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Abstract
SPEEDEX is a decentralized exchange (DEX) that lets par-
ticipants securely trade assets without giving any single party
undue control over the market. SPEEDEX offers several ad-
vantages over prior DEXes. It achieves high throughput—over
200,000 transactions per second on 48-core servers, even with
tens of millions of open offers. SPEEDEX runs entirely within
a Layer-1 blockchain, and thus achieves its scalability without
fragmenting market liquidity between multiple blockchains
or rollups. It eliminates internal arbitrage opportunities, so
that a direct trade from asset A to asset B always receives as
good a price as trading through some third asset such as USD.
Finally, it prevents certain front-running attacks that would oth-
erwise increase the effective bid-ask spread for small traders.
SPEEDEX’s key design insight is its use of an Arrow-Debreu
exchange market structure that fixes the valuation of assets for
all trades in a given block of transactions. We construct an algo-
rithm, which is both asymptotically efficient and empirically
practical, that computes these valuations while exactly preserv-
ing a DEX’s financial correctness constraints. Not only does
this market structure provide fairness across trades, but it also
makes trade operations commutative and hence efficiently par-
allelizable. SPEEDEX is prototyped but not yet merged within
the Stellar blockchain, one of the largest Layer-1 blockchains.

1 Introduction
Digital currencies are moving closer to mainstream adoption.
Examples include central bank digital currencies (CBDCs)
such as China’s DC/EP [90], commercial efforts [65, 75],
and many decentralized-blockchain-based stablecoins such as
Tether [104], Dai [9], and USDC [17]. These currencies vary
wildly in terms of privacy, openness, smart contract support,
performance, regulatory risk, solvency guarantees, compliance
features, retail vs. wholesale suitability, and centralization of
the underlying ledger. Because of these differences, and be-
cause financial stability demands different monetary policy in
different countries, we cannot hope for a one-size-fits-all global
digital currency. Instead, to realize the full potential of digital
currencies (and digital assets in general), we need an ecosystem

where many digital currencies can efficiently interoperate.
Effective interoperability requires an exchange: an efficient

system for exchanging one digital asset for another. Users post
offers to trade one asset for another on the exchange, and then
the exchange matches mutually compatible offers together and
transfers assets according to the offered terms. For example,
one user might offer to trade 110 USD for 100 EUR, and might
be matched against another user who previously offered to
trade 100 EUR for 110 USD. A typical exchange maintains
orderbooks of all of the open trade offers.

The ideal digital currency exchange should, at minimum,
• not give any central authority undue power over the

global flow of money,
• operate transparently and auditably,
• give every user an equal level of access,
• enable efficient trading between every pair of currencies

(make effective use of all available liquidity), and
• support arbitrarily high throughput, without charging

significant fees to users.
Scalability is crucial for a piece of financial infrastructure

that must last far into the future, as the number of individuals
transacting internationally continues to grow. Furthermore, the
above feature list is by no means complete; a deployment may
want any number of additional features, such as persistent log-
ging, simplified payment verification [89], or integrations with
legacy systems, each of which slows down the system’s per-
formance. Scalability, viewed from another angle, enables the
system to add features without decreasing overall transaction
throughput (at the cost of additional compute hardware).

The gold standard for avoiding centralized control is a
decentralized exchange, or DEX: a transparent exchange
implemented as a deterministic replicated state machine
maintained by many different parties. To prevent theft, a
DEX requires all transactions to be digitally signed by the
relevant asset holders. To prevent cheating, replicas organize
history into an append-only blockchain. Replicas agree on
blockchain state through a Byzantine-fault tolerant consensus
protocol, typically some variant of asynchronous or eventually
synchronous Byzantine agreement [46] for private blockchains
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or synchronous mining [89] for public ones.
Unfortunately, existing DEX designs cannot meet the last

three desiderata.

Equality of Access In existing exchange designs, users with
low-latency connections to an exchange server (centralized or
not) can spy on trades incoming from other users and front-run
these trades. For example, a front-runner might spy an incom-
ing sell offer, and in response, send a trade that buys and imme-
diately resells an asset at a higher price [38,82]. In a blockchain,
where a block of trades is either finalized entirely or not at all,
this front-running can be made risk-free. More generally, some
users form special connections with blockchain operators to
gain preferential treatment for their transactions [55]. This spe-
cial treatment typically takes the form of ordering transactions
in a block in a favorable manner. The result is hundreds of
millions of dollars siphoned away from users [95].

Effective Use of Liquidity Existing exchange designs are
filled with arbitrage opportunities. A user trading from one cur-
rency A to another B might receive a better overall exchange
rate by trading through an intermediate reserve currency C,
such as USD. Users must typically choose a single (sequence
of) intermediate asset(s), leaving behind arbitrage opportuni-
ties with other intermediate assets. This challenge is especially
problematic in the blockchain space, where market liquidity
is typically fragmented between multiple fiat-pegged tokens.

Computational Scalability DEX infrastructure must
also be scalable. The ideal DEX needs to handle as many
transactions per second as users around the globe want to
send, without limiting transaction rates through high fees.
Trading activity growth may outpace Moore’s law, and should
not be limited by the rate of increase of single-CPU-core
performance. An ideal DEX should handle higher transaction
rates simply by using more compute hardware.

Unfortunately, folk wisdom holds that DEXes cannot
scale beyond a few thousand transactions per second. Naïve
parallel execution would not be replicable across different
blockchain nodes. This wisdom has led to many alternative
blockchain scaling techniques, such as off-chain trade
matching [108], automated market-makers [24], transaction
rollup systems [15, 19], and sharded blockchains [6] or
side-chains [92]. These approaches either trust a third party
to ensure that orders are matched with the best available price,
or sacrifice the ability to set traditional limit orders that only
sell at or above a certain price (reducing market liquidity).
Offchain rollup systems, sharded chains, and side-chains
further fragment market liquidity, leading to cross-shard
arbitrage and worse exchange rates for traders.

A challenge for on-chain limit-order DEXes is that the
order of operations affects their results. Typically, a DEX
matches each offer to the reciprocal offer with the best price:
e.g., the first offer to buy 1 EUR might consume the only offer
priced at 1.09 USD, leaving the second to pay 1.10 USD. Each
trade is a read-modify-write operation on a shared orderbook

data structure, so trades must be serialized. This serialization
order must be deterministic in a replicated state machine, but
naïve parallel execution would make the order of transactions
dependent on non-deterministic thread scheduling.

1.1 SPEEDEX: Towards an Ideal DEX
This paper disproves the conventional wisdom about on-chain
DEX performance. We present SPEEDEX, a fully on-chain
decentralized exchange that meets all of the desiderata outlined
above. SPEEDEX gives every user an equal level of access
(thereby eliminating a widespread class of risk-free front-
running), eliminates internal arbitrage opportunities (thereby
making optimal use of liquidity available on the DEX), and
is capable of processing over 200,000 transactions per second
when deployed on 48-core machines (Figure 3). SPEEDEX
is designed to scale further when given more hardware.

Like most blockchains, SPEEDEX processes transactions
in blocks—in our case, a block of 500,000 transactions every
few seconds. Its fundamental principle is that transactions in a
block commute: a block’s result is identical regardless of trans-
action ordering, which enables efficient parallelization [51].

SPEEDEX’s core innovation is to execute every order
at the same exchange rate as every other order in the same
block. SPEEDEX processes a block of limit orders as one
unified batch, in which, for example, every 1 EUR sold to buy
USD receives exactly 1.10 USD in payment. Furthermore,
SPEEDEX’s exchange rates present no arbitrage opportunities
within the exchange; that is, the exchange rate for trading USD
to EUR directly is exactly the exchange rate for USD to YEN
multiplied by the rate for YEN to EUR. These exchange rates
are unique for any (nonempty) batch of trades. Users interact
with SPEEDEX via traditional limit orders, and SPEEDEX
executes a limit order if and only if the batch’s exchange rate
exceeds the order’s limit price.

This design provides two additional economic advantages.
First, the exchange offers liquid trading between every asset
pair. Users can directly trade any asset for any other asset, and
the market between these assets will be at least as liquid as the
most liquid market path through intermediate reserve curren-
cies. Second, SPEEDEX eliminates a class of front-running
that is widespread in modern DEXes. No exchange operator or
user with a low-latency network connection can buy an asset
and resell it at a higher price, within the same block. (Note
that this is not every type of front-running; §8 and §10 contrast
SPEEDEX’s guarantees with those of other mitigations, and
how they can be combined.)

Furthermore, this economic design enables a scalable
systems design that is not possible using traditional order-
matching semantics. Unlike every other DEX, the operation
of SPEEDEX is efficiently parallelized, allowing SPEEDEX
to scale to transaction rates far beyond those seen today.
Transactions within a block commute with each other precisely
because trades all happen at the same shared set of exchange
rates. This means that the transaction processing engine has no
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need for the sequential read-modify-update loop of traditional
orderbook matching engines. Account balances are adjusted
using only hardware-level atomics, rather than locking.

1.2 SPEEDEX Overview
SPEEDEX is not a blockchain itself; rather, it is a DEX
component that can be integrated into any blockchain. A copy
of the SPEEDEX module should run inside every replica of
a blockchain using the system. SPEEDEX does not depend
on any specific property of a consensus protocol, but automat-
ically benefits from throughput advances in consensus and
transaction dissemination (such as [56]). SPEEDEX heavily
uses concurrency and benefits from uninterrupted access to
CPU caches, and as such is best implemented directly within
blockchain node software (instead of as a smart contract).

We implemented SPEEDEX within a custom blockchain us-
ing the HotStuff consensus protocol [115]; this implementation
provides the measurements in this paper. We created a second
implementation as a component of the Stellar blockchain [84],
which is considering a Layer-1 SPEEDEX deployment.

Implementing SPEEDEX introduces both theoretical
algorithmic challenges and systems design challenges. The
core algorithmic challenge is the computation of the batch
prices. This problem maps to a well-studied problem in the the-
oretical literature (equilibrium computation of Arrow-Debreu
Exchange Markets, §A.1); however, the algorithms in the the-
oretical literature scale extremely poorly, both asymptotically
and empirically, as the number of open limit orders increases.

We show that the market instances which arise in SPEEDEX
have additional structure not discussed in the theoretical litera-
ture, and use this structure to build a novel algorithm (based on
the Tâtonnement process of [53]) that, in practice, efficiently
approximates batch clearing prices. We then explicitly correct
approximation error with a follow-up linear program.

Our algorithm’s runtime is largely independent of the num-
ber of limit orders—each Tâtonnement query has a runtime
of O(#assets2 · lg(#offers)) and the linear program has size
O(#assets2). This gives a crucial algorithmic speedup because
in the real world, the number of currencies is much smaller
than the number of market participants. (The experiments of
§6 and §7 use 50 assets and tens of millions of open offers.)

On the systems design side, to implement this exchange,
we design natural commutative transaction semantics and
implement data structures designed for concurrent, batched
manipulation and for efficiently answering queries about the
exchange state from the price computation algorithm.

In recent years, the economics literature has begun
discussing the use of batched trading systems in traditional
markets to combat front-running and externalities associated
with high-frequency trading [30, 41, 43]. This literature
focuses only on the case of trading between two assets (where
price computation is simple) or where all trades use a single
numeraire currency [44]. Our contribution to this line of work
is to demonstrate the feasibility of a batch trading system

Blockchain
Node

Overlay
Network (1)

Block
Proposal (2)

Consensus
(3)

SPEEDEX

Core DEX
Engine (4)

Batch Pricing
Algorithm (5)

DEX State Database (6)

Persistent
Log (7)

Demand
Queries

Pricing Queries

State
Updates

Fig. 1. Architecture of SPEEDEX module (4, 5, 6) inside one
blockchain node.

that exchanges many assets and many numeraire currencies
simultaneously, thereby expanding the design space of
implementable market structures.

2 System Architecture
SPEEDEX is an asset exchange implemented as a replicated
state machine in a blockchain architecture (Fig. 1). Assets are
issued and traded by accounts. Accounts have public signature
keys authorized to spend their assets. Signed transactions
are multicast on an overlay network (Fig. 1, 1) among block
producers. At each round, one or more producers propose
candidate blocks extending the blockchain history (Fig. 1, 2).
A set of validator nodes (generally the same set or a superset of
the producers) validates and selects one of the blocks through
a consensus mechanism (Fig. 1, 3). SPEEDEX is suitable for
integration into a variety of blockchains, but benefits from a
consensus layer with relatively low latency (on the order of
seconds), such as BA? [71], SCP [84], or HotStuff [115].

The implementation evaluated here uses HotStuff [115],
while the the Stellar blockchain implementation relies on
Stellar’s existing consensus protocol, SCP [88].

Most central banks and digital currency issuers maintain
a ledger tracking their currency holdings. SPEEDEX is not
intended to replace these primary ledgers. Rather, we expect
banks and other regulated financial institutions to issue 1:1
backed token deposits onto a blockchain that runs SPEEDEX
and provide interfaces for moving money on and off the
exchange. These assets could be digital-native tokens as well;
any divisible and fungible asset can integrate with SPEEDEX.

SPEEDEX supports four operations: account creation, offer
creation, offer cancellation, and send payment. Offers on
SPEEDEX are traditional limit orders. For example, one offer
might offer to sell 100 EUR to buy USD, at a price no lower
than 0.91 USD/EUR. Offers can trade between any pair of
assets, in either direction. Another offer, for example, might
offer to sell 100 USD in exchange for EUR, at a price no lower
than 1.10 EUR/USD.

What makes SPEEDEX different from existing DEXes
is the manner in which it processes new orders. Traditional
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exchanges process trades sequentially, implicitly computing
a matching between limit orders. SPEEDEX, by contrast,
processes trades in batches (typically, one batch would consist
of all of the limit orders in one block of the blockchain).

In a blockchain, all of the transactions in a block are
appended at the same clock time, so there is no reason a
priori why a DEX should pick one ordering over another.
SPEEDEX, by design, imposes no ordering whatsoever
between transactions in a block. Side effects of a transaction
are only visible to other transactions in future blocks.

Logically, when the SPEEDEX core engine (Fig. 1, 4)
receives a finalized block of trades, it applies all of the trades at
exactly the same time and computes an unordered set of state
changes, which it passes to its exchange state database (Fig.
1, 6). This database records orderbooks and account balances,
and is periodically written to the persistent log (Fig 1, 7).

2.1 SPEEDEX Module Architecture
To implement an exchange that operates replicably where
trades in a block are not ordered relative to each other,
SPEEDEX requires a set of trading semantics such that
operations commute.

Traditional exchange semantics are far from commutative:
one offer to buy an asset is matched with the lowest priced
seller, and the next offer to buy is matched against the
second-lowest priced seller, and so on. Hence, every trade can
occur at a slightly different exchange rate.

Instead, to make trades commutative, SPEEDEX computes
in every block a valuation pA for every asset A . The units
of pA are meaningless, and can be thought of as a fictional
valuation asset that exists only for the duration of a single
block. However, valuations imply exchange rates between
different assets—every sale of asset A for asset B occurs at
a price of pA/pB . Unlike traditional exchanges, SPEEDEX
does not explicitly compute a matching between trade offers.
Instead, offers trade with a conceptual “auctioneer” entity at
these exchange rates. Trading becomes commutative because
all trades in one asset pair occur at the same price.

The main algorithmic challenge is to compute valuations
where the exchange clears—i.e., the amount of each asset sold
to the auctioneer equals the amount bought from the auctioneer.

When the auctioneer sets exact clearing valuations, an offer
trades fully with the auctioneer if its limit price is strictly
below the auctioneer’s exchange rate, and not at all if its limit
price exceeds the auctioneers rate. When the limit price equals
the exchange rate, SPEEDEX may execute the offer partially.
Note that an exchange is a zero-sum system; as compared to
sequential execution, some users may see better prices and
some may see worse, but SPEEDEX guarantees that no user’s
price is worse than their minimum limit price.

Theorem 1. Exact clearing valuations always exist. These
valuations are unique up to rescaling.1

1And technical conditions (§A.3), e.g. everything clears an empty market.

Theorem 1 is a restatement of a general theorem of
Arrow-Debreu exchange market theory [57] (§A.3).

Concretely, whenever the core SPEEDEX engine (Fig 1,
4) receives a newly finalized block, one of its first actions is
to query an algorithm that computes clearing valuations (Fig
1, 5). It then uses the output of this algorithm to compute the
modifications to the exchange state (Fig 1, 6).

As valuations that clear the market always exist for any set of
limit orders, there is no adversarial input that SPEEDEX cannot
process. And because these valuations are unique, SPEEDEX
operators do not have a strategic choice between different sets
of valuations. SPEEDEX’s algorithmic task is to surface infor-
mation about a fundamental mathematical property of a batch.

Unfortunately, we are not aware of a practical method to
compute clearing prices exactly. (The number of bits required
to represent exact clearing prices may be extremely large [57],
and in a natural extension of the SPEEDEX model [96] the
clearing prices are not even rational.) SPEEDEX therefore
uses approximate clearing prices.

At nonexact clearing prices, the conceptual auctioneer will
not have enough of some asset(s) to pay out all offers willing
to accept the market price. SPEEDEX addresses this deficit
in two ways. First, the auctioneer proportionally reduces the
amount it pays out to offers by a small fraction—in other
words, it charges a commission. Commissions are common for
exchanges, whether decentralized or not, though SPEEDEX
does it for market clearing rather than profit reasons. To avoid
incentivizing high trading costs, the implementation returns
commissions to the asset issuers, and one goal of our price
computation algorithm’s design is to make this commission
as low as computationally practical. Second, the auctioneer
can refrain from filling some marketable offers. Whereas in
a perfect Arrow-Debreu exchange market, offers at the market
price may be partially filled or not filled, in SPEEDEX the
same applies to offers very close to the market price, even if
they still beat the market price by a small percentage.

SPEEDEX always rounds trades in favor of the auctioneer.
Our implementation burns collected transaction fees and
accumulated rounding error (effectively returning them to
the issuer by reducing the issuer’s liabilities). The Stellar
implementation eliminates the fee and returns the accumulated
rounding error to asset issuers.

2.2 Design Properties
Computational Scalability SPEEDEX’s commutative
semantics allow effective parallelization of DEX operation.
Because transactions within a block are not semantically
ordered, DEX state is identical regardless of the order in
which transactions are applied. This exact replicability
is, of course, required for a replicated state machine. The
order-independence also means SPEEDEX transactions can
be executed in parallel by all available CPU cores despite the
fact that thread interleaving is nondeterministic in multicore
machines. Almost all coordination occurs via hardware-level
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atomics (e.g., atomic add on 64-bit integers) without spinlocks.
SPEEDEX stores balances in accounts, rather than in

discrete, unspent coins (often called “UTXOs”). It also
supports single-currency payment operations, which are
simpler than DEX trading. Hence, SPEEDEX disproves the
popular belief [85, 97] that account-based ledgers are not
compatible with horizontal scalability.

No risk-free front running Well-placed agents in real-
world financial markets can spy on submitted offers, notice
a new transaction T , and then submit a transaction T ′ (that
executes before T ) that buys an asset and re-sells it to T
at a slightly higher price. In some blockchain settings, T ′

can be done as a single atomic action [55]. However, since
every transaction sees the same clearing prices in SPEEDEX,
back-to-back buy and sell offers would simply cancel each
other out. Relatedly, because every offer sees the same prices,
a user who wishes to trade immediately can set a very low
minimum price and be all but guaranteed to have their trade
executed, but still at the current market price.

Risk-free front-running is one instance of the widely dis-
cussed “Miner Extractable Value” (MEV) [55] phenomenon,
in which block producers reorder transactions within a
block for their own profit (or in exchange for kickbacks).
By eliminating the ordering of transactions within a block,
SPEEDEX eliminates a large source of MEV. However, this
does not eliminate every type of front-running manipulation,
such as delaying victim transactions to a future block (see §8).

No (internal) arbitrage and no central reserve currency
An agent selling asset A in exchange for asset B will see a price
of pA/pB . An agent trading A for B via some intermediary
asset C will see exactly the same price, as pA

pC
· pC

pB
= pA

pB
.

Hence, one can efficiently trade between assets without much
pairwise liquidity with no need to search for an optimal path.
By contrast, many international payments today go through
USD because of a lack of pairwise liquidity. The multitude
of USD-pegged stablecoins in modern blockchains further
fragments liquidity. Of course, there can still be arbitrage
between SPEEDEX and external markets.

3 Commutative DEX Semantics
To propose or execute a block of transactions, the SPEEDEX
core engine performs the following three actions.

1 For each transaction in the block (in parallel), check
signature validity, collect new limit offers, and compute
available account balances after funds are committed to
offers or transferred between accounts. When proposing
a block of transactions, SPEEDEX discards potentially
invalid transations.

2 When proposing a block, compute approximate clearing
prices and approximation correction metadata.

3 Iterate over each offer, making a trade or adding it to the
resting orderbooks (based on the prices and metadata).

For transaction processing in step 1 to be commutative, it

must be the case that the step 1 output effects (specifically: cre-
ate a new account, create a new offer, cancel an existing offer,
and send a payment) of one transaction have no influence on the
output effects of another transaction. This means that one trans-
action cannot read some value that was output by another trans-
action (in the same block), and that whether one transaction
succeeds cannot depend on the success of another transaction.

To meet the first requirement, traders include all parameters
to their transactions within the transaction itself. The second
requirement necessitates precise management of transaction
side effects. At most one transaction per block may alter an
account’s metadata (such as the account’s public key or exis-
tence), and metadata changes take effect only at the end of block
execution. Similarly, an offer cannot be created and cancelled
in the same block. As payments and trading are the common
case, we do not consider these restrictions a serious limitation.

SPEEDEX must also ensure that no account is overdrafted.
That is to say, after processing all transactions in a block,
the unlocked balance of every account must be nonnegative
(where an open offer locks the offered amount of an asset for
the duration of its lifetime). Unlike most distributed ledgers,
SPEEDEX cannot simply deem the second of two conflicting
transactions to fail—after all, transactions have no ordering.
Instead, our implementation requires a block proposer to
ensure that a block cannot cause overdrafts; every node rejects
blocks that violate this property. To generate valid blocks,
proposers use a conservative process outlined in §K.6. The
design requires passing information from the SPEEDEX
database (Fig 1, 6) to the proposal module (Fig 1, 2).

The core remaining technical challenge is the batch price
computation (Fig 1, 5).

4 Price Computation

4.1 Requirements

As discussed earlier, in every block, SPEEDEX computes
batch clearing prices and executes trades in response to these
prices. Every DEX is subject to two fundamental constraints:

• Asset Conservation No assets should be created out of
nothing. As discussed in §2, offers in SPEEDEX trade
with a virtual auctioneer. After a batch of trades, this
auctioneer cannot be left with any debt. We do allow the
auctioneer to burn some surplus assets as a fee.

• Respect Offer Parameters No offer trades at a worse
price than its limit price.

Additionally, SPEEDEX should facilitate as much trade
volume as possible. (Otherwise, the constraints could be vac-
uously met by never trading.) Furthermore, price computation
must be efficient, as it occurs for each block of trades, every
few seconds. Finally, SPEEDEX should minimize the number
of offers that trade partially; asset quantities are stored as
integer multiples of a minimum unit, so each partial trade risks
accumulating a rounding error of up to one unit.
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4.2 From Theory To Practice
The problem of computing batch clearing prices is equivalent
to the problem of computing equilibria in linear Arrow-Debreu
Exchange Markets (§A). Our algorithm is based on the
iterative Tâtonnement process from this literature [53].

However, the runtimes of the theoretical algorithms scale
very poorly, both asymptotically and empirically. They also
output approximate equilibria for notions of approximation
that violate the two fundamental constraints above (for
example, Definition 1 of [53] permits equilibria to mint new
assets and to steal from a user).

We develop a novel algorithm for computing equilibria that
runs efficiently in practice (§6) and explicitly ensures that
(1) asset amounts are conserved and (2) every offer trades at
exactly the market prices, and only if the offer’s limit price
is at or below the batch exchange rate. First, Tâtonnement
approximates clearing prices (§5). We show that the structure
of the types of trades in SPEEDEX lets each iteration run
in time logarithmic in the number of open limit offers (via a
series of binary searches), giving an algorithm asymptotically
faster than that within the theoretical literature.

We then explicitly correct for the approximation error with a
linear program (§D). Crucially, the size of this linear program
is linear in the number of asset pairs, and has no dependence on
the number of open trade offers. The linear program ensures
that, no matter what prices Tâtonnement outputs, (1) asset
amounts are conserved, and (2) no offer trades if the batch
price is less than its limit price.

To be precise, our algorithm outputs the following:
• Prices: For each asset A , SPEEDEX computes an asset

valuation pA . One unit of A trades for pA/pB units of B .
• Trade Amounts: For each asset pair (A ,B), SPEEDEX

computes an amount xA ,B of asset A that is sold for asset
B (again, at exchange rate pA/pB ).

For every asset pair (A ,B), SPEEDEX sorts all of the offers
selling A for B by their limit prices, and then executes the of-
fers with the lowest limit prices, until it reaches a total amount
of A sold of xA ,B (tiebreaking by account ID and offer ID).

As a bonus, this method ensures that at most one offer per
trading pair executes partially, minimizing rounding error.

5 Price Computation: Tâtonnement
Tâtonnement is an iterative process; starting from an (arbitrary)
initial set of prices, it iteratively refines them until the prices
reach a stopping criterion.

Each iteration of Tâtonnement starts with a demand query.
The demand of an offer is the net trading of the offer (with
the auctioneer) in response to a set of prices, and the demand
of a set of offers is the sum of the demands of each offer.
Tâtonnement’s goal is to find prices such that the amount of
each asset sold to the auctioneer matches the amount bought
from it (in other words, the net demand is 0).

Example 1. Suppose that a limit order offers to sell 100 USD

for EUR with a minimum price of 0.8 EUR per USD. If the can-
didate prices are such that α=

pUSD
pEUR

>0.8, then the limit order
would like to trade, and its demand is (−100 USD,100α EUR).
Otherwise, its demand is (0 USD,0 EUR).

Iterative Price Adjustment. If more units of an asset
are demanded from the auctioneer than are supplied to it (a
positive net demand, meaning a deficit for the auctioneer),
then the auctioneer raises the price of the asset. Otherwise,
the auctioneer has a surplus, so it lowers the price of the
asset. Implementing this process effectively requires careful
numerical normalization in response to differences in prices
and trade volumes, which we describe in detail in §C.1.

Tâtonnement repeats this process until the current set of
prices is sufficiently close to the market clearing prices (or it
hits a timeout). Specifically, Tâtonnement iterates until it has a
set of prices such that, if the auctioneer charges a commission
of ε, then there is a way to execute offers such that:

1 The auctioneer has no deficits (assets are conserved)
2 No offer executes outside its limit price bound
3 Every offer with a limit price more than a (1−µ) factor

below the auctioneer’s exchange rate executes in full.
The last condition is a formalization of the notion that

SPEEDEX should satisfy as many trade requests as possible.
Informally, an offer with a limit price equal to the auctioneer’s
exchange rate is indifferent between trading and not trading,
while one with a limit price far below the auctioneer’s
exchange rate strongly prefers trading to not trading.

5.1 Efficient Demand Queries
Implemented naïvely, Tâtonnement’s demand queries would
consist of a loop over every open exchange offer. This is im-
possibly expensive, even if the loop is massively parallelized.
Concretely, one invocation of Tâtonnement can require many
thousands of demand queries. Every demand query therefore
must return results in at most a few hundred microseconds.

This naïve loop appears to be required for the (more
general) problem instances studied in the theoretical literature.
However, all of the offers in SPEEDEX are traditional limit
orders that sell one asset in exchange for one other asset at
some limit price. An offer with a lower limit price always
trades if an offer with a higher limit price trades. Therefore,
SPEEDEX groups offers by asset pair and sorts offers by
their limit prices. We drive the marginal cost of this sorting
to near zero by using an offer’s limit price as the leading bits
(in big-endian) of the keys in our Merkle tries (§K.5).

SPEEDEX can therefore compute a demand query with a
sequence of binary searches (§G). Individual binary searches
can run on separate CPU cores. The number of open offers
(say, M) on an exchange is vastly higher than the number of
assets traded (say, N). Our experiments in §7 trade N = 50
assets with M= tens of millions of open offers; the complexity
reduction from O(M) to O(N2lg(M)) is crucial.
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5.2 Multiple Tâtonnement Instances
§C describes several other Tâtonnement adjustments that help
it respond well to a wide variety of market conditions. Some of
these adjustments are parametrized (such as how quickly one
should adjust the candidate prices); rather than pick one set of
control parameters, we run several instances of Tâtonnement
in parallel and take whichever finishes first as the result. (In the
case of a timeout, we choose the set of prices that minimizes
the unrealized utility [§6.2].) SPEEDEX includes the output of
Tâtonnement and the subsequent linear program in the headers
of proposed blocks (§K.3).

6 Evaluation: Price Computation
Tâtonnement’s runtime depends primarily on the target ap-
proximation accuracy, the number of open trade offers, and
the distribution of the open trade offers. The runtime increases
as the desired accuracy increases. Surprisingly, the runtime
actually decreases as the number of open offers increases. And
like many optimization problems, Tâtonnement performs best
when the input is normalized, meaning in this case that the (nor-
malized, §C.1) volume traded of each asset is roughly the same.

Tâtonnement runs once per block. To produce a block every
few seconds, Tâtonnement must run in under one second most
of the time. Our implementation runs Tâtonnement with a
timeout of 2 seconds, but it typically converges much faster.

6.1 Accuracy and Orderbook Size
We find that Tâtonnement converges more quickly as the
number of open offers increases. Tâtonnement converges
fastest when small price changes do not cause comparatively
large changes in overall net demand. However, an offer’s
behavior is a discontinuous function (of prices); it does not
trade below its limit price and trades fully above it.

There are two factors that mitigate these “jump discontinu-
ities.” First, Tâtonnement approximates optimal offer behavior
by a continuous function (§B). Smaller µ means a closer
approximation. Second, the more offers there are in a batch, the
smaller any one offer’s relative contribution to overall demand.
This last factor explains why Tâtonnement converges more
quickly when there are more offers on the exchange. A real-
world deployment might raise accuracy as trading increases.

Fig. 2 plots the minimum number of trade offers that
Tâtonnement needs to consistently find clearing prices
for 50 distinct assets in under 0.25 seconds (for the same
trade distribution used in §7). To put these fee rates in
context, BinanceDex [1] charged a fee of either 0.1%≈2−10

or 0.04% ≈ 2−11.3. Uniswap [24, 25] charges 1%, 0.3%,
or 0.05% (∼2−6.6, ∼2−8.4, and ∼2−11, respectively), and
Coinbase charges 0.5% to 4% [4] (∼2−7.6 to∼2−4.6).

Though our experiments rarely experienced Tâtonnement
timeouts, Tâtonnement timeouts caused by sparse orderbooks
may be self-correcting: If SPEEDEX proposes suboptimal
prices, fewer offers will find a counterparty and trade. When
fewer offers clear in one block, more are left to facilitate

Fig. 2. Minimum number of offers needed for Tâtonnement to
run in under 0.25 seconds (Smaller is better. Times averaged
over 5 runs). The x axis denotes offer behavior approximation
quality (µ), and the y axis denotes the commission (ε).

Tâtonnement in the next block. §F describes an alternative
algorithm that is effective on small batches.

6.2 Robustness Checks
As a robustness check, we run Tâtonnement against a trade
distribution derived from volatile cryptocurrency market data.
In an ideal world, we could replay trades from another DEX
through SPEEDEX. Unfortunately, doing so poses several
problems. First, in practice, almost all DEX trades go through
four de facto reserve currencies (ETH, USD, USDC, and
USDT), three of which are always worth close to $1. The
decomposition between a few core “pricing” assets and a
larger number of other assets makes price discovery too simple.
Second, transaction rates on existing DEXes are too low to
provide enough data. Finally, we suspect users would submit
different orders to SPEEDEX than they might on a traditional
exchange, due to the distinct economic properties of batch
trading systems.

Experiment Setup. As a next-best alternative, we generate
a dataset based on historical price and market volume data. We
took the 50 crypto assets that had the largest market volume
on December 8, 2021 (as reported by coingecko.com) and
for each asset, gathered 500 days of price and trade volume
history. We then generated 500 batches of 50,000 transactions.
A new offer in batch i sells asset A (and buys asset B) with
probability proportional to the relative volume of asset A
(and asset B , conditioned on A 6=B) on day i, and demands a
minimum price close to the real-world exchange rate on day i.
The extreme volatility of cryptocurrency markets and variation
between these 50 assets make this dataset particularly difficult
for Tâtonnement. To further challenge Tâtonnement, we use
a smaller block size of∼30,000 (compared to 500,000 in §7).

The experiment charged a commission of ε = 2−15 ≈
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0.003%, and attempted to clear offers with limit prices more
than 1−µ below the market prices, for µ=2−10≈0.1% (§B).

Experiment Results. The experiment ran for 500 blocks.
Each block created about 25,000 new offers and a few
thousand cancellations and payments.

Tâtonnement computed an equilibrium quickly in 350
blocks, and in the remainder, computed prices sufficiently
close to equilibrium that the follow-up linear program
facilitated the vast majority of possible trading activity.

We measure the quality of an approximate set of prices by
the ratio of the “unrealized utility” to the “realized utility.” The
utility gained by a trader from selling one unit of an asset is the
difference between the market exchange rate and the trader’s
limit price, weighted by the valuation of the asset being sold.
Note that the units do not matter when comparing relative
amounts of “utility.”

In the blocks where Tâtonnement computed an equilibrium
quickly, the mean ratio of unrealized to realized utility was
0.71% (max: 4.7%), and in the other blocks, the mean ratio
was 0.42% (max: 3.8%).

Recall that Tâtonnement terminates as soon as a stopping
criteria is met; roughly, “does the supply of every asset exceed
demand,” so one mispriced asset will cause Tâtonnement
to keep running. However, every Tâtonnement iteration
continues to refine the price of every asset. This is why
Tâtonnement actually gives more accurate results in the
batches it found challenging. A deployment might enforce a
minimum number of Tâtonnement rounds.

Qualitatively, Tâtonnement correctly prices assets with
high trading volume and struggles on sparsely traded assets (as
might be expected from Fig. 2). Tâtonnement also adjusts its
price adjustment rule in response to recent market conditions
(§C.1), a tactic which is less effective on volatile assets.

Should this pose a problem in practice, a deployment could
choose to vary the approximation parameters by trading pair.

7 Evaluation: Scalability
We ran SPEEDEX on four r6id.24xlarge instances in an Ama-
zon Web Services datacenter. Each instance has 48 physical
CPU cores divided over two Intel Xeon Platinum 8375CL
chips (32 total cores per socket, 24 of which are allocated to our
instances), running at 2.90Ghz with hyperthreading enabled,
768GB of memory, 4 1425GB NVMe drives connected in a
RAID0 configuration. We use the XFS filesystem [102]. These
experiments use the HotStuff consensus protocol [115], and
do not include Byzantine replicas or a rotating leader.

Experiment Setup. These experiments simulate trading of
50 assets. Transactions are charged a fee of ε=2−15(0.003%).
We set µ = 2−10, guaranteeing full execution of all orders
priced below 0.999 times the auctioneer’s price. The initial
database contains 10 million accounts. Tâtonnement never
timed out, and typically required fewer than 1,000 iterations.

Transactions are generated according to a synthetic data

Fig. 3. Transactions per second on SPEEDEX, plotted over the
number of open offers.

model—every set of 100,000 transactions is generated as
though the assets have some underlying valuations, and users
trade a random asset pair using a minimum price close to the
underlying valuation ratio. The valuations are modified (via
a geometric Brownian motion) after every set. Accounts are
drawn from a power-law distribution.

Each set is split into four pieces, with one piece given
to each replica. Replicas load these sets sequentially and
broadcast each set to every other replica. Each replica adds
received transactions to its pool of unconfirmed transactions.

Replicas propose blocks of roughly 500,000 transac-
tions. In these experiments, each block consists of roughly
350,000–400,000 new offers, 100,000–150,000 cancellations,
10,000–20,000 payments, and a small number of new accounts.
We generate 5,000 sets of input transactions. Some of these
transactions conflict with each other and are discarded by
SPEEDEX replicas. Each experiment runs for 700–750 blocks.

Every five blocks, the exchange commits its state to
persistent storage in the background (via LMDB [50], §K.2).

Performance Measurements. Fig. 3 plots the end-to-end
transaction throughput rate of SPEEDEX as the number of
worker threads inside SPEEDEX increases. The x-axis plots
the number of open offers on the exchange.

Most importantly, Fig. 3 demonstrates that SPEEDEX can
efficiently use its available CPU hardware. The speedup is
near-linear, until the number of threads approaches the number
of CPU cores—from 6 to 12,∼1.9x, from 12 to 24,∼1.8x, and
from 24 to 48,∼1.4x. The thread counts are only for the num-
ber of threads directly for SPEEDEX’s critical path, and not for
many of the tasks that the implementation must perform in the
background, such as logging data to persistent storage (logging
the account database uses 16 threads), consensus, and garbage
collection, and these threads begin to contend with SPEEDEX
as the number of SPEEDEX worker threads increases.

Secondly, Fig. 3 demonstrates the scalability of SPEEDEX
with respect to the number of open offers. The number of open
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Fig. 4. Time to propose and execute a block, plotted over the
number of open offers.

offers SPEEDEX works with in these experiments is already
quite large, but most importantly, as the number of open offers
goes from 0 to the 10s of millions, SPEEDEX’s transaction
throughput falls by only∼10%. This slowdown is primarily
derived from a Tâtonnement optimization (the precomputation
outlined in §9.2). Tâtonnement is the one part of SPEEDEX
that cannot be arbitrarily parallelized, so we design our imple-
mentation towards making it as fast as possible. An implemen-
tation might skip this work in some parameter regimes.

To focus on the performance of SPEEDEX, Figs. 4
and 5 plot the time to propose and execute blocks, and to
validate and execute proposals, respectively, when we disable
signature verification (which is trivial to parallelize). First,
note that both proposal and validation scale with the number
of threads; validation scales better than proposal due to the
aforementioned Tâtonnement optimization. Second, note that
validating and executing a proposal from another replica is
substantially faster than proposing a block; this lets a replica
that is somehow delayed catch up.

The runtime variation in Fig. 4 results from the fact that
SPEEDEX without signature verification runs too quickly for
our persistent logging implementation.

SPEEDEX is not a consensus protocol, and these experi-
ments (one consensus invocation every few seconds) do not
come close to stressing the consensus throughput of Hotstuff.
However, network bandwidth requirements necessarily
scale (at least) linearly with transaction rate. Recent work,
such as [56, 79, 113], develops consensus protocols that
maximally use available network bandwidth. However,
integrating SPEEDEX with any consensus protocol requires
understanding the tradeoffs between batch size, transaction
rate, and consensus frequency. Fig. 6 plots this tradeoff running
SPEEDEX on the same transaction workload as in Fig. 3. We
also ran SPEEDEX with more replicas on different hardware
and observed the same scalability trends, as outlined in §L
(albeit with lower overall throughput on weaker hardware).

Fig. 5. Time to validate and execute a proposal, plotted over
the number of open offers (measurements from one replica).

Fig. 6. Median transaction rates, varying block size and num-
ber of open offers (grouped into buckets of 2M). Shaded areas
plot 10th to 90th percentiles.

Conclusions. To reiterate, SPEEDEX achieves these
transaction rates while operating fully on-chain, with no
offchain rollups and no sharding of the exchange’s state. To
make SPEEDEX faster, one can simply give it more CPU cores,
without changing the transaction semantics or user interface.
This scaling property is unique among existing DEXes.

7.1 Alternative Scaling Techniques
Traditional Exchange Semantics. The core logic of just
an exchange system can be implemented extremely efficiently
with almost no code. The logic of the constant product market
maker UniswapV2 [24], for example, is less than 10 lines
of simple arithmetic code. An orderbook-based exchange
requires more code but can still be made very fast, as most
operations modify only a small number of data objects. We im-
plemented a bare-bones orderbook exchange with two assets
using the same data structures as in SPEEDEX—each trans-
action checks the orderbook for a matching offer or offers and
either makes appropriate transfers or adds the new offer to the
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orderbook. These operations are extremely fast when the num-
ber of accounts is small; our implementation runs∼1.7 million
of these transactions per second when there are only 100
accounts. However, every database lookup becomes slower as
the as the number of accounts grows; when there are 10 million
accounts in the database (as in the above experiments), through-
put falls 8x to∼210,000 per second. Yet that is before adding
all of the other SPEEDEX features one needs in a real DEX,
such as state hashes, transaction fees, structures for simple
payment verification [89], replication, or durable logging. The
scalability of the full SPEEDEX implementation lets it surpass
that rate even when slowed down by all of these features.

Note that every orderbook operation affects every subse-
quent transaction—each transaction influences the exchange
rate observed in the next transaction—and as such, their ex-
ecution cannot be parallelized. SPEEDEX’s design, therefore,
enables parallel execution of what would otherwise be a strictly
serial workload. To isolate the effect of SPEEDEX’s paralleliz-
able semantics on its transaction throughput, we therefore turn
to a workload that does not touch the DEX at all—one where
every transaction is a payment between random accounts.

Optimistic Concurrency Control. A widely explored
class of alternative designs for parallel transaction execution
use optimistic concurrency control, and of these approaches
the most closely related state of the art design appears to
be Block-STM [70], which is deployed in Aptos [22]. This
approach optimistically executes batches of transactions,
retrying after conflicts as necessary.

We therefore design the measurements of Fig. 7 to mirror
the experiments in [70]. The “Aptos p2p” transactions in [70]
are payments between two random accounts, and consist of
8 reads of 5 writes. Each of our payments consists of two data
reads (source account public key and last committed sequence
number), two atomic compare_exchange operations (subtract
payment and fee from source), an atomic fetch_xor (reserve
sequence number), and an atomic fetch_add (add payment to
destination)—implemented without atomics, this would be
6 reads and 4 writes. All payments are of the same asset.

Fig. 7 plots the throughput rates of SPEEDEX on this
transaction workload for the parameter settings measured in
Block-STM (Figs. 7 and 8, [70]). Note that for large batch
sizes, the transaction throughput is largely independent of
the number of accounts, even though every transaction in the
two account setting contends with every other transaction. Fur-
thermore, unlike Block-STM, SPEEDEX achieves near-linear
scalability on sufficiently large batches. For small batch sizes,
a large number of accounts actually slows down SPEEDEX,
largely due to increased sensitivity to cache performance
and our system’s NUMA (two socket) architecture on small
timescales. We also ran this experiment on a single-socket sys-
tem (an AWS c5a.16xlarge, as in [70]), and found only negligle
impact of the number of accounts on throughput. Fig. 7 was run
with hyperthreading disabled, to compare against Block-STM
experiments. The rest of our experiments were run with hy-

Fig. 7. Throughput of SPEEDEX on batches of payment trans-
actions with varying thread counts (average of 100 trials).

perthreading enabled (because of the many background tasks
in SPEEDEX); enabling hyperthreading on this payments
workload causes a negligible performance degradation for
large batches (approximately 1-6%), and a larger (up to 25%)
on small batches. As a baseline, §J graphs the performance
of Block-STM on these parameter settings on our hardware.

We also ran SPEEDEX on an only-payments workload with
10 million accounts and 50 assets, and measured a throughput
of approximately 375k, 215k, 114k, and 60k transactions per
second using 48, 24, 12, and 6 threads, respectively (a 34.8x,
20.0x, and 10.6x, and 5.6x speedup over the single-threaded
measurement). We disabled data persistence for these
trials—again, the logging off of the critical path contends with
SPEEDEX at these transaction rates, especially for payment
transactions that modify two accounts, instead of just one
(as when creating an offer). The throughput reached 255k
transactions per second with data persistence enabled.

Production Systems. Finally, we ran the Ethereum Virtual
Machine (Geth 1.10 [10]) on a workload of UniswapV2 [24]
transactions, and measured a rate of∼3000 transactions per
second (a result in line with other Ethereum benchmarks [107]).
The Loopring exchange, built as an L2 rollup on Ethereum,
claims a maximum rate of∼2000 per second [23], a number
calculated from Ethereum’s per-block computation limit [21],
which is in turn set based on the real computational cost of serial
transaction execution [26, 45, 47, 91]. Precise measurements
of the Stellar blockchain’s orderbook DEX suggest that its
implementation could handle∼4000 DEX trades per second.

8 Design Limitations and Mitigations
Latency. Batch trading inherently introduces latency
(between order submission and order execution) not present
on traditional, centralized exchanges, simply because an order
cannot execute until a batch has been closed and clearing
prices have been computed. This latency is already present
in a blockchain context (a transaction is not finalized until
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the consensus protocol adds it to a block), so in this context,
SPEEDEX introduces no additional latency.

The latency may have downstream economic effects.
Market-making may be more (or less) profitable operating
in a batch system, which could lead to reduced (or increased)
liquidity. Budish et al. [30] argue that batch trading (between
2 assets) would reduce costs for market-makers, which could
lead to increased liquidity. However, they study a higher batch
frequency (approximately once per millisecond); our lower
batch frequency is less studied (see Q9, [41]).

Tâtonnement Nondeterminism. The algorithms evaluated
in §6 can be viewed as a randomized approximation scheme,
which raises the question of whether a malicious operator
can manipulate the approximation. Note that the level of
approximation error (as defined in §B) can be measured,
so non-anonymous node operators can be penalized for
malfeasance. When regulation is not possible, Tâtonnement
can be made deterministic by fixing a set of control parameters
for each instance and choosing the solution with the lowest
approximation error (or lowest unrealized utility, §6.2). The
Stellar implementation uses a static set of control parameters
with one Tâtonnement instance. Node operators could also
compete to compute prices accurately, as in [7].

Nondeterministic Overdraft Prevention. SPEEDEX
needs to prevent an account from spending more than its
balance of an asset. As discussed in §3, our implementation
considers a proposal valid only if no account is overdrafted
after applying the block. This design complicates pipelining
of consensus with execution, gives plausible deniability for
delaying transactions, and is incompatible with cryptographic
commit-reveal schemes.

Instead, given a fixed block of transactions, an implemen-
tation could first compute, for each account, the total amount
of each asset debited from the account (before applying any
credits). If there is any possibility for an account to overdraft
in this block, then this amount must exceed the account’s
balance. As such, to ensure that no accounts overdraft, the
implementation can remove all transactions from accounts
that might overdraft. Note that this determination is made on a
per-account basis, before any transactions are removed, so this
filtering requires only one, parallelizable pass over a block of
transactions, adding only minimal overhead (§I). Furthermore,
only accounts that attempt to overdraft are affected.

Other commutativity conflicts, such as cancelling an offer
twice or reusing a sequence number, can be handled similarly,
by removing all transactions involved in these conflicts. Note
that using these filtering criteria, removing a transaction
cannot cause a commutativity conflict. The Stellar blockchain
plans this approach.

Other Types of Front-Running. The set of pending trans-
actions is public in many blockchains. One might estimate the
clearing prices in a future batch and arbitrage the batch against
low-latency markets. This could lead to negative externalities

(see [42], footnote 1), and could merit combining SPEEDEX
with a commit-reveal scheme such as [52, 117]. Such a design
requires the deterministic overdraft-prevention scheme above.

Malicious nodes might also delay transactions. An imple-
mentation could buffer several blocks of transactions from
a consensus protocol into a single SPEEDEX batch. If even
one of these consensus blocks is from an honest replica (that
does not censor transactions), a user could ensure that their
transaction cannot be delayed from one SPEEDEX batch to the
next (by broadcasting to all replicas). This requires a consensus
protocol with sufficient chain quality [67]. Alternatively, some
DAG-based protocols [56, 79] simultaneously commit many
blocks of transactions from different replicas. Grouping these
blocks into one SPEEDEX batch, instead of ordering them
arbitrarily, achieves the same censorship-resistance property.
These designs would likewise require the deterministic
overdraft-prevention scheme.

Linear Program Scalability. The runtime to solve the linear
program increases dramatically beyond 60-80 assets, limiting
the number of assets in a SPEEDEX batch. A deployment could
take advantage of market structure—there are many assets (e.g.,
stocks) in the real world, but most are linked to one geographic
area or economy, and are primarily traded against one currency.
We formally show in §E that in this case, the price computa-
tion problem can be decomposed between core pricing (i.e.,
numeraire) currencies and the external stocks. After running
Tâtonnement on the core currencies, each stock can be priced
on its own relative to a core currency. This lets SPEEDEX sup-
port real-world transaction patterns with an arbitrary number
of assets and a small number of pricing currencies.

§D points out that setting the commission to 0 simplifies the
linear program to one that is more algorithmically tractable
at larger numbers of assets. The Stellar implementation uses
this version of the linear program.

Limited Trade Types. Trades on SPEEDEX are limited to
trades selling a fixed amount of one asset in exchange for as
much as possible of another. SPEEDEX does not implement
offers to buy a fixed amount of an asset in exchange for as
little as possible of another. These buy offers admit the same
logarithmic transformation as in §5.1, but make the price
computation problem PPAD-hard, a complexity class that is
widely conjectured to be algorithmically intractable in poly-
nomial time (§H). One could compute prices using only sell
offers and integrate buy offers in the linear programming step.

Ramseyer et al. [96] show how to integrate Constant Func-
tion Market Makers (CFMMs) [28] into the exchange market
framework and Tâtonnement. The Stellar implementation
uses this integration with its own CFMMs.

9 Implementation Details
The standalone SPEEDEX evaluated in §6 and §7 is a
blockchain using HotStuff [115] for consensus. A leader node
periodically mints a new block from the memory pool and
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feeds the block to the consensus algorithm. Other nodes apply
the block once it has been finalized by consensus. A faulty
node can propose an invalid block. Consensus may finalize
invalid blocks, but these blocks have no effect when applied.

The implementation is available open source at
https://github.com/scslab/speedex and consists
of∼30,000 lines of C++20, plus∼5,000 lines for our Hotstuff
implementation. It uses Intel’s TBB library [8] to manage
parallel work scheduling, the GNU Linear Programming
Kit [86] to solve linear programs, and LMDB [50] to manage
data persistence (for crash recovery).

Exchange state is stored in a collection of custom Merkle-
Patricia tries; hashable tries allow nodes to efficiently compare
state (to check consensus) and build short state proofs.

The rest of this section outlines additional design choices
built into SPEEDEX. Additional design choices in §K. All opti-
mizations (save §9.1) are implemented in the evaluated system.

9.1 Blockchain Integration
An existing blockchain with its own (non-commutative) seman-
tics can integrate SPEEDEX by splitting block execution into
phases: first applying all SPEEDEX transactions (in parallel),
then applying legacy transactions (sequentially). SPEEDEX’s
scalability lets a blockchain charge only a marginal fee for
transactions (to prevent spam). A proof-of-stake integration
of SPEEDEX could penalize faulty proposals.

SPEEDEX’s economic properties are desirable independent
of scalability. The initial Stellar implementation uses two-
phase blocks, but the SPEEDEX phase is still implemented
sequentially. As a result, the initial implementation is
simple (adding only∼5,000 lines to the server daemon) and
the primary benefits are economic. However, because the
transaction semantics are commutative, engineers can work
to parallelize the implementation as needed, without formally
upgrading the protocol (which is more difficult than releasing
a software update).

9.2 Caches and Tâtonnement
Tâtonnement spends most of its runtime computing demand
queries. Each query consists of several binary searches over
large lists, so the runtime depends heavily on memory latency
and cache performance. Towards the end of Tâtonnement,
when the algorithm takes small steps, one query reads almost
exactly the same memory locations as the previous query, so
the cache miss rate can be extremely low.

Instead of querying the offer tries directly, we precompute
for each asset pair a list that records, for each unique limit
price, the amount of an asset offered for sale below the price
(§G). Laying out this information contiguously improves
cache performance.

We also execute the binary searches of one Tâtonnement
iteration in parallel. One primary thread computes price
updates and wakes helper threads. However, each round of
Tâtonnement is already fast on one thread—with 50 assets and

millions of offers, one round takes 400–600µs. To minimize
synchronization latency and avoid letting the kernel migrate
threads between cores (which harms cache performance), we
operate these helper threads via spinlocks and memory fences.
In the tests of §6, we see minimal benefit beyond 4–6 helper
threads, but this suffices to reduce each query to 50–150µs.

Finally, there is a tradeoff between running more copies of
Tâtonnement with different settings and the performance of
each copy. More concurrent replicas of Tâtonnement mean
more cache traffic and higher cache miss rates.

We accelerate the rest of Tâtonnement by exclusively using
fixed-point arithmetic (rather than floating-point).

9.3 Batched Trie Design
Our tries use a fan-out of 16 and hash nodes with the 32-byte
BLAKE2b cryptographic hash [34]. Both the layout of trie
nodes and the work partitioning are designed to avoid having
multiple threads writing to the same cache line.

The commutativity of SPEEDEX’s semantics opens up an
efficient design space for our data structures, which need only
materialize state changes once per block. Tries need only re-
compute a root hash once per block, for example, instead of
after every modification. Threads locally build tries recording
insertions, which are merged together in one batch operation
(which is also parallelizable by redividing local tries into dis-
joint key ranges). Deletions (when offers are cancelled) are
implemented via atomic flags on trie nodes; to enable effi-
cient cleanup of deleted nodes, each node stores the number
of deleted nodes beneath it. To facilitate efficient work distri-
bution, each node also stores the number of leaves below it.

SPEEDEX builds in every block an ephemeral trie that logs
which accounts are modified; specifically, it maps an account
ID to a list of its transactions and to the IDs of transactions
from other accounts that modified it. This enables construction
of short proofs of account state changes. This trie also uses
the same key space as the main account state trie, which lets
SPEEDEX use the ephemeral trie to efficiently divide work
on the (much larger) account trie.

Memory allocation for an emphemeral trie is trivial because
no ephemeral trie node is carried over from one block to
the next. Every thread has a local arena, allocation simply
increments an arena index, and garbage collection means just
setting the index to 0 at the end of a block. We find it to be
not a problem if some of the memory in the arena is wasted;
we allocate the potential children of an ephemeral trie node
contiguously, so a node need only store a 4-byte base pointer
(buffer index) and a bitmap denoting the active children. This
lets each ephemeral trie node fit in one 64-byte cache line.

10 Related Work
Blockchain Scaling. Our approach is inspired by Clements
et al. [51], who improve performance in the Linux kernel
through commutative syscall semantics.

Chen et al. [49] speculatively execute Ethereum transactions
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to achieve a∼6x overall execution speedup. Other approaches
to concurrent execution include optimistic concurrency
control [70, 111], invalidating conflicting transactions [27],
broadcasting conflict resolution information [29, 60], or
partitioning transactions into nonconflicting sets [35, 74, 116].
This problem is related to that of building deterministic
databases and software transactional memory [94,105,110]. Li
et al. [83] build a distributed database where some transactions
are tagged as commutative.

Empirical work [66, 98] finds that a small number of
Ethereum contracts, often token contracts, are historically
responsible for the majority of conflicts that limit optimistic
execution. A recent Solana [112] outage resulted in part when
many transactions conflicted on one orderbook contract [99].

Project Hamilton [85] develops a CBDC payments platform.
The authors find that totally-ordered semantics become a
performance bottleneck. Unlike SPEEDEX, which stores
asset balances in accounts, this system requires the more
restrictive unspent transaction output (UTXO) model.

Some systems move transaction execution off-chain,
into so-called “Layer-2” networks, each with different
capabilities, perfomance, interoperability, and security
tradeoffs [11, 13, 18, 21, 78, 92, 93]. Other blockchains
[6, 27, 103, 109, 118] split state into concurrently-running
shards, at the cost of complicating cross-shard transactions.

(Distributed) Exchanges. Budish et al. [42, 43] argue
that exchanges should process orders in batches to combat
automated arbitrage and improve liquidity.

Other defenses against front-running include cryptographic
commit-reveal schemes [52, 72, 100, 117] or “fair” ordering
schemes that assume a bounded fraction of malicious
nodes [40, 80, 119]. The front-running attacks that SPEEDEX
prevents are not guaranteed to be blocked in these schemes.
For example, a replica might plausibly front-run a transaction
in [80] by investing in lower-latency network links between
itself and other replicas than other replicas have with each
other, and commit-reveal schemes do not prevent statistical
front-running (guessing the contents of a transaction).

Some blockchains build limit-order DEX mechanisms
natively [2, 16] or as smart contracts [14]. Smart contracts
known as Automated Market-Makers (AMMs) [24, 64, 73, 87]
facilitate passive market-making on-chain [28].

0x and a past version of Loopring [19,108] allow settlement
on-chain of orders matched off-chain, in pairs or in cycles.
StarkEx [15,36] gives cryptographic tools to prove correctness
of an off-chain exchange.

CoWSwap [5, 7] uses mixed-integer programming to clear
offers in batches of at most 100 [20]. Solvers compete to
produce the best solution. The former Binance DEX [3] com-
puted per-asset-pair prices in each block. The Penumbra DEX
uses homomorphic encryption to privately make batch swaps
against an AMM, but cannot let users set limit prices [12].

Price Computation. Our algorithms solve instances of
the special case of the Arrow-Debreu exchange market [33]
where every utility function is linear. Equilibria can be
approximated in these markets using combinatorial algorithms
such as those of Jain et al. [77] and Devanur et al. [58] and
exactly via the ellipsoid method and simultaneous diophantine
approximation [76]. Duan et al. [62] construct an exact
combinatorial algorithm, which Garg et al. [69] extend to an
algorithm with strongly-polynomial running time. Ye [114]
gives a path-following interior point method, and Devanur et
al. [57] construct a convex program. Codenotti et al. [53, 54]
show that a version of the Tâtonnement process [32] converges
to an approximate equilibrium in polynomial time. Garg et
al. [68] give another algorithm based on demand queries.

11 Conclusion
SPEEDEX is a fully on-chain DEX that can scale to more than
200,000 transactions per second with tens of millions of open
trade offers. SPEEDEX requires no offchain rollups and no
sharding of the exchange’s logical state. To make SPEEDEX
faster, one can simply give SPEEDEX more CPU cores,
without changing the semantics or user interface. Because
SPEEDEX operates as a logically-unified platform, instead
of a sharded network, SPEEDEX does not fragment liquidity
between subsystems and creates no cross-rollup arbitrage.

In addition, SPEEDEX displays several independently
useful economic properties. It eliminates risk-free front run-
ning; any user who can get their offer to the exchange before
a block cutoff time can get the same exchange rate as every
other trader. SPEEDEX also eliminates internal arbitrage,
which disincentivizes network spam. And finally, SPEEDEX
eliminates the need to transact through intermediate, reserve
currencies, instead allowing a user to trade directly from one
asset to any other asset listed on the exchange, with the same
or better market liquidity as the trader would have gotten by
trading through a series of intermediate currencies.

SPEEDEX is free software, available at https:
//github.com/scslab/speedex.
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Appendix A Mathematical Model Underlying
SPEEDEX

Mathematically, SPEEDEX relies on a correspondence
between a batch of trade offers and an instance of a lin-
ear Arrow-Debreu Exchange Market [33]. Specifically,
SPEEDEX’s batch computation is equivalent to the problem
of computing equilibria in these markets.

A.1 Arrow-Debreu Exchange Markets
The Arrow-Debreu Exchange Market is a classic model from
the economics and theoretical computer science literature.
Conceptually, there exists in this market a set of independent
agents, each with its own endowment of goods. Each agent
has some set of preferences over possible collections of goods.
These goods are tradeable on an open market, and agents, all
at the same time, make any set of trades that they wish with
the market (or auctioneer), not directly with each other.

Definition 1 (Arrow-Debreu Exchange Market). An Arrow-
Debreu Exchange Market consists of a set of goods A and a
set of agents j∈{1,...,M}. Every agent j has a utility function
u j(·) and an endowment e j∈R

|A|
≥0 .

When the market trades at prices p ∈ R|A|≥0 , every agent
sells their endowment to the market in exchange for revenue
s j = p·e j, which the agent immediately spends at the market
to buy back an optimal bundle of goods x j ∈ R|A|≥0 - that is,
x j =argmaxx:∑A∈AxA pA≤s j

u j(x).

There are countless variants on this definition. Typically
the utility functions are assumed to be quasi-convex. Some
variants include stock dividents, corporations, production of
new goods from existing goods, and multiple trading rounds.
SPEEDEX uses only the model outlined above—SPEEDEX
looks only at snapshots of the market, i.e., once per block, and
computes batch results for each block independently.

One potential objection to the above definition is that it
assumes that the abstract market has sufficient quantities avail-
able so that every agent can make its preferred trades. We say
that a market is at equilibrium when agents can make their pre-
ferred trades and the market does not have a deficit in any good.

Definition 2 (Market Equilibrium). An equilibrium of an
Arrow-Debreu market is a set of prices p and an allocation x j
for every agent j, such that for all goods A , ∑ jeA , j≥∑ jxA , j,
and x j is an optimal bundle for agent j. The inequality for
asset A is tight whenever pA is nonzero.

Note that an equilibrium includes both a set of market prices
and a choice of a utility-maximizing set of goods for each
agent. Say, for example, there are two goods A and B , and one
unit of each is sold by other agents to the market. If two agents
are indifferent to receiving either good, then the equilibrium
must specify whether the first receives A or B , and vice versa
for the second. It would not be a market equilibrium for both
of these agents to purchase a unit of A and no units of B .

A.2 From SPEEDEX to Exchange Markets
SPEEDEX users do not submit abstract utility functions to
an abstract market. However, most natural types of trade offers
can be encoded as a simple utility function.

Specifically, our implementation of SPEEDEX accepts
limit sell orders of the following form.

Definition 3 (Limit Sell Offer). A Sell Offer (S , B , e, α) is
request to sell e units of good S in exchange for some number
k units of good B , subject to the condition that k≥αe.

The user who submits this offer implicitly says that they
value k units of B more than e units of S if and only if k≥αe.
These preferences are representable as a linear utility function.

Theorem 2. Suppose a user submits a sell offer (S , B ,
e, α). The optimal behavior of this offer (and the user’s
implicit preferences) is equivalent to maximizing the function
u(xS ,xB)=αxB+xB (for xS ,xB amounts of goods S and B).

Proof. Such an offer makes no trades if pS/pB <α and trades
in full if pS/pB >α.

The user starts with k units of S . In the exchange market
model, the user can trade these k units of S in exchange for
any quantities xS of S and xB of B , subject to the constraint
that pS xS +pB xB≤kpS .

The function u(xS ,xB) = αxB + xS is maximized, subject
to the above constraint, by (xB,xS ) = (0,k) precisely when
pS/pB <α and by (xB ,xS )= (kpS/pB ,0) otherwise (and by
any convex combination of the two when pS/pB =α). These
allocations correspond exactly to the optimal behavior of a
limit sell offer.

Note that these utility functions have nonzero marginal
utility for only two types of assets, and are not arbitrary linear
utilities. Ramseyer et al. [96] find anecdotal evidence that this
subclass of utility functions may be analytically more tractable
than the case of general linear utilities.

A.3 Existence of Unique* Equilibrium Prices
Theorem 3. All of the market instances which SPEEDEX
considers contain an equilibrium with nonzero prices.

Proof. All of the utilities of agents derived from limit sell
offers are linear (Theorem 2), and have a nonzero marginal
utility on the good being sold.

This means our market instances trivially satisfy condition
(*) of Devanur et al. [57]. Existence of an equilibrium with
nonzero prices follows therefore from Theorem 1 of [57].

In fact, all of the equilibria in a market instance contain the
same equilibrium prices, unless there are two sets of assets
across which no trading activity occurs. In such a case, one
might be able to uniformly increase or decrease all the prices
together on one set of assets, relative to the other set of assets.
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Theorem 4. Suppose there are two equilibria (p,x) and (p′,x′)
and there exist two assets A and B for which pA/pB < p′A/p′B .

Then it must be the case that there is a partitioning of the
assets A1,A2 with A ∈ A1,B ∈ A2 such that both equilibria
include no trading activity across the partition.

Proof. Consider the set of offers trading from A to B . Let
ZA ,B(r) be the set of amounts of asset A that may be sold (when
every agent receives an optimal bundle) by these offers to the
market at an exchange rate r= pA/pB . Observe that if r1<r2,
then every z1∈ZA ,B(r1) is no more than than any z2∈ZA ,B(r2)
(as sell offers always prefer higher exchange rates).

At the equilibrium (p,x), let zA ,B be the total amount of A
sold for B for every asset pair (and z′A ,B similarly for (p′,x′)).
Note that zA ,B ∈ZA ,B(pA/pB).

Suppose that there exists a pair of assets A ,B as in the
theorem statement. Then there exists a set of assets A1 such
that for every asset pair C ∈A1 and D /∈A1, pC/pD < p′C/p′D .

For each of these asset pairs, we must have that zC ,D≤z′C ,D ,

zD,C ≥ z′D,C , and pC
pD

zC ,D ≤ p′C
p′D

z′C ,D . Combining these
equations gives

pC zC ,D−pDzD,C ≤(p′C z′C ,D−p′Dz′D,C )pD/p′D

Each of these inequalities is tight if and only if zC ,D =0.
It is without loss of generality to rescale p′ so that

pD/p′D <1 for all D /∈A1. Thus,

pC zC ,D−pDzD,C ≤(p′C z′C ,D−p′Dz′D,C )

Because (p,x) and (p′,x′) are equilibria, we must have that

0 = ∑
C∈A1

∑
D /∈A1

pC zC ,D − pDzD,C

≤ ∑
C∈A1

∑
D /∈A1

p′C z′C ,D − p′Dz′D,C

But the second inequality is tight only if each zC ,D =0.
Hence, (p′,x′) can only be an equilibrium if there exists

a partitioning of the assets that separates A and B , and for
which there is no trading activity between the sets in either
equilibrium.

Corollary 1. Let (p,x) be an equilibrium.
Construct an undirected graph G=(V,E) with one vertex

for each asset, and an edge e=(A ,B)∈E if, at equilibrium,
any A is sold for B or any B is sold for A .

If G is connected, then the market equilibrium prices p are
unique (up to uniform rescaling).

Proof. If the theorem hypothesis holds, then for any other
equilibrium (p′,x′), it must be the case that for every asset
pair (A ,B), pA/pB = p′A/p′B . By Theorem 4, if this did not
hold, then there would exist a partitioning of V into two sets
of assets, across which there is no trading at equilibrium (p,x)
(contradicting the assumption that G is connected).

Appendix B Approximation Error
SPEEDEX measures two forms of approximation error: first,
every trade is charged a ε transaction commision, and second,
some offers with in-the-money limit prices might not be able
to be executed (while preserving asset conservation). Formally,
the output of the batch price computation is a price pA on each
asset A , and a trade amount xA ,B denoting the amount of A
sold in exchange for B .

Formally, we say that the result of a batch price computation
is (ε,µ)-approximate if:

1 Asset conservation is preserved with an ε commission.
The amount of A sold to the auctioneer, ΣB xA ,B , must
exceed the amount of A bought from the auctioneer,
ΣB(1−ε) pB

pA
xB,A .

2 No offer trades outside of its limit price. That is to say,
an offer selling A for B with a limit price of r cannot
execute if pA

pB
<r.

3 No offer with a limit price “far” from the batch exchange
rate does not trade. That is to say, an offer selling A for B
with a limit price of r must trade in full if r<(1−µ) pA

pB
.

Intuitively, the lower the limit price, the more an offer
prefers trading to not trading.

This notion of approximation is closely related to but not
exactly the same as notions of approximation used in the
theoretical literature on Arrow-Debreu exchange markets
(e.g., [53], Definition 1). In particular, we find it valuable in
SPEEDEX to distinguish between the two types of approx-
imation error (and measure each separately) and SPEEDEX
must maintain certain guarantees exactly (e.g., assets must
be conserved, and no offer can trade outside its limit price).

Appendix C Tâtonnement Modifications
C.1 Price Update Rule
One significant algorithmic difference between the Tâton-
nement implemented within SPEEDEX and the Tâtonnement
described in Codenotti et al. [53] is the method in which
Tâtonnement adjusts prices in response to a demand query.
Codenotti et al. use an additive rule that they find amenable
to theoretical analysis. If Z(p) is the market demand at prices
p, they update prices according to the following rule:

pA← pA+ZA(p)δ (1)

for some constant δ. The authors show that there is a
sufficiently small δ so that Tâtonnement is guaranteed to move
closer to an equilibrium after each step.

The relevant constant is unfortunately far too small to be
usable in practice, and more generally, we want an algorithm
that can quickly adapt to a wide variety of market conditions
(not one that always proceeds at a slow pace).
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First, we update prices multiplicatively, rather than
additively. This dramatically reduces the number of required
rounds, especially when Tâtonnement starts at prices that are
far from the clearing prices.

pA← pA(1+ZA(p)δ) (2)

Second, we normalize asset amounts by asset prices, so that
our algorithm will be invariant to redenominating an asset. It
is equivalent to trade 100 pennies or 1 USD, and our algorithm
performs better when it can take that kind of context into
account.

pA← pA(1+pA ZA(p)δ) (3)

Next, we make δ a variable factor. We use a heuristic to
guide the dynamic adjustment. Our experiments used the l2

norm of the price-normalized demand vector, ∑A(pA ZA(p))2;
other natural heuristics (i.e. other lp norms) perform compa-
rably (albeit not quite as well). In every round, Tâtonnement
computes this heuristic at its current set of candidate prices,
and at the prices to which it would move should it take a
step with the current step size. If the heuristic goes down,
Tâtonnement makes the step and increases the step size, and
otherwise decreases the step size. This is akin to a backtracking
line search [31, 39] with a weakened termination condition.

pA← pA(1+pA ZA(p)δt) (4)

Finally, we normalize adjustments by a trade volume factor
νA . Without this adjustment factor, computing prices when one
asset is traded much less than another asset takes a large num-
ber of rounds, simply because the lesser traded asset’s price
updates are always of a lower magnitude than those of the more
traded asset. Many other numerical optimization problems run
most quickly when gradients are normalized (e.g., see [37]).

νA need not be perfectly accurate—indeed, knowing
the factor exactly would require first computing clearing
prices—but we can estimate it well enough from the trading
volume in prior blocks and from trading volume in earlier
rounds of Tâtonnement (specifically, we use the minimum of
the amount of an asset sold to the auctioneer and the amount
bought from the auctioneer). Real-world deployments could
estimate these factors using external market data.

Putting everything together gives the following update rule:

pA← pA(1+pA ZA(p)δtνA) (5)

The step size is represented internally as a 64-bit integer and
a constant scaling factor. As mentioned in §5.2, we run several
copies of Tâtonnement in parallel with different scaling
factors and different volume normalization strategies and take
whichever finishes first as the result.

C.1.1 Heuristic Choice

A natural question is why do we use the seemingly theoretically
unfounded l2 norm of the demand vector as our line-search

heuristic. A typical line search in an optimization context uses
the convex objective function of the optimization problem
(e.g., [39]). Devanur et al. [57] even give a convex objective
function for computing exchange market equilibria, which
we reproduce below (in a simplified form):

∑
i:mpi<

pSi
pBi

pSiEiln
(

mpi
pSi

pBi

)
−yiln(mpi) (6)

for mpi the minimum limit price of an offer i that sells Ei units
of good Si and buys good Bi, and yi =xi pSi for xi the amount
of Si sold by the offer to the market.

This objective is accompanied by an asset conservation
constraint for each asset A :

∑
i:Si=A

yi= ∑
i:Bi=A

yi (7)

However, unlike the problem formulation in [57], Tâtonnement
does not have decision variables {yi}. Rather, Tâtonnement
pretends offers respond rationally to market prices, and then
adjusts prices so that constraints become satisfied. As such,
mapping our algorithms onto the above formulation would
mean that yi = pSiEi if mpi <

pSi
pBi

and 0 otherwise (although
§C.2 would slightly change this picture). This would make
the objective universally 0, and thus not useful.

We could incorporate the constraints into the objective by
using the Lagrangian of the above problem, which gives the
objective

∑
A

λA( ∑
i:Si=A

yi(p)− ∑
i:Bi=A

yi(p)) (8)

for a set of langrange multipliers {λA}.
We write yi(p) to denote that in this formulation, offer

behavior is directly a function of prices. It appears difficult
to use equation 8 directly as an objective to minimize, as
it is nonconvex and the gradients of the functions yi(·) are
numerically unstable (even with the application of §C.2).

However, observe that equation 8 is another way of writing
“the l1 norm of the net demand vector” (weighted by the
lagrange multipliers). We use the l2 norm instead of the l1 to
sidestep the need to actually solve for these multipliers.

An observant reader might notice that the derivative of
Equation 8 with respect to λA is the amount by which (the
additive version of) Tâtonnement updates pA . This might
suggest using pA in place of λA in equation 8. However, that
search heuristic performs extremely poorly.

C.2 Demand Smoothing
Observe that the demand of a single offer is a (discontinuous)
step function; an offer trades in full when the market exchange
rate exceeds its limit price, and not at all when the market rate
is less than its limit price.

These discontinuities are difficult for Tâtonnement.
(Analogously, many optimization problems struggle on non-
differentiable objective functions.) As such, we approximate
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the behavior of each offer with a continuous function.
Recall that §B measures one form of approximation error

(using the parameter µ) which asks how closely realized
offer behavior matches optimal offer behavior. Specifically,
SPEEDEX wants to maintain the guarantee that every offer
(selling A for B) with a limit price below (1−µ) pA

pB
trades in

full, and those with limit prices above pA
pB

trade not at all.
As such, SPEEDEX has the flexibility to specify offer

behavior on the gap between (1−µ) pA
pB

and pA
pB

. Instead of a
step function, SPEEDEX linearly interpolates across the gap.
That is to say, if α= pA

pB
, we say that an offer with limit price

(1−µ)α≤β≤α sells an α−β

µα
fraction of its assets.

Observe that as µ gets increasingly small, this linear
interpolation becomes an increasingly close approximation
of a step function. This explains some of the behavior in
Figure 2, particularly why the price computation problem gets
increasingly difficult as µ decreases.

C.3 Periodic Feasibility Queries
Tâtonnement’s linear interpolation simplifies computing
each round, but also restricts the range of prices that meet
the approximation criteria, as it does not capitalize on the
flexibility we have in handling offers within µ of the market
price. As a result, Tâtonnement may arrive at adequate prices
without recognizing that fact. To identify good valuations,
SPEEDEX runs the more expensive linear program every
1,000 iterations of Tâtonnement.

Appendix D Linear Program
Recall that the role of the linear program in SPEEDEX is to
compute the maximum amount of trading activity possible
at a given set of prices. That is to say, Tâtonnement first
computes an approximate set of market clearing prices, and
then SPEEDEX runs this linear program taking the output of
Tâtonnement as a set of input, constant parameters.

Throughout the following, we denote the price of an asset
A (as output from Tâtonnement) as pA , and the amount of A
sold in exchange for B as xA ,B . We will also denote the two
forms of approximation error as ε and µ, as defined in §B.

To maintain asset conservation, the linear program must
satisfy the following constraint for every asset A :

∑
B

xA ,B≥∑
B
(1−ε)

pB
pA

xB,A

Define UA ,B to be the upper bound on the amount of A that
is available for sale by all offers with in the money limit prices
(i.e., limit prices at or below pA

pB
), and define LA ,B to be the

lower bound on the amount of A that must be exchanged for B
if SPEEDEX is to be µ-approximate (i.e., execute all offers with
minimum prices at or below (1−µ) pA

pB
, as described in §B).

Then the linear program must also satisfy the constraint,
for every asset pair (A ,B),

LA ,B≤xA ,B≤UA ,B

Informally, the goal of our linear program is to maximize
the total amount of trading activity. Any measurement of
trading activity needs to be invariant to redenominating assets;
intuitively, it is the same to trade 1 USD or 100 pennies. As
such, the objective of our linear program is:

∑
A ,B

pA xA ,B

Putting this all together gives the following linear program
(let A be the set of all assets):

max ∑
A ,B

pA xA ,B (9)

s.t. pA LA ,B≤ pA xA ,B≤ pAUA ,B(p) ∀A ,B∈A, (A 6=B)
(10)

pA ∑
B∈A

xA ,B≥(1−ε) ∑
B∈A

pB xB,A ∀A∈A (11)

From the point of view of the linear program, pA is a
constant (for each asset A). As such, this optimization problem
is in fact a linear program.

It is possible that Tâtonnement could output prices where
this linear program is infeasible (this is the case of the
Tâtonnement timeout, as discussed in §6). In these cases, we
set the lower bound on each xA ,B to be 0 instead of LA ,B . This
change makes the program always feasible (e.g., an assigment
of each variable to 0 satisfies the constraints).

Observe that as written, every instance of the variable xA ,B
appears adjacent to pA . We can simplify the program by
replacing each occurrence of pA xA ,B by a new variable yA ,B .
After solving the program, we can compute xA ,B as

yA ,B
pA

.
This substitution gives the following linear program:

max ∑
A ,B

yA ,B (12)

s.t. pA LA ,B≤yA ,B≤ pAUA ,B(p) ∀(A ,B), (A 6=B) (13)

∑
B∈A

yA ,B≥(1−ε) ∑
B∈A

yA ,B ∀A (14)

The Stellar implementation charges no transaction commis-
sion (i.e., sets ε to 0) in its SPEEDEX deployment. This makes
the linear program into an instance of the maximum circulation
problem (i.e., variable yA ,B denotes the flow from vertex A to
vertex B). It is well known that the constraint matrices of these
problems are totally unimodular (Chapter 19,Example 4 [101]).
This means that it always has an integral solution (Theorem
19.1, [101]) and can be solved by specialized algorithms
(such as those outlined in [81]). Some of these algorithms run
substantially faster than general simplex-based solvers.
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Appendix E Market Structure Decomposition
Suppose that the set of goods could be partitioned between
a set of numeraires, which might be traded with any other
asset, and a set of stocks, which are only traded with one of
the pricing assets.

Then SPEEDEX could compute a batch equilibrium by
first computing an equilibrium taking into account only
trades between pricing assets, then computing an equilibrium
exchange rate for every stock between the stock and its pricing
asset, and finally combining the results.

More specifically:

Theorem 5. Let A be the set of numeraires and S the set of
stocks. A stock S ∈S is traded with asset a(S)∈A.

Suppose (p,x) is an equilibrium for the restricted market
instance considering only the numeraires. For each S ∈ S,
let (r,y) be an equilibrium for the restricted market instance
considering only S and a(S).

Then (p′,x′) is an equilibrium for the entire market instance,
where

1. p′A = pA for A∈A

2. p′S =
(
rS/ra(S)

)
pa(S)

3. x′A ,B =xA ,B for A ,B∈A

4. x′S ,a(S)=yS ,a(S)

5. x′=0 otherwise

Proof. More generally, let G be a graph whose vertices are
the traded assets and which contains an edge (A ,B) if A and
B can be traded directly.

Decompose G into an arbitrary set of edge-disjoint
subgraphs {Gi}, such that any two subgraphs Gi,G j share
at most one common vertex. Then define a graph H whose
vertices are the subgraphs Gi, and where a subgraph Gi is
connected to G j if Gi and G j share a common vertex.

If H is acyclic, then an equilibrium can be reconstructed
from equilibria computed independently on each Gi.

We reconstruct a unified set of prices iteratively, traversing
along H. Given adjacent Gi and G j sharing common vertex vi j,
let (pi,xi) and (p j,x j) be equilibria on Gi and G j, respectively,
rescale all of the prices p j by pi

vi j
/p j

vi j.

This rescaling constructs a new equilibria (p j′,x j)for G j that
agrees with that of Gi on the price of the shared good. As such,
the combined system (pi∪ p j′,xi∪x j) forms an equilibrium
for Gi∪G j.

This iteration is possible precisely because H is acyclic (a cy-
cle could prevent us from finding a rescaling of some subgraph
that satisfied two constraints on the prices of shared vertices).

Fig. 8. Time to solve the convex program of Devanur et al. [57]
using the CVXPY toolkit [59], varying the number of assets
and offers.

Appendix F Alternative Batch Solving Strate-
gies

F.1 Convex Optimization
We implemented the convex program of Devanur et al. [57]
directly, using the CVXPY toolkit [59] backed by the ECOS
convex solver [61]. Figure 8 plots the runtimes we observed
to solve the problem while varying the number of assets and
offers.

The runtimes are not directly comparable to those of
Tâtonnement—namely, this strategy does not have the
potential to shortcircuit operation upon early arrival at an
equilibrium (our notions of approximation error also do not
directly translate to the notions used interally in the solver),
nor is it optimized for our particular class of problems.

The important observation is that the runtime of this
strategy scales linearly in the number of trade offers. Instances
trading 1000 offers, for example, take roughtly 10x as long
as instances trading only 100 offers.

This is not a surprising result, given that the number of
variables in the convex program scales linearly with the
number of trade offers.

The choice of solver strategy does not, of course, change the
structure of the input problem instances. The same observation
used in §5.1 makes it possible to refactor the convex program
so that the number of variables does not depend on the number
of open offers, and so that the objective (and its derivatives) can
be evaluated in time logarithmic in the number of open offers.

Unfortunately, this transformation makes the objective
nondifferentiable. The demand smoothing tactic of §C.2 gives
a differentiable but not twice differentiable objective (and
presents challenges regarding numerical stability of the deriva-
tive). Construction of a convex objective that approximates
that of [57] while maintaining sufficient smoothness and
numerical stability is an interesting open problem.
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F.2 Mixed Integer Programming
Gnosis (Walther, [7]) give several formulations of a batch
trading system as mixed-integer programming problems.
These formulations track token amounts as integers (instead
of as real numbers, as used in Tâtonnement’s underlying
mathematical formulation), which enables strict conservation
of asset amounts with no rounding error.

However, mixed-integer problems appear to be computa-
tionally difficult to solve. Walther [7] finds that the runtime of
this approach scales faster than linearly. Instances with more
than a few hundred assets appear to be intractable for practical
systems.

Appendix G Tâtonnement Preprocessing
We include this section so that this paper can provide a
comprehensive reference for anyone to develop their own
Tâtonnement implementation.

Every demand query in Tâtonnement requires computing,
for every asset pair, the amount of the asset available for
sale below the queried exchange rate. As discussed in
§9.2, Tâtonnement lays out contiguously in memory all the
information it needs to return this result quickly.

For a version of Tâtonnement without the demand smooth-
ing of §C.2, a demand query for exchange rate p (i.e. the ratio
of the price of the sold asset to the price of the purchased asset)

∑
i:mpi≤p

Ei (15)

where mpi denotes the minimum price of an offer i and Ei
denotes the amount of the asset offered for sale.

We can efficiently answer these queries by computing
expression 15 for every price p used as a limit price

Demand smoothing complicates the picture. The result of
a demand query (with smoothing parameter µ)

∑
i:mpi<p(1−µ)

Ei+ ∑
i:p(1−µ)≤mpi≤p

Ei∗(p−mpi)/(pµ) (16)

We can rearrange the second term of the summation into

1/(pµ) ∑
i:p(1−µ)≤mpi≤p

(pEi−Eimpi) (17)

With this, we can efficiently compute the demand query
after precomputing, for every unique price p that is used as
a limit price, both expression 15 and

∑
i:mpi<p

mpiEi (18)

The division in equation 16 can be avoided by recognizing
that Tâtonnement normalizes all asset amounts by asset
valuations (so equation 16 is always multiplied by p).

Appendix H Buy Offers are PPAD-hard
A natural type of trade offer is one that offers to sell any number
of units of one good to buy a fixed amount of a good (subject to
some minimum price constraint). We call these limit buy offers.

Example 2 (Limit Buy Offer). A user offers to buy 100 USD
in exchange for EUR, selling as few EUR as possible and only
if one EUR trades for at least 1.1 USD.

These offers unfortunately do not satsify a property known
as “Weak Gross Substitutability” (WGS, see e.g., [53]). This
property captures the core logic of Tâtonnement. If the price
of one good rises, the net demand for that good should fall,
and the net demand for every other good should rise (or at
least, not decrease). Limit sell offers satisfy this property, but
limit buy offers do not.

Example 3. The demand of the offer in of example 2, when
pEUR=2 and pUSD=1, is (−50 EUR,100 USD).

If pUSD rises to 1.6, then the demand for the offer is
(−80 EUR,100 USD).

Observe that the price of USD rose and the demand for
EUR fell.

Informally speaking, if offers do not satisfy the core logic
of Tâtonnement’s price update rule, then Tâtonnement cannot
handle them in a mathematically sound manner.

More formally, Chen et al. [48] show through Theorem 7
and Example 2.4 that markets consisting of collections of
limit buy offers are PPAD-hard. These theorems are phrased
in the language of the Arrow-Debreu exchange market model;
see §A for the correspondence between SPEEDEX and this
model. In fact, the utility functions used in Example 2.4 to
demonstrate an example “non-monotone” (i.e., defying WGS)
instance are of the type that would arise by mapping limit buy
offers into the Arrow-Debreu exchange market model.

Appendix I Deterministic Filtering Perfor-
mance

The deterministic transaction batch pruning system works
by eliminating the transactions from all of the accounts that
could create an unresolvable conflict. To be specific, if the
sum of the amount of an asset used (either sent in a payment
option or locked to create a offer) by all of an account’s
transactions exceeds that account’s balance, then that account’s
transactions are removed. If an account sends two transactions
with the same sequence number (both of which have valid
signatures, and the sequence numbers are higher than the
sequence number of the account’s most recent transaction), or
two transactions cancel the same offer ID, then that account’s
transactions are removed. If two transactions create the same
account ID, then both transactions are removed.

We generated batches of 400,000 transactions from the
same synthetic transaction model as in §7, and then duplicated
100,000 transactions at random to create a batch of 500,000.
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Fig. 9. Throughput of Block-STM on batches of “Aptos p2p”
transactions with varying thread counts (average of 100 trials).

A small number of accounts (1000) send transactions with
conflicting sequence numbers. We initialize the database
(again, 10 million accounts) to give each account a small
amount of money, and a small number (one or two hundred)
of accounts attempt to overdraft.

This filtering takes 0.13s and 0.07s seconds with 24 and 48
threads, respectively (averaged over 50 trials, after a warmup),
giving a 21.0× and 38.4× speedup over the serial benchmark.
On a more contested benchmark, with only 10,000 accounts
(almost all of which overdraft) the maximum speedup over
the single threaded trial is only 5.3×, but the overall filtering
runtime is still just 0.10s. Our implementation of the filtering
is not heavily optimized, but in either parameter setting, the
overhead is small.

Appendix J Block-STM Baseline
To provide a baseline for the measurements in Fig. 7, we
also ran Block-STM on our hardware (with hyperthreading
disabled, as in [70]). Fig. 9 displays the results.

These performance measurements are similar, quantita-
tively and qualitatively, to those reported in [70] (on different
hardware). Note that performance appears to reach a maximum
after approximately 16 to 24 threads, and, unlike SPEEDEX,
does not effectively use additional hardware beyond this point,
even on relatively low-contention workloads.

Appendix K Additional Implementation
Details

K.1 Data Organization
Account balances are stored in a Merkle-Patricia trie. However,
because a trie is not self-rebalancing, its worst-case adversarial
lookup performance can be slow. As such, we store account
balances in memory indexed by a red-black tree, with updates
pushed to the trie once per block.

For each pair of assets (A , B), we build a trie storing offers

selling asset A in exchange for B . Finally, in each block, we
build a trie logging which accounts were modified.

We store information in hashable tries so that nodes can
efficiently compare their database state with another replica’s
(to validate consensus and check for errors), and construct
short proofs for users about exchange state.

K.2 Data Storage and Persistence
SPEEDEX uses a combination of an in-memory cache and
ACID-compliant databases (several LMDB [50] instances).
This choice suffices for our experiments, but a database
that persists data in epochs, like Silo [106], or is otherwise
optimized for batch operation might improve performance.

Our implementation uses one LMDB instance for the set
of open offers, one instance for Hotstuff logs, one instance
for storing block headers, and 16 instances for storing
account states. LMDB is single-threaded, and we find that
the throughput of one thread generating database writes does
not keep up with SPEEDEX. Accounts are randomly divided
between these instances, according to a hash function keyed
by a (persistent) secret key (which is different per blockchain
node). This key must be kept secret so as to prevent nodes
from denial of service attacks.

Processing transactions in a nondeterministic order
complicates recovery from a database snapshot where a
block has been partially applied. Cancellation transactions,
in particular, refund to an account the remainder of an offer’s
asset amount. We therefore cannot recover if the snapshot
of the orderbooks is more recent than the snapshot of the
set of account balances, and our implementation takes care
to commit updates to the account LMDB instances before
committing updates to the orderbook LMDB.

K.3 Follower Optimizations
A block proposal includes the output of Tâtonnement and the
linear program in (the prices and trade amounts, as in §4.2).
This permits the nondeterminism in Tâtonnement (§5.2), and
lets the other nodes skip the work of running Tâtonnement.

Proposals also include, for every pair of assets, the trie key
of the offer with the highest minimum price that trades in
that block. When executing a proposal from another node, a
follower can compare the trie key of a newly created offer with
this marginal key and know immediately whether to make a
trade or add the offer to the resting orderbooks. A node also
defers all checks that an account balance is not overdrafted
to after it has executed all the transactions in a block.

K.4 Replay Prevention
Transactions have per-account sequence numbers to ensure
a transaction can execute only once. Many blockchains
require sequence numbers from an account to increase
strictly sequentially. Our implementation allows small gaps in
sequence numbers, but restricts sequence numbers to increase
by at most an arbitrary limit (64) in a given block. Allowing
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gaps simplifies some clients (such as our open-loop load
generator), but more importantly lets validators efficiently
track consumed sequence numbers out of order with a
fixed-size bitmap and hardware atomics.

The Stellar implementation requires strictly consecutive
sequence numbers, mostly for backwards compatibility.

K.5 Fast Offer Sorting
The running times of §6 do not include times to sort or
preprocess offers. Naïvely sorting large lists takes a long time.
Therefore, we build one trie storing offers per asset pair, and
we use an offer’s price, written in big-endian, as the first 6
bytes of the offer’s 22-byte trie key. Constructing the trie thus
automatically sorts offers by price.

Additionally, SPEEDEX executes offers with the lowest
minimum prices, so a set of offers executed in a round forms
a dense (set of) subtrie(s), which is trivial to remove.

K.6 Nondeterministic Block Assembly
As discussed in §3, SPEEDEX must assemble blocks of
transactions in a manner that guarantees no account is
overdrafted after applying all of the transactions in the
block. The block proposal system (Fig. 1, 2) manages this by
carefully controlling writes to shared state.

The proposal module takes as input a set of unconfirmed
transactions (the “mempool”, in typical blockchain parlance)
and outputs a proposed block containing a subset of the
unconfirmed transactions. For each candidate unconfirmed
transaction, a thread reserves the ability to perform all nec-
essary modifications by “locking” all relevant data elements.
Once a transaction acquires all of its locks, it performs its
necessary state modifications and finally releases the locks.
If it cannot acquire all necessary locks, it releases any locks
and excludes the transaction from the proposed block.

Conceptually, a transaction offering a trade or sending a
payment must lock the number of units of assets that could be
debited from the account if the operation succeeds. However,
doing this with spinlocks would preclude the scalability
displayed in Figure 7. Instead, most reservations are performed
with hardware atomics to decrement the number of available
units. Crediting an account can never fail because SPEEDEX
caps the total amount of any asset issued at INT64_MAX. This
process is conservative in that it may reject transactions that
could have executed safely.

Unique offer IDs ensure that no offer is created twice, and
atomic boolean flags ensure an offer cannot be cancelled twice.
Sequence numbers can be reserved by atomic bitmaps (as in
§K.4). For simplicity, our implementation does use exclusive
locks when creating new accounts (which we assume occurs
relatively infrequently).

Appendix L Additional Replicas
SPEEDEX invokes a consensus protocol no more than once per
second in our experiments. To demonstrate that this overhead

Fig. 10. Transactions per second on SPEEDEX when running
with 10 replicas (on weaker hardware than in Fig. 3), plotted
over the number of open offers.

is negligible, we ran SPEEDEX with 10 replicas, although with
weaker hardware per replica, due to resource limitations. Each
replica is one AWS c5ad.16xlarge instance, with one AMD
EPYC 7R32 processor (48 CPUs @ 2.8Ghz per physical chip,
32 of which are allocated to our instances), 128 GB of memory,
and two 1.1TB NVMe drives in a RAID0 configuration.
Performance measurements are plotted in Figure 10.

The overall throughput numbers are lower here than in
Figure 3 due to the weaker hardware, but the scalability trends
are the same. Doubling the thread count increases performance
by a factor of between 1.8x and 1.9x, except that the jump from
16 to 32 gives a roughly 1.4x increase due to contention with
background tasks (particularly logging to persistent storage).

This graph also highlights how SPEEDEX responds to
insufficient hardware resources. As the number of open offers
increases, SPEEDEX’s memory requirements increase. Even-
tually, memory starts to be paged to disk, which dramatically
increases disk usage and contends with the logging to persis-
tent storage. SPEEDEX slows down in response, to ensure for
safety that data in peristent storage is never too far out of sync.
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