T.
TAS: TCP acceleration as an OS service. In EuroSys
(2019).

[37] KUMAR, G., DUKKIPATI, N., JANG, K., WASSEL, H.
M. G., WU, X., MONTAZERI, B., WANG, Y., SPRING-
BORN, K., ALFELD, C., RYAN, M., WETHERALL, D.,
AND VAHDAT, A. Swift: delay is simple and effective
for congestion control in the datacenter. In SIGCOMM
(2020).

[38] LELAND, W. E. On the self-similar nature of Ethernet
traffic (extended version). ToN (1994).

[39] LI, J., SHARMA, N. K., PORTS, D. R. K., AND GRIB-
BLE, S. D. Tales of the tail: Hardware, OS, and
application-level sources of tail latency. In SoCC (2014).

[40] LI, Y., MIAO, R., KIM, C., AND YU, M. FlowRadar:
a better NetFlow for data centers. In NSDI (2016).

[41] LI, Y., MIAO, R., LIU, H. H., ZHUANG, Y., FENG,
F., TANG, L., CAO, Z., ZHANG, M., KELLY, F., AL-
IZADEH, M., AND YU, M. HPCC: high precision con-
gestion control. In SIGCOMM (2019).

[42] LIKHANOV, N., TSYBAKOV, B., AND GEORGANAS,
N. D. Analysis of an atm buffer with self-similar ("
fractal") input traffic. In INFOCOM (1995).

[43] LIM, H., BAI, W., ZHU, Y., JUNG, Y., AND HAN, D.
Towards timeout-less transport in commodity datacenter
networks. In EuroSys (2021).

[44] LIU, K., TIAN, C., WANG, Q., ZHENG, H., YU, P.,
SUN, W., XU, Y., MENG, K., HAN, L., FU, J., DOU,
W., AND CHEN, G. Floodgate: taming incast in data-
center networks. In CoNEXT (2021).

[45] MANDELBROT, B. B. Self-Affine Fractals and Fractal
Dimension. Physica Scripta (1985).

[46] MARTY, M., DE KRUIJF, M., ADRIAENS, J., ALFELD,
C., BAUER, S., CONTAVALLI, C., DALTON, M.,
DUKKIPATI, N., EVANS, W. C., GRIBBLE, S., KIDD,
N., KONONOV, R., KUMAR, G., MAUER, C., MUSICK,
E., OLSON, L., RUBOW, E., RYAN, M., SPRINGBORN,
K., TURNER, P., VALANCIUS, V., WANG, X., AND
VAHDAT, A. Snap: A Microkernel Approach to Host
Networking. In SOSP (2019).

[47] MONTAZERI, B., LI, Y., ALIZADEH, M., AND
OUSTERHOUT, J. Homa: A Receiver-driven low-
latency transport protocol using network priorities. In
SIGCOMM (2018).

[48] MOSHREF, M., YU, M., GOVINDAN, R., AND VAH-
DAT, A. Trumpet: Timely and precise triggers in data
centers. In SIGCOMM (2016).

[49] NICHOLS, K., AND JACOBSON, V. Controlling Queue
Delay: A modern AQM is just one piece of the solution
to bufferbloat. ACM Queue (2012).

[50] NORROS, I. A storage model with self-similar input.
Queueing systems (1994).

[51] OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY,
A., AND BALAKRISHNAN, H. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In NSDI (2019).

[52] OUSTERHOUT, J. A Linux kernel implementation of
the Homa transport protocol. In ATC (2021).

[53] PARK, K., KIM, G., AND CROVELLA, M. On the re-
lationship between file sizes, transport protocols, and
self-similar network traffic. In ICNP (1996).

[54] PARK, K., KIM, G., AND CROVELLA, M. E. Effect
of traffic self-similarity on network performance. In
Performance and Control of Network Systems (1997).

[55] PARK, K., AND WILLINGER, W. Self-similar network
traffic: An overview. Self-Similar Network Traffic and
Performance Evaluation (2000).

[56] PAXSON, V., AND FLOYD, S. Wide area traffic: the
failure of Poisson modeling. IEEE/ACM ToN (1995).

[57] PRAKASH, P., DIXIT, A., HU, Y. C., AND KOMPELLA,
R. The TCP outcast problem: exposing unfairness in
data center networks. In NSDI (2012).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 251

[58] RAGHAVAN, D., LEVIS, P., ZAHARIA, M., AND
ZHANG, I. Breakfast of champions: towards zero-copy
serialization with NIC scatter-gather. In HotOS (2021).

[59] REZAEI, H., AND VAMANAN, B. Superways: A data-
center topology for incast-heavy workloads. In WWW
(2021).

[60] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND
SNOEREN, A. C. Inside the social network’s (datacen-
ter) network. In SIGCOMM (2015).

[61] SAEED, A., DUKKIPATI, N., VALANCIUS, V.,
THE LAM, V., CONTAVALLI, C., AND VAHDAT, A.
Carousel: Scalable Traffic Shaping at End Hosts. In
SIGCOMM (2017).

[62] SANAEE, A., SHAHINFAR, F., ANTICHI, G., AND
STEPHENS, B. E. Backdraft: a lossless virtual switch
that prevents the slow receiver problem. In NSDI (2022).

[63] SHAN, D., REN, F., CHENG, P., SHU, R., AND GUO,
C. Micro-burst in data centers: observations, analysis,
and mitigations. In IEEE ICMP (2018).

[64] STEPHENS, B., AKELLA, A., AND SWIFT, M. Loom:
Flexible and Efficient NIC Packet Scheduling. In NSDI
(2019).

[65] STEPHENS, B., SINGHVI, A., AKELLA, A., AND
SWIFT, M. Titan: Fair packet scheduling for commodity
multiqueue NICs. In ATC (2017).

[66] TUAN, T., AND PARK, K. Multiple time scale conges-
tion control for self-similar network traffic. Performance
Evaluation (1999).

[67] WERON, R. Estimating long-range dependence: finite
sample properties and confidence intervals. Physica A:
Statistical Mechanics and its Applications (2002).

[68] WOODRUFF, J., MOORE, A. W., AND ZILBERMAN,
N. Measuring burstiness in data center applications. In
ACM BS (2019).

[69] WU-CHUN FENG, TINNAKORNSRISUPHAP, P., AND
PHILIP, I. On the burstiness of the TCP congestion-
control mechanism in a distributed computing system.
In ICDCS (2000).

[70] YAN, S., WANG, X., ZHENG, X., XIA, Y., LIU, D.,
AND DENG, W. ACC: automatic ECN tuning for high-
speed datacenter networks. In SIGCOMM (2021).

[71] ZHANG, M., ZHANG, J., WANG, R., GOVINDAN, R.,
MOGUL, J. C., AND VAHDAT, A. Gemini: Practical
Reconfigurable Datacenter Networks with Topology and
Traffic Engineering. arXiv cs.NI 2110.08374 (2021).

[72] ZHANG, Q., LIU, V., ZENG, H., AND KRISHNA-
MURTHY, A. High-resolution measurement of data
center microbursts. In IMC (2017).

[73] ZHOU, Y., ZHANG, Y., YU, M., WANG, G., CAO, D.,
SUNG, E., AND WONG, S. Evolvable Network Teleme-
try at Facebook. In NSDI (2022).

252 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Rescaled-range analysis for estimating H

For a weak stationary stochastic process X = (Xt : t =
0,1,2, ...,N), the mean-adjusted series is defined as Y , Yt =
Xt −m where m is the empirical mean of the process X . Let
Z denote the cumulative deviate of Y where Zt = ∑

N
t=1 Yt . We

also define mt as the cumulative mean of the series X through
time t.

The rescaled range of X is denoted by

(R/S)t =
Rt

St
, t ∈ {0,1,2, ...,N} (3)

where the Range series R is defined as

Rt = Max(Z1,Z2, ...,ZN)−Min(Z1,Z2, ...,ZN),

t ∈ {0,1,2, ...,N}
(4)

and the standard deviation series S is defined as

St =

√
1
t

t

∑
i=1

(Xi −mt)2, t ∈ {0,1,2, ...,N} (5)

According to [30], R/S scales with the power law of t. There-
fore, to estimate H, the slope of the least-squares linear re-
gression of R/S over t in a log-log scale is used. The resulting
exponent is in the 0-1 range and a value between 0.5 to 1 in-
dicates low to strong long-range dependence (self-similarity),
respectively. In other words, an H estimate close to one indi-
cates a strong desire to maintain the previous trend or more
burstiness. As the H estimate nears 0.5, the time series be-
comes indistinguishable from random noise, and a value close
to zero signifies the traffic’s aim at reverting to its mean value.

B Theoretical analysis of software pacing un-
der different workloads

We presented the size of per-flow bursts for explicit software
pacing in §5.3.3. To further verify our findings using the
notion of self-similarity, we first plot the time-series of packet
arrivals in 1s, 100ms, and 10ms time scales in Figure 14 for
both the intra-cluster (Figure 14a) and intra-rack (Figure 14b)
workloads. One can notice the gradual decay of burstiness
in all time scales as higher degrees of pacing are enforced to
the intra-cluster workload. On the other hand, we can observe
that the intra-rack traffic follows a non-bursty, steady trend in
all time scales regardless of pacing.

Next, we calculate the Hurst exponents for the intra-rack
and intra-cluster workloads. According to Figure 14c, self-
similarity in the latter workload follows the degree of pacing
(i.e., percentage of the paced flows) where 100% pacing re-
sults in 31% reduction in the Hurst estimate compared to the
no-pacing case. For example, the Hurst estimates are 0.91,
0.73, and 0.63 for 0%, 40%, and 100% pacing ratios, respec-
tively. However, under the intra-rack workload pacing seems

0

200000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 1s range 20% - 1s range 60% - 1s range 100% - 1s range

0

20000

40000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 100ms range 20% - 100ms range 60% - 100ms range 100% - 100ms range

0 20 40 60 80 100
Time bin

0

2000

4000

6000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 10ms range

0 20 40 60 80 100
Time bin

20% - 10ms range

0 20 40 60 80 100
Time bin

60% - 10ms range

0 20 40 60 80 100
Time bin

100% - 10ms range

(a) Intra-cluster time series

0

200000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 1s range 20% - 1s range 60% - 1s range 100% - 1s range

0

20000

40000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 100ms range 20% - 100ms range 60% - 100ms range 100% - 100ms range

0 20 40 60 80 100
Time bin

0

2000

4000

6000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 10ms range

0 20 40 60 80 100
Time bin

20% - 10ms range

0 20 40 60 80 100
Time bin

60% - 10ms range

0 20 40 60 80 100
Time bin

100% - 10ms range

(b) Intra-rack time series

0% 20% 40% 60% 80% 100%
% paced flows

0.0

0.2

0.4

0.6

0.8

1.0
Hu

rs
t E

st
im

at
e

Intra-rack Intra-cluster

(c) Hurst exponent estimations

Figure 14: Time-series graphs and Hurst exponents for the
software pacing experiments presenting the traffic behavior at
three time ranges.

to have little to no effect as the egress traffic follows a mean-
reverting behavior during 1-second time ranges (H < 0.20 for
all the cases).

Finally, Figure 15 presents the corresponding auto-
correlation functions (ACFs) for the above time series. While
the cycling trend of bars between positive and negative cor-
relations suggests a strong mean-reverting behavior for the
intra-rack workload (Figures 15e-15h), the intra-cluster ACF
features a slow-decaying, strong positive correlations across
time lags, suggesting strong self-similarity (Figures 15a-15d).
As we increase the pacing ratio (from 0% gradually to 100%),
the correlations start to decline.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 253

0 20 40 60−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(a) Intra-cluster 0% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(b) Intra-cluster 20% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(c) Intra-cluster 60% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(d) Intra-cluster 100% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(e) Intra-rack 0% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(f) Intra-rack 20% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(g) Intra-rack 60% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(h) Intra-rack 100% paced

Figure 15: Comparing the auto-correlation functions (ACFs) for two workloads when we increase the ratio of paced flows from 0%
to 100%. For the intra-cluster workload, enforcing pacing on flows can significantly reduce the self-similarities. For the intra-rack
workload, the correlations between consecutive time lags oscillate between positive and negative numbers, signifying the mean-reverting
nature of the workload irrespective of the pacing.

254 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background: scale-invariant burstiness
	Approaches to measuring traffic bursts
	Conventional host networking
	Capturing timestamps

	Valinor measurement framework
	Valinor-H: burst measurement in hosts
	Valinor-N: in-network burst measurement

	Findings
	Revisiting structural causality
	Impact of workloads
	Sources and implications of burstiness
	Transports and congestion control
	Software switching
	Software pacing
	Byte Queue Limits
	Linux process scheduling

	Related work
	Conclusions
	Rescaled-range analysis for estimating H
	Theoretical analysis of software pacing under different workloads

