
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Practical Intent-driven Routing
Configuration Synthesis

Sivaramakrishnan Ramanathan, Ying Zhang, Mohab Gawish,
Yogesh Mundada, Zhaodong Wang, Sangki Yun, Eric Lippert, and
Walid Taha, Meta; Minlan Yu, Harvard University; Jelena Mirkovic,

University of Southern California Information Sciences Institute
https://www.usenix.org/conference/nsdi23/presentation/ramanathan

Practical Intent-driven Routing Configuration Synthesis

Sivaramakrishnan Ramanathan
Meta

Ying Zhang
Meta

Mohab Gawish
Meta

Yogesh Mundada
Meta

Zhaodong Wang
Meta

Sangki Yun
Meta

Eric Lippert
Meta

Walid Taha
Meta

Minlan Yu
Harvard University

Jelena Mirkovic
USC/ISI

Abstract
Configuration of production datacenters is challenging due
to their scale (many switches), complexity (specific policy
requirements), and dynamism (need for many configuration
changes). This paper introduces Aura, a production-level syn-
thesis system for datacenter routing policies. It consists of a
high-level language, called RPL, that expresses the desired
behavior and a compiler that automatically generates switch
configurations. Unlike existing approaches, which generate
full network configuration for a static policy, Aura is built
to support frequent policy and network changes. It generates
and deploys multiple parallel policy collections, in a way that
supports smooth transitions between them without disrupt-
ing live production traffic. Aura has been deployed for over
two years in Meta datacenters and has greatly improved our
management efficiency. We also share our operational require-
ments and experiences, which can potentially inspire future
research.

1 Introduction

Stable and efficient routing in large data centers is crucial
for many online service providers. Routing misconfiguration
can lead to packet drops, traffic black holes, performance
degradation, and service downtime [2, 3, 9, 22]. Traditionally
at Meta datacenters, routing configuration relied on human
operator expertise to manually translate high-level routing
policies into low-level switch configurations. This approach
has two key problems.

First, manual generation of policies is often error-prone,
especially with the enormous increase in scale (thousands
of switches across multiple data centers), complexity (poli-
cies that describe specifications unique to a network), and
dynamism (configuration changes to accommodate failures
or maintenance of switches) of modern datacenters [10, 14].

Second, manually crafting configurations for datacenters
is a time-consuming process. Earlier data centers at Meta
were uniform and the similar configurations could be used
to provision new data centers. However, there is a need to

support diverse topologies required for various AI applica-
tions or existing topologies that are modified to accommodate
resource shortages caused by supply chain bottlenecks. With
the need to support diverse topologies, existing configurations
can no longer be reused and each new topology implies a long
process of manual configuration.

Recently, researchers have proposed configuration synthe-
sis [7, 8, 12], which automatically generates switch configu-
rations based on high-level policies. These systems usually
provide a declarative language for operators to define the
intended routing policies and then automatically synthesize
low-level routing configurations, which implement these poli-
cies. While these solutions work well in principle, there are
still a few challenges that are not handled by one-shot auto-
mated configuration synthesis.

Challenge 1: Handling dynamic configurations. Con-
figuration changes are frequent in networks, because of many
dynamic events. The dynamism is driven by different business
objectives (shifting services from one data center to another),
making network operations more efficient (e.g., smarter load
balancing or more redundancy to failure), safely testing new
protocols, or even performing regular routine maintenance of
switches. Configuration synthesis should be able to generate
configurations that natively handle dynamism.

Challenge 2: Expressing conditional policies. Current
declarative languages express routing policies in a way that is
not aligned with the realities of a production network. First,
they treat each switch as live and ready to serve traffic. Yet,
in large-scale data centers, switches can be in different opera-
tional states at the same time, and thus we need to be able to
express routing policies that depend on these states. Second,
current declarative languages specify all switches at a fixed
granularity (e.g., one specific switch [7] or all switches in the
specific role [8]). However, operational needs require speci-
fications at a flexible granularity. Some intents in high-level
policies may require specific switch or set of switches in one
location, while others may require all switches in a given role.

Challenge 3: Reconfigurations at scale. Existing brown-
field migration systems, plan out the configuration change

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 629

without disrupting production traffic by creating intermediate
configurations that would help transitioning the network from
old configuration to a new one [18, 23]. Although such tech-
niques provide a safe, non-disruptive mechanism to change
configurations, they can be expensive to carry out migrations.
Our experiences show that deploying a new configuration in
switches often takes a much longer time (minutes to hours)
than computing the configuration (e.g., seconds), primarily
because of the scale of the network. Given this constraint,
migrating configurations via transitioning would take a very
long time, hindering network operations.

In this paper, we introduce our configuration synthesis sys-
tem Aura1, which supports flexible granularity of policy in-
tents, conditional intents and scalable synthesis to BGP con-
figurations, to smoothly aid network dynamics. Our contribu-
tions are as follows:
• We propose a novel configuration synthesis approach,

which pre-compiles a set of possible paths for the datacen-
ter, called “base paths”, given a set of high-level policies.
Our insight is that given datacenter regularity and sym-
metry, any path can be expressed as one of a small set of
base paths. Network operators can use these base paths to
support dynamic configuration.

• We define a new declarative language called RPL (routing
policy language), which allows operators to define policy
intents with flexible switch granularities and activation
conditions, based on switch states.

• Aura leverages configuration staging and uses labels to ac-
tivate them. When there is a need to change configurations,
routes are announced with appropriate labels (e.g., BGP
community tags). Switches on receiving the labels, check
the appropriate configuration that match the conditions and
activate the configuration. This minimizes the need to re-
configure the network every time there is a need to change
the configuration.
In addition to our contributions, Aura has been partially

deployed in Meta datacenters for over two years, compiling
all policies on hundreds of thousands of switches daily. To the
best of our knowledge, we are the first to share operational
experiences in building and deploying a configuration syn-
thesis system. Our work unveils a unique set of challenges to
academia, which we hope may inspire future research.

2 Background and Challenges

As discussed earlier, large-scale datacenters need automated
configuration synthesis. Even with fully automated configura-
tion synthesis, carrying out a data center-wide policy change
still requires careful planning at every step, to ensure that
the network remains operational throughout the change. We
need to gradually roll out a policy change, with minimum

1We chose the name Aura, because it represents the essence (of an indi-
vidual).

FADU

SSW
SSW

FAUUOFAUU1

FADU1 FADUO

SSW1 SSWM

Rack
Switches

Fabric
Switches

Spine
Switches

Fabric
Aggregate
Switches

SLclient

Intents
I1: Client should reach service SL
running on the same pod

I2: As a backup, client can reach same
service SG running on a different pod

I3: Client should prefer primary local over
global

I4: Stop announcing route to peer that is
in DRAINED state

I5: Peers in WARM state should be less
preferred than LIVE state

I6: Carry traffic from infrastructure
prefixes even in DRAINED state

I7: Rack prefix should be propagated only
within the pods

I4 ,I5 ,I6

SG

I4 ,I5 ,I6

RSW1 RSW2 RSW3

FSWMFSW1

Pod1

I1, I3I7
RSW1 RSW2 RSW3

FSWMFSW1

Pod2

rack
prefix

rack
prefix I7 I2, I3

I4 ,I5 ,I6 I4 ,I5 ,I6

Figure 1: Data center topology with sample intents.

disruptions and safe fallback mechanisms. And we need to
support such rollout across hundreds of thousands of switches,
in different states of readiness. In this work, we stress one
overlooked goal of configuration synthesis: producing con-
figuration changes that lead to the shortest time to complete
the reconfiguration, and making the process automated, non-
disruptive to production traffic and with minimal operator
burden. In this section, we start by describing our data center
topology and routing intents. We then discuss the operational
challenges of configuration synthesis in large data centers.

2.1 Background
We use Figure 1 to illustrate our production network topol-
ogy [6,29], a few sample intents (I1 to I7) used in our network,
and the remaining open challenges, which our work addresses.
Data Center Topology: It consists of a hierarchy of four lay-
ers with thousands of switches at each layer. Switches at the
same layer share the same switch role. The servers are con-
nected to leaf rack switches (RSW). RSWs are connected to
fabric switches (FSW). RSWs and FSWs are grouped into
pods. Spine switches (SSW) connect the pods and provide
several disjoint paths between pods. Data centers are dis-
tributed over multiple buildings and are interconnected via
the Fabric Aggregation (FA) layer. The FA consists of two lay-
ers: FAUU (uplink) and FADU (downlink). FAUU connects
to data-center-external networks (i.e., the backbone planes),
while FADU aggregates downstream-data-center networks
by connecting to SSWs. In this work, we limit our scope of
configuration synthesis till the FAUU layer, and leave the con-

630 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

figuration synthesis of external switches for future work. This
topology enables several disjoint end-to-end paths between
any two server racks for failure resilience. Other topologies
in Meta datacenters share the same properties with different
numbers of layers and switch roles. Other large production
data centers exhibit similar symmetry of roles and hierarchy
of switch roles [24], and likely face similar challenges to
configuration synthesis.
Routing: We use the Border Gateway Protocol (BGP) to
disseminate routing information through the network and pro-
vide connectivity to end servers [5]. BGP is a highly scalable
routing protocol that can support large topologies with many
prefixes. BGP is also commonly supported many network
switch vendors, and network operators are typically familiar
with BGP operation. We configure BGP policies to manage
how routing information is shared across the network and to
control traffic flow objectives, such as traffic load-balancing,
redundancy, and path preference. At Meta, BGP configura-
tions within network tiers are homogeneous. We configure
BGP to use Equal Cost Multipath (ECMP), where each switch
forwards traffic equally to its neighboring peers based on the
routing policy. Meta data centers are also experimenting with
our own routing protocols such as OpenR [15] that is being
rolled out into parts of the data center. OpenR policies can
coexist with BGP policies. Currently, we use OpenR policies
for infrastructure prefixes (those prefixes belonging to the
management plane) and BGP for traffic prefixes.
Intents, policies, and configurations: We define an intent
as a high-level description of a routing goal, e.g., all rack
prefixes should be propagated within pods. Intents are closely
tied to our operational needs of service reachability, main-
tainability and reliability. [5]. Figure 1 shows seven intent
examples to achieve our needs in traffic control. I1, I2 and
I3 define reachability goals for a client to a service, that is, a
service should be reachable even when an instance of the ser-
vice is added, removed or migrated. Intents I4 and I5 help in
managing networks during such events without disrupting pro-
duction traffic, as switches often undergo maintenance when
they fail, reboot, or even crash. I6 is an exception to I4 that
aims to provide reliability under failure, and I7 confines the
propagation scope of a route. We will elaborate more about
these intents from §2.2 to §2.4. We define a policy to be a
collection of intents, e.g., a combination of intents I1 to I7. At
Meta, there are many data centers, and we define a collection
of policies known as configurations for every data center. For
example, the datacenter in Utah (EAG) has 53 policies with
each policy containing upto 5 intents. The synthesis process
starts with a policy specified by a domain-specific language
and produces a set of switch configurations.

2.2 Handling Dynamic Configurations

Configuration changes are frequent in production and often
impose a high operational burden to ensure live production

traffic is not affected. Previous synthesis systems focus on
generating one snapshot of the entire network’s configura-
tions [7, 8]. When changes happen, they have to rerun the en-
tire synthesis and generate another snapshot. There are three
common scenarios that necessitate configuration changes:

Intent changes: Intents describe high-level objectives of
reachability, aggregation, and route propagation (see [5] for
routing objectives). They can change due to various opera-
tional needs – a service migrating from one data center to an-
other, a better load balancing strategy (e.g., adding new paths
to a destination in the ECMP pool), a more resilient failure
recovery (e.g., adding a new backup path) or changing prefer-
ence strategy (e.g., when we would move from location-based
path selection to client-based preference, where the client can
themselves set a preference of which server they would like
to reach). The underlying routing configuration should reflect
these intent changes. To support changes between existing
intent collections, we need a synthesis approach that can gen-
erate multiple configurations in a switch and control when
each would activate. The same approach can add new policies
by enriching existing switches with new, inactive configu-
rations. New configurations can then be activated gradually
throughout the production network.

Policy implementation changes: We can implement intents
expressed by operators in different ways, by using different
protocols, or different mechanisms in one protocol. For exam-
ple, in BGP, one can carefully set MED values, IGP values,
or local preference values to achieve the same intents. In our
data centers, we are exploring alternative routing protocols
for better scalability, e.g. our home-grown intra-domain rout-
ing OpenR [15]. Thus, the same network-wide intents can be
supported in OpenR with a completely different set of con-
figurations compared to BGP. To facilitate testing, we need
to gracefully roll out OpenR configurations and replace old
BGP configurations. Such evolution requires a large amount
of changes to configurations on all switches. To minimize
impact to business, we need a way to gracefully migrate be-
tween configurations, and even roll back changes should they
prove inefficient.

Switch state changes: Switches constantly undergo changes
due to failures, new builds, and regular maintenance. In all of
these scenarios, we need to gracefully remove the impacted
switches from serving traffic, to minimize disruptions to ser-
vices. Switch state changes are common in our production
network. In the month of August 2022, there were about 745K
drain events with about 8K drain events on average per day.

2.3 Expressing Conditional Policies

Conditional policies require different configurations for a
given switch, depending on network conditions. There are
three common classes of network conditions:

Intents that apply to a subset of switches: Operators need

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 631

the flexibility to specify the groups of switches where a policy
intent is applied. Some intents should be applied globally,
while others may be relevant only for a specific service in a
particular region to have customized routing solution. It is
often needed during migration or deployment to accomodate
the changing capacity. For example, intents I1 to I3 specify
preference for local service SL over global service SG only for
RSWs in Pod1 and Pod2, whereas intent I7 applies to all RSWs
and restricts rack prefixes to pods. This means our intent
specification and synthesis should support conditions that
define groups of switches at different topological granularity.

Intents that apply to switches in a certain state: Data
center topologies support multiple paths between any pair
of server racks. Path selection depends on switch states.
We define three operational states for each switch: LIVE,
DRAINED, and WARM. A LIVE switch is in operation; it al-
lows all traffic and announcements to go through. Conversely,
a DRAINED switch is brought down for maintenance; it
should not carry any live production traffic. A switch being
drained goes through an intermediate WARM state when pre-
fixes are gradually removed from its announcements. In this
state, the switch could carry traffic for any prefix if the pre-
fix does not have other paths involving only LIVE switches.
Switch configurations should suppress announcements from
DRAINED switches (reflected in intent I4), and favor an-
nouncements from LIVE switches over those from WARM
switches (reflected in intent I5). To keep the production net-
work operational with these requirements, one method is to
synthesize, which generates multiple configurations, for dif-
ferent switch states. Only one configuration is active at the
time at a given switch, depending on the current state of the
switch. For instance, intent I4 specifies to stop announcing a
route to peers in DRAINED states and intent I5 specifies that
we prefer peers in LIVE states than those in WARM states.

Exceptions to policies: Network operators need to specify
exceptions to their policies for failure resilience. For instance,
as per intent I4, DRAINED switches do not carry any live traf-
fic. However, an exception to this intent is I6, which requires
DRAINED switches to carry traffic towards infrastructure
prefixes. Intent specification language needs to support excep-
tions for critical prefixes (e.g., infrastructure prefixes), and our
synthesis process must generate corresponding configurations
that treat those specific prefixes differently from others.

2.4 Reconfigurations At Scale
It is challenging to support dynamic policies and conditional
policies at production scale. Switch reconfiguration in a live
production network is expensive, because it typically requires
transferring away all the services that use the network and
draining all routes from the switch. After these actions, we
can bring down the switch, change the configurations, and
then bring up the switch again. Finally, the switch would be
tested before reintroducing the routes that it carried before

0 20 40 60 80

0

100

200

300

400

500

600

% of policies

tim
e

in
 h

ou
rs

(a) Configuration update times.

20 40 60 80 100

0

10

20

30

40

50

60

70

% of policies

%
 o

f s
w

itc
he

s

(b) Reconfigured switches.

Figure 2: Switch reconfiguration metrics.

reconfiguration. Typically, not all switches in the data center
are reconfigured at the same time. Instead, reconfiguration
is achieved in a phased manner, where only a portion of the
network is reconfigured at a time. This process could take
many weeks to update all switches, given the scale of a pro-
duction network, as well as the complexity of the phased
deployment [10]. Figure 2(a), shows the configuration update
times for policies that were changed at Meta in the last three
months of 2021. On average, switches can take upto 4.5 hours
to update. Most of the switches are updated immediately, but
some switches take very long to configure. The 95th percentile
of configuration update can take as much as 20 hours. This is
mainly caused due to switch failures that require additional
time to make them operational again.

Changing policies (e.g., switching between collections of
intents) can also have a large footprint, that is, it involves
the configuration of many switches. For instance, configuring
backbone policies typically involves changing configurations
for a few FA switches. On the other hand, introducing a new
technique to handle infrastructure prefixes (such as I6), would
involve a lot more switches, as they can go into a DRAIN
state. Figure 2(b) shows the percentage of switches in our
network that required configuration update for different policy
changes. An average policy change requires configuration of
at least 25.6% of switches. Reconfigurations are only going
to get longer as we typically double the number of switches
every five years [10]. Moreover, the time and complexity
taken for configuring switches differ depending on a switch’s
role. On one hand, FSW switches carry only a small por-
tion of traffic in our network. Given the redundancies of our
network, a failure in a FSW switch usually does not cause
issues in the network. On the other hand, aggregate switches,
such as fabric aggregators, carry a larger portion of traffic,
so their changes should be planned more carefully. Failures
during reconfiguration of these aggregator switches can be of
a higher consequence as they can disconnect buildings within
datacenters.

3 Aura Design

To address the outlined challenges, we present Aura in Fig-
ure 3. The goal of Aura is to allow network operators to

632 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Determine
Base Paths

Policy
Compiler &
Verification

Topology
Simplification

Reachability
Analysis

RPL
(operator specified)

Per Device
Configuration

Figure 3: Aura architecture.

express flexible policies that are capable of handling various
network reconfiguration scenarios at scale while minimizing
disruption to production traffic. Aura handles the challenges
outlined in §2 as follows:
• To support multiple configurations in a switch (as seen

in § 2.2), Aura uses a set of base paths to pre-configure
the network. Base paths are a collection of paths across
different types of switches, which have the property that
any propagation path in the network can be expressed as
the base path or a sub-path of the base path. In §3.1, we
explain how Aura uses topological features such as sym-
metry and hierarchy, along with reachability requirements
to determine the set of base paths.

• To handle dynamic policies (as seen in § 2.2), Aura uses a
labeling mechanism. If we are synthesizing into BGP con-
figurations, Aura generates configurations that match on
dedicated community tags and maps them to a correspond-
ing policy. This results in multiple configurations defined
in a single configuration file. In §3.2, Aura uses dedicated
community tags that are attached by every switch to indi-
cate its current state. Together with staging, this behaves as
if there is a change between an old and a new configuration
without the need for switch reconfiguration. Minimizing
reconfigurations helps in supporting changes in policies at
scale (as seen in §2.4).

• To express conditional policies (as seen in § 2.3), we intro-
duce conditions that depend on switch state.

• We design a routing policy language (RPL) for Aura (§4),
which uses base paths, switch conditions, route propaga-
tion conditions, and route preferences to express a set of
policies.

• Finally, a compiler generates BGP configurations from
RPL and tests configurations in the network (§5).

3.1 Base Paths: Minimizing Reconfiguration
Aura minimizes reconfiguration of large production networks
by pre-compiling the network with a set of paths known as
the base paths. Base paths are similar to pathlets, which are
fragments of paths representing nodes that are willing to
route [13]. The base path concept stems from the following
two insights.
• Policies can be defined on abstract paths: Modern data

center topologies are usually hierarchical, symmetric, and

Pod1

Data

center1

Pod2

Data

center1

Pod1

Data

center 2

RSW

Pod1

Data

center1

Pod2

Data

center1

Pod1

Data

center2

Reach RSW in the
same pod

Reach RSW in a
different pod (same

data center)

Link failureReach RSW in a
different pod

(different data
center)

Device
failure

FSW

SSW

FADU

FAUU

Backup PathPrimary Path

Figure 4: Extracting base paths.

uniform. To be resilient to failures and ease the operation,
most data centers classify switches into different roles ac-
cording to their layers in the FAT-tree like topology [24].
For example, every switch in the lowest layer (RSW in
our topology) has a south bound connection to servers in
a rack, and a north bound interface up to the aggregate
switches (FSW in our topology). Switches of the same
role are functionally equivalent. Thus, base paths can be
defined as abstract paths using these abstract switch roles.
In turn, policy intents can be expressed by using the base
path or a sub-path of the base path.

• Staging policies for dynamic scenarios: Our base path set
contains not only the preferred paths under a regular, static
scenario, but also alternative paths under many dynamic
scenarios, such as failures, migration, or maintenance as
discussed in §2.2. When these changes occur, we simply
need to select configurations that correspond to a different
subset of base paths. Aura’s synthesis has already deployed
all configurations in the individual switches, and we just
need to deactivate one configuration and activate the other.
We identify base paths by first simplifying datacenter topol-

ogy and then performing comprehensive reachability analysis
on that topology.

Topology simplification. We simplify a datacenter topol-
ogy by abstracting multiple switches that share some given
characteristic as a single switch. We can make abstractions at
different granularities. For example, we can abstract all RSWs
into a single node, or abstract all RSWs in the same pod into
a single node. It is important to find the right granularity to
maintain reachability without jeopardizing scale. Abstractions
at too fine granularity create many paths and jeopardize syn-
thesis scalability and operational maintainability. Abstractions
at too coarse granularity (e.g., single role – single switch [7])
do not allow us to stage paths at different scenarios, such as
intents I1 and I2, which requires traversing through specific
switches in the network. Moreover, role-based abstraction can

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 633

express these policies, but configuring switches to support
them is a challenge. For example, intent I2 requires visiting
the same switch role multiple times. Aura’s compiler needs a
way to keep track of propagating the announcement through
such paths (see §5).

Reachability analysis. We find a balanced abstraction by
performing a primary reachability analysis between RSW
switches on the minimal topology. We then extend these
paths to support alternative paths, to accommodate cases when
nodes on a primary path fail. Any duplicate paths will be col-
lapsed into a single path. Figure 4 illustrates this process. We
start with three primary paths: one between two RSWs in the
same pod, the second between two RSWs in different pods,
and the third between two RSWs in different datacenters.
Then we consider the failure of the direct FSW, direct SSW,
or direct FA switch (or links connecting them) on the primary
paths. For each failure we add nodes to express the backup
path. Note that we first consider single switch or link failures
on each primary path. Further, we consider larger failure sce-
narios such as regional failures and disasters. For example,
we consider backbone failure and craft the paths to provide
intra-region paths by traversing the FA layer. Currently, we
generate base paths according to our reachability objective,
which is, providing reachability of intents in the presence of
at most two failures (either link or device or both)2. Note that
the process of generating base paths is not unique to Meta’s
network. Any datacenter network can exploit its symmetry
and hierarchical nature to derive its base paths.

3.2 Staging and Labeling: Supporting Dy-
namic Configurations

We support network changes, while minimizing reconfigu-
ration via staging and labeling. These mechanisms help us
support parallel configurations in switches (with only one
configuration being active) and to support conditional intents.

• Staging configuration snippets and activating them with
labels are the two key techniques to allow coexistence
of multiple policies. Each policy is implemented as a set
of configurations and loaded onto the switches. A policy
may have a condition expressed as a combination of labels.
Only when the conditions are satisfied, the policy will be
activated.

• Propagating label with routes is the way we achieve con-
ditional policies. The labels are translated into BGP com-
munity tags in our synthesis process, and are attached to
routes and propagated through switches. Each switch can
match the conditions based on the current switch state, at-
tach its own state as community tags, and announce it to
downstream switches.

2We determined any failures beyond that would degrade capacity, thus
this would no longer be a reachability problem. We deploy other measures to
handle such large-scale failures, which are beyond the scope of this work.

We provide two examples to show how staging and labeling
support dynamic scenarios.

Supporting OpenR deployment. In our data centers, we
are developing an alternative routing protocol known as
OpenR [15] for better scalability. One challenge of applying
Aura to production is how to gracefully migrate the switch
configurations from an old to a new set of configurations.
BGP and OpenR configurations are completely different and
switching between them requires drastic changes to the fleet.
We use Aura to support this process with no disruptions, as
illustrated in Figure 5.

Prefix 1
Prefix 2

Prefix 1

Prefix 2 Prefix 1
Prefix 2

Old
Config

New
Config

Figure 5: Staging and subscription used for migration.

Both versions of configurations are staged on all switches3,
each snippet starts with an activating condition, mapped into
different BGP community tags. In Figure 5, we illustrate
this as red and blue tags. Network operators can then attach
tags to prefixes (prefix 1 or 2) to implement the policy for
that particular prefix. By this, Aura simultaneously supports
both the old and new policy. This technique also gives the
network operator the flexibility to shift traffic in any order
they like, and it also offers the fallback opportunity, should
the new policy have some unforeseen effects on traffic when
it is deployed.

Initially, all prefixes (prefix 1 and 2) use the old configu-
ration (blue). We start with prefixes of less critical services
first to avoid business disruptions. At the origin, Pre f ix2 is an-
nounced with the red tag, so when the announcement arrives
at intermediate switches, the corresponding red configura-
tion is activated and the blue configuration becomes inactive.
Other prefixes are gradually on-boarded to the new configu-
ration by switching their tags in announcements. If the new
configuration has any issue, we can safely switch back to the
old version by controlling community tags at the origin.

Handling switch maintenance. As explained in §2.2, routes
from LIVE switches are preferred over those from WARM
switches (intent I5), and routes from DRAINED switches
should not be used (intent I4). To reflect this policy, we stage
parallel configurations on each switch4 Each configuration
describes actions for a given state of this switch and a given

3FBOSS (Facebook Open Switching System [10]) supports concurrent
deployment of BGP and OpenR configurations.

4FBOSS supports parallel configurations for each device state via in-
stances. Each FBOSS instance contains a local control place and communi-
cates with the central network management system via thrift based service.
Although there can be several instances, only the active instance uses the
switch’s hardware resources [10]. We believe any other switch could also
achieve this by pushing necessary configurations from the control plane.

634 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RSW3 FSW1 RSW1

SSW1FSW1RSW3SG

SL

LIVE LIVE LIVE

DRAIN LIVE,

DRAIN

LIVE,

DRAIN

client

SL preferred over SG
(Intent I3)

Intent I1

Intent I2

Pod2 Pod2 Pod2

Pod1 Pod1 Pod1

RSW3
Pod2

rack

prefix

PC:1:2 PC:1:2 PC:1:3

SC:1:2 SC:1:2

Intent I7

SC: STOPCOMM

PC: PATHCOMM

Figure 6: Supporting conditional policies.

state of the neighboring switch sending announcements to
this switch. The actions could be adding/removing commu-
nity tags, setting preferences, and accepting/rejecting routes.
Taking intent I1 and I2 as an example, as shown in Figure 6,
there are two paths to the client to reach the local service SL
and the global service SG. Intent I3 specifies that I1 (primary)
is preferred over I2 (backup). The RSW switch along the
primary path is going through a DRAINED state, therefore
it attaches the DRAINED tag to its announcement. On the
other hand, the backup path contains all live switches and the
announcement only contains the LIVE tag. The downstream
switches on receiving both the announcements would prefer
the backup path to global prefix over the primary path to the
local prefix. To support this, switches in both primary and
backup paths should be configured to match the DRAINED
tag and allocate a lower preference to the primary path. In §5,
we show how to implement it with concrete BGP attributes.

4 RPL: Expressing Conditional Policies

Our routing policy language – RPL – allows a network oper-
ator to express high-level routing intents, by defining paths
and path preferences. We had two choices while designing
RPL – to make it a domain specific language (DSL), that is,
its syntax is designed from scratch or to make it an embedded
language based on Python. Embedded languages typically
benefit from existing IDE, debugger, type ahead assistant and
error messages, which allows for quick adoption by network
operators. However, embedded languages are hard to verify.
For instance, in Python, users can override basic operators
making it hard to verify a program without running it. On the
other hand, with DSL, the language itself can be defined in a
way that it can reject wrong programs and enforce invariants
we care about. We could also apply any number of static anal-
ysis techniques to determine the effect without running the
program. Therefore, we traded-off the flexibility provided by
embedded languages for correctness and verifiablity of DSL.

Syntax
name ::= string
rx ::= regular exp
lit ::= name | ∼name names
comp ::= <| >| = comp
bp ::= name {hops lit (->lit)*} base path
Bbp ::= base-paths {bp+} base path block
loc ::= name {regex-def rx (. rx)*} location
Bloc ::= locations {loc+} location block
tag ::= name rx tag
Btag ::= tags {tag+} tags block

Btop ::=

topology {
name {

Bloc | Btag | Bbp
}

}

topology block

Brout ::= routing {topology lit} routing block
o ::= origins {location lit} origin

pc ::=
propagate-condition {

lit (,lit)*
}

propagation
condition

p ::= name {hops lit (->lit)*} path
Bpath ::= paths {p+} path block
Bprop ::= propogation {pc Bpath} propagation block
pref ::= preference {lit (comp lit)+} preference

pol ::=

policies {
name {

Brout | o |
Bprop | pref

}
}

policy

Table 1: RPL block and leaf statements.

RPL’s syntax is designed from scratch and is based on
ANTLR [1] – an engine that provides basic syntax parsing.
ANTLR also allows us to easily extend the support of RPL
as and when our operational needs change. Table 1 shows
the collection of statements supported by RPL. Statements
are used to identify base paths, location of switches, describe
tags and define policies with their preferences and conditions.
Groups of these statements, known as “blocks,” are used to
describe different components of the policy. For example, the
topology block (Btop), describes the topology containing the
locations of switches, tags and base paths. The RPL program
required to support all policies discussed in Figure 1 is shown
in Figure 7. To handle the challenges of expressing flexible
policies (§2.3), RPL supports the following features.

Minimizing reconfigurations: RPL allows network opera-
tors to specify topology block (shown in lines 1–23) that helps
in pre-compiling the network. Specifically, in the topology
block, the operator can specify scopes of devices (§3.2), tags
(§3.2) and base paths (§3.1) that could be used by policies.
For example, to support intents I1 to I7, topology block f16
is sufficient. As described in §3.1, network operators are free

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 635

to specify any number of intents that could be supported by
this topology block. If operators want to support other intents,
they could always extend the topology block, but would re-
quire reconfiguration. From our operational experience, we
show in §6 that these changes configure much lesser number
of switches than competing approaches.

Supporting dynamic configurations: Network operators
can specify different policy in the policies block of an RPL
configuration file. This allows them to dynamically change
policy over time. Each policy block, contains the name of the
policy (e.g., RSW_REACHABILITY), routing (topology
block used by the policy), origin (origination location of
routes), propagation (set of paths used by the policy) and
preference (preference among paths or tags). In Figure 7,
policy RSW_REACHABILITY implements the intents I1 to
I5, policy ALLOW_INFRA implements intent I6 and policy
LIMIT_RACK_PREFIX implements intent I7. A network
operator may choose to apply any one of these policies for ap-
propriate prefixes. For instance, as described in an example in
§3.2, network operators may apply RSW_REACHABILITY
for services SL and SG and apply ALLOW_INFRA for infras-
tructure prefixes.

Expressing conditions with scopes: To support flexible
granularity of intents, RPL introduces the notion of a loca-
tions, i.e., one can define a switch in RPL at different levels
of granularity, such as switch role, switch ID, switch plane,
fabric, region, and the datacenter. A location can be defined
in the topology block (as shown in lines 3–12 in Figure 7).
Location definition consists of the switch role, followed by
switch number, pod number, fabric number, and datacenter
name. Some elements can also be replaced by wildcards. The
naming convention for our production network leverages the
symmetry of the network to keep it simple and uniform. For
example, the first spine plane in every data center would have
the same identification number [5]. Network operators can
leverage these naming conventions to define a scope. For
example, I1 requires the route to propagate through the first
RSW present in Pod1, present in the first fabric in the Altoona
(ATN) datacenter, scope RSW.3.2.1.1.ATN can be used.

Expressing different switch states: RPL introduces the
tags block to indicate tags that will be used to identify
switches in a given state. An example of the tags block is
shown from lines 13–17 in Figure 7, which defines tags
LIVE, DRAINED and WARM. These tags will eventually
be mapped in the synthesis process into BGP community
tags, which would be attached from every switch to com-
municate the state of the switch to its neighbors (see §5 for
implementation details). RPL also allows network operators
to limit the propagation of a route announcement by using
prop-condition statement. In Figure 7, we limit the prop-
agation of announcements based on the switch state to only
LIVE and WARM switches (line 29).

Handling exceptions: As per I6, DRAINED state switches

are required to carry traffic for infrastructure prefixes. Net-
work operators can define a new policy ALLOW_INFRA,
that allows DRAINED switches to propagate routes. Network
operators can use the ALLOW_INFRA policy for applicable
prefixes (as described in §3.2).

1 topology{
2 f16{
3 locations{
4 R1P1 { regex-def: RSW.1.1.1.1.ATN }
5 R3P1 { regex-def: RSW.3.1.1.1.ATN }
6 R3P2 { regex-def: RSW.3.2.1.1.ATN }
7 F1P1 { regex-def: FSW.1.1.1.1.ATN }
8 F1P2 { regex-def: FSW.1.2.1.1.ATN }
9 S1PL2 { regex-def: SSW.1.2.1.1.ATN }

10 FSW { regex-def:: FSW* }
11 RSW { regex-def:: RSW* }
12 }
13 tags{
14 LIVE L
15 WARM W
16 DRAIN D
17 }
18 base-paths{
19 B1 {hops RSW → FSW → RSW}
20 B2 {hops RSW → FSW → SSW → FSW → RSW}
21 }
22 }
23 }
24 policies{
25 RSW_REACHABILITY{
26 routing{topology f16}
27 origin{location RSW}
28 propagation{
29 prop-condition (L or W)← I4
30 paths{
31 path P1 R1P1 → F2P1 → R3P1 ← I1
32 path P2 R1P1 → F2P1 → S1PL2 → F2P2 → R3P2 ← I2
33 }
34 }
35 preference{
36 P1 > P2 ← I3
37 L > W ← I5
38 }
39 }
40 ALLOW_INFRA{
41 # Same routing, origin, paths as RSW_REACHABILITY
42 propagation{
43 prop-condition (L or W or D)← I6
44 }
45 preference{
46 L > W > D← I6
47 }
48 }
49 LIMIT_RACK_PREFIX{ ... } ← I7
50 }

Figure 7: RPL configuration describing policies.

5 Compiler Implementation

In this section, we discuss how Aura takes RPL specifica-
tion and synthesizes BGP configurations for various switches.
Aura uses properties of BGP to flexibly map the RPL specifi-
cation to switch configurations.

636 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.1 Supporting Base Paths

The production network would need to be pre-compiled to
support the base paths (specified in the topology block in
RPL). To achieve this, Aura utilizes reserved community tags
and generates rules to match these community tags. The key
idea of using community tags is similar to that of source
routing [26]. To implement a policy for a prefix, appropriate
community tags are attached to the prefix while announcing
it. On receiving the announcement, switches match on the
community tags and take appropriate action of allowing or
denying the route or modifying the tags. Although the idea
seems straightforward, the challenge is how to come up with
systematic community assignment that can be interpretable
and maintainable at scale. Our key idea is an easy to interpret
and debug encoding scheme that translates the base paths
and other intents directly into different bits in the community
attribute.

Encoding paths: Aura encodes the base paths into a struc-
ture called path community tags (PathComm for short). De-
pending on the number of base paths, Aura allocates a unique
PathComm with a format of PATHCOMM:P(1-10):H(1-6),
where numbers in parentheses denote the bit sizes of the fields.
The 10 most significant bits denote the unique base path ID P
and the least significant 6 bits denote the hop number H. Some
paths have switch roles that occur multiple times, e.g., intent
I2, where switch roles RSW and FSW occur twice. For such
paths, the hop count field is used to keep track of where the
announcement is on the path. Aura configures the switches
to support intent I2 as follows. At RSW on the first hop,
the switch matches announcements that contain the PATH-
COMM:1:1, modifies the community tag to PATHCOMM:1:2,
(i.e., increments the hop count), and allows the announcement
to be advertised to FSW. Similarly, Aura configures FSW to
match, modify and advertise the announcement to the corre-
sponding next-hop, that is RSW. When the announcement
reaches RSW again at the last hop, the switch matches PATH-
COMM:1:3, it stops announcing the announcement further.
Therefore at RSW, there are two sets of rules, one that matches
the announcement on the first hop (PATHCOMM:1:1) and
the other that matches the announcement on the third hop
(PATHCOMM:1:3). The use of the community tag ensures
the abstraction of the switch role is maintained without need-
ing to split roles of switches further to support multiple hops
over the same switch type on the same path.

Containing announcements: Some intents require an-
nouncements to be contained to a specific location. For in-
stance, intent I7 limits rack prefix to pods (Figure 6). To sup-
port this, Aura uses a dedicated community tag known as
stop community (StopComm for short). Similar to PathComm,
StopComm follows the format of STOPCOMM:P(1-10):H(1-
6), where P and H are used to denote the path ID and the
hop number to stop announcement respectively. For intent
I7, Aura appropriately configures RSW to stop propagating

MATCH:

RSW_REACHABILITY_TAG

GOTO: RSW_REACHABILITY

MATCH:

ALLOW_INFRA_TAG

GOTO: ALLOW_INFRA

RSW_REACHABILITY

..

..

..

TERMINATE

ALLOW_INFRA

..

..

..

TERMINATE

RSW_REACHABILITY

....

MATCH: HIGH_PREFCOMM

GOTO: HIGH_LOCALPREF

MATCH: MEDIUM_PREFCOMM

GOTO: MEDIUM_LOCALPREF

MATCH: LOW_PREFCOMM

GOTO: LOW_LOCALPREF

SET LOCALPREF 200

TERMINATE

SET LOCALPREF 150

TERMINATE

SET LOCALPREF 75

TERMINATE

Figure 8: Aura generated configuration.

the announcement when it receives STOPCOMM:1:2 and
restricts the announcement to pods.

During configuration synthesis, Aura generates appropriate
match action rules to match on the corresponding communi-
ties and take appropriate action. That is, for PATHCOMM,
the action would be to modify the PATHCOMM to reflect the
hop changes and for STOPCOMM, it would remove the com-
munity tags and prevent the forwarding of the announcement.

5.2 Supporting Dynamic Network

Staging: Aura has reserved community tags to accommodate
different policies. Aura’s compiler incrementally allocates the
community tags based on the order in which they are specified
in RPL. For instance, from Figure 7, a dedicated community
tag known as policy community (PolComm) will be allocated
for RSW_REACHABILITY and ALLOW_INFRA policies.
Similar to PathComm and StopComm, PolComm follows the
format of POLCOMM:POL(1-16), where POL denotes the
policy ID. Figure 8, illustrates how the staged community tags
are used as a pointer to different segments of the BGP con-
figuration file. BGP configurations are processed sequentially
by switches. At the beginning of the configuration are match
statements, matching the staged community tags. The corre-
sponding action on a match is a GOTO statement pointing
to the section of the configuration implementing the policy.
At the end of the section is the TERMINATE command that
terminates the processing of the configuration. We discuss
consistency guarantee from a practical perspective in §7.

Supporting preferences among paths: Within each policy,
network operators may specify preferences among intents
(see §4). To accommodate this, Aura uses preference com-
munity (PrefComm) with a format of PREFCOMM:X, where
X denotes the preference value. For every X value there is a
one-to-one mapping to a local preference value. Currently, at
every switch, there are twelve preferences matching twelve
local preference values. If a switch receives an announcement
with PrefComm, the configuration generated by the compiler
contains a rule that matches on X and the action is a GOTO
statement that implements the appropriate localpref. This is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 637

0

100

200

300

ZAZ
DKL

PCI
RVA

CCO

0

10

20

Policy Configurations

of

 c
ha

ng
es

(a) Region changes.

0
100
200
300
400

Sep 2021

Nov 2021

Jan 2022

Mar 2022

May 2022

Jul 2022

Sep 2022

5

10

Policy Configurations

of

 c
ha

ng
es

(b) Changes over time.

Figure 9: Intents/policies generated by Aura.

also illustrated in Figure 8, where there are match statements
for setting high, medium, and low local preference values.

5.3 Validating Configuration

To verify the correctness of the BGP compiler output, Aura
uses an emulation-based, routing policy validation framework.
We run a container-based high-fidelity emulation of FBOSS
switch [10], which constructs an overlay network among con-
tainers emulating a small-scale data center without relying on
hardware switches. The topology contains multiple switches
of the same role to mimic cross-POD and cross-DC route
propagation. We load the configurations generated by Aura
to the BGP agent on the emulation switches. The switches
exchange routes according to the rules in the BGP policy
and broadcast End-of-Rib (EoR) messages on convergence.
On receiving all EoR messages, the verification framework
collects Routing Information Base (RIB) from all switches
for validation. The validation algorithm verifies whether the
routing status is identical to the RPL policy. Here, the basic
idea is to traverse the switch network graph as specified in the
RPL propagation path, and check whether all routing paths
are correctly present as specified in RPL (Algorithm in Ap-
pendix §A). First, the algorithm checks whether the prefixes
are originated as intended. It mines the originated prefixes
from the first hop switches of the RPL propagation path and
inserts the found switch and prefix information into a queue
for Breadth-First Search (BFS) traversal. Then, it pops data
from the queue, looks up the given switch and prefix and
collects the RIBs from the switches. From the next switches’
RIBs, the algorithm searches for the matching prefix and com-
munity tag and checks if the next hop of the path is the current
switch. If so, it marks the routing path as visited and pushes
the next path information into the queue to continue traver-
sal. This procedure is repeated until the algorithm traverses
all propagation paths in RPL. We also perform additional
verification on the RPL (described in Appendix C).

6 Evaluation

We first measure the configuration changes made in our pro-
duction data center, and use these measurements to evaluate
Aura by showing how it minimizes switch re-configurations
(§5.1), has a flexible language to express policies (§4) and
overall reduces operator burden. Aura’s compiler is imple-
mented in Python, and has around 13.8 K lines of code. The
routing policy verification is developed in Python with around
1,200 lines of code.

We capture the intent changes made by network operators
for a year from Sept, 2021 to Sept, 2022. During this time,
Aura supported five different data center regions, where each
region has a separate configuration. Figure 9(a) shows the
number of configuration and policy versions generated by net-
work operators across all Aura-supported regions. We intro-
duced Aura to CCO and RVA datacenter regions in September
2021 and thus these two regions have the highest number of
changes. We eventually rolled it out to the remaining regions
this year, with ZAZ being the most recent data center running
Aura. Over time, across these data center regions, there were
54 different versions of configurations and 840K different
policies. On average, there were 10.8 versions of the config-
urations and 168 versions of policies per region. There are
fewer configuration changes than policy changes as not all
policy change would require reconfiguration. Many policies
would have already been pre-compiled by Aura in the network
(as seen in §3.1 and §3.2).

Figure 9(b) shows a timeline of the policy and configuration
changes that occurred across all Aura-supported data center
regions every month. Every month on average, we changed
5 configurations and 87.3 policies. The largest frequency of
updates was observed in July 2022, where we made several
updates to introduce a new propagation path from the back-
bone network to our data centers. We discuss our experience
of this roll-out in Section 7.

6.1 Minimize Switch Changes
To show the benefits of pre-compiling the network, we com-
pare Aura with Propane [7]. Aura creates snapshots of poli-
cies and configures the network to support multiple common
policies in parallel, as opposed to Propane, which compiles
the configuration as and when there is a policy that needs
to be supported in the network. A key drawback of Propane
is that a change in policy may lead to reconfiguration of a
large number of switches. We use simulation to quantify the
benefit of our base path design in practice. We simulate a
scenario where we replay all the policy changes made by
network operators as shown in Figure 9(b). That is, whenever
a policy is changed, we determine the switches that require
re-configuring in case when Aura is run versus the case when
Propane is run, to synthesize switch configurations.

Propane involves too many switch re-configurations: Fig-

638 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sep 2021

Nov 2021

Jan 2022

Mar 2022

May 2022

Jul 2022

Sep 2022

0

20

40

60

80

100

P10 P50 P90 Aura P90

%
 s

w
itc

he
s

(a) Percentage of switches reconfigured.

20 40 60 80 100

1

10

100

RPL BGP config

% of policies

tim
e

in
 d

ay
s

(lo
g)

(b) Time taken to review.

20 40 60 80 100

1

10

100

RPL BGP config

% of policies

of

 d
ay

s
(lo

g)

(c) Number of revisions.

Figure 10: Aura performance.

ure 10(a), shows the number of switches in all datacenter re-
gions supported by Aura that are reconfigured by Propane.
For every month, we show the 10th, 50th and 90th percentile of
switch re-configurations that are needed. As described in §2.4,
this is time-consuming and disruptive to production traffic.
Even the median number of policy changes on average can
reconfigure 46.8% of all switches. Given the size of our net-
works, this could be in order of tens of thousands of switches.
On the other hand, Aura reconfigures the network only when
new policies cannot be supported by the pre-compiled con-
figurations. Even for the 90th percentile of cases, Aura only
reconfigures 2.1% of the switches on average.

6.2 Aura Reduces Operational Burden

During policy generation, Meta adopts a peer review process,
where network operators generate a configuration and ask
other operators to review the changes. In case of non-Aura-
supported regions, network operators send the new BGP con-
figuration for review. On the other hand, for Aura-supported
regions, network operators send the new RPL configuration
for review.

Non-Aura regions take longer to evaluate: Figure 10(b)
shows the time (log scale) taken in peer review for Aura and
non-Aura regions. On average, we find that non-Aura regions
take 8 days per policy and Aura-regions take 3.6 days per
policy. Some policies can take much longer to review than
others. For instance, the most amount of review time taken for
a policy by non-Aura-region was about 108 days. This policy
introduced a new fairness goal in the fabric aggregation layer,
which was carried out in phases where multiple policies in
non-Aura-regions had to be implemented before the given
policy. On the other hand, for Aura-generated policies, the
maximum review time was about 47 days. Similar to the
non-Aura case, this specific policy involved introducing new
backup paths and had to be extensively tested along with other
Aura-generated policies.

Non-Aura regions generate many more code revisions:
One key factor for reviewing configurations from non-Aura-
supported regions are code revisions. Once the reviewer gives
feedback via code review, the author addresses the comments
and gets back to the reviewer. This process goes on until
the author has addressed all the comments and the reviewer
has no other feedback. Since the raw BGP configurations are
much harder to understand than RPL, revision process tends
to be error prone. Figure 10(c) shows the number of days
taken to generate a revision for Aura and non-Aura regions.
On average, Aura-supported regions take 1.1 day per revision
and non-Aura-supported regions have 3.2 days per revision.
This difference is pronounced at the tail, where the maximum
time taken for a revision was 22 days for Aura-supported re-
gion. However, for non-Aura-supported region, the maximum
number of revisions was 107 days.

6.3 Aura Configuration Properties

Breakdown of RPL policies. All policy versions were en-
coded in 83.2 K lines of RPL by network operators. The most
common statements used to define the policies include the
propagation condition, propagation policy, origin and rout-
ing – this constitutes 1.9K–2.5K lines of code. There are also
382 preference statements. A large number of origin (2.5K),
routing (2.5K) and path (2.3K) statements reflect the support
for multiple backup paths in the network. Similarly, a large
number of prop-condition statements, reflects the frequent
need to restrict the scope of propagation in the network. Other
statements including location, signature, base path, routing
protocols and device states are used only once per configura-
tion, and there were only 54 such statements.

Aura’s Performance. Aura can be broken down into three
stages: time taken to process and validate RPL, compiler
execution time and the per-switch configuration generation
time. On average, RPL processing and validation takes 4.3
seconds and the compiler contributes 2.9 seconds, both of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 639

which are negligible in the entire process. The majority of
the time is taken by BGP configuration generation, which
takes about 88 seconds on average. This is expected, as the
complexity of Aura mainly lies in the BGP compiler, which
must synthesize BGP configurations for every switch in the
network. Before Aura, network operators manually encoded
intents into switch configurations. Based on our interviews
with network operators, these configurations took about 26
weeks to generate, validate and safely deploy. Aura also scales
when the number of policies increases, which typically occurs
as the network grows. We artificially increase the number of
policies to test the configuration synthesis times. We find that
the synthesis times are about the same (about 90 seconds) for
50, 100 and 150 policies.

7 Operational Experience

RPL supporting verification for non-Aura regions. Dur-
ing Aura deployment, for the regions that are not Aura ready,
i.e., those using legacy BGP configurations, operators still
craft the intent in RPL. In this case, although RPL-based
intent is not used to generate BGP policies, it is used for veri-
fication. The existing verification tool uses RPL as the source
of truth and verifies it against manually generated BGP config-
uration. From this experience, RPL enables global verification
before and during Aura deployment, which guarantees the cor-
rectness of the policy migration. There are other tools which
uses RPL as an input. For instance, after the policy has been
deployed, we constantly verify the routes in the produciton
network and alert when unintended behaviors are observed.
This tool uses RPL as the source of truth for verifying the
intents.

Identifying latent failures. The verification approach
helped identifying several errors during the Aura deployment,
such as intent specification errors, faulty compiler logic, BGP
agent bugs, etc. We summarize the identified issues in Table 2
in Appendix B. We now look into two issues. First, when we
configured multiple backup paths to reach RSW within the
same pod – a primary path (RSW → FSW → RSW), a backup
path via a different FSW, and a second longer backup path
(RSW → FSW → RSW → FSW → RSW). When the primary
path fails, the wrong configuration was used, resulting in using
the longer backup path, instead of the shorter one, causing per-
formance degradation. The second issue was a drained FSW
switch, which did not announce the infrastructure prefixes to
the connected RSWs. When another FSW switch failed, the
external world lost connectivity to the RSW’s management
plane, which should have existed through the drained FSW
switch. Such latent failures are hard to detect in production as
they only manifest themselves during certain scenarios and
the verification helped fix these errors before deployment.

The verification approach is not perfect and has failed to
prevent some issues. In one instance, a operator created a pol-
icy to inject a route to server using virtual IPs. The verification

framework verified the propagation of the path to the server,
but did not check the IP address usage. It turned out that the
operator specified an incorrect IP address which actually be-
longed to a switch. This resulted in traffic destined towards
the switch to be wrongly routed to the server. To prevent this,
the verification approach is now planning to validate the IP
address usage along before validating route propagation.

Consistency guarantee in practice: One concern for policy
update is the consistency during convergence. Aura tackles
the problem in a practical manner with three steps. First, we
always drain a switch by moving the live traffic away, which
is also called disruptive config update [10]. This prevents
packet loss during transient state. Second, after the new path
is enabled, we wait for a time period that is long enough for
BGP convergence at a DC level. We conducted experiments
to evaluate the convergence time scaling with the size of the
network and chose the window to be tens of minutes. Finally,
we use BMP monitoring to guarantee that the new routes are
propagated in place before removing the drain configuration.
The convergence time depends on the amount of traffic a
switch carries. On one hand, switches that carry less traffic
such as FSWs can take upto 6 seconds, but on the other hand,
switches that carry more traffic such as FAUU can take 92
seconds.

Ease of operation: After implementing Aura in some data-
center regions, we see significant improvement in experiences
of network operators. For instance, after the last year’s out-
age [3], we wanted to provide additional backup paths which
included allowing routes over DRAINED switches with a
lower preference. In Aura, we can support it with only 4
lines of RPL code change (details shown in Appendix D, Fig-
ure 11). This change took less than an hour to implement.
On the other hand, we still had to support this change for
non-Aura-supported regions, and it took three experienced
engineers 30 days to make manual changes. During this time,
the policy went through 6 rounds of review with over 40
comments for changes in the peer review process.

Supporting new networks: Our data center topology is con-
stantly evolving to react to various deployment constraints
and to new business requirements. For example, the recent
global supply chain shortage pressed us to have a more con-
densed topology to reuse available ports. To accommodate the
growing AI workload, we are developing a new AI backend
topology. Adapting routing policy to a new topology is not
trivial. Before Aura’s deployment, it took network engineers
up to 6 months to support a new topology. As an anecdotal
example, in a recent deployment topology with Aura in June
2022 (ZAZ) took only 3 weeks by a single engineer.

Unsupported policies: Aura currently does not support
UCMP (Unequal Cost Multi-Paths). Typically, UCMP is used
in traffic migration scenarios, where we add additional planes
to the backbone layer. Under regular operations, the FAUU
uses ECMP to equally distribute traffic to available backbone

640 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

planes. During migration, we would like to test the newly
introduced backbone planes, before running them in full ca-
pacity. In such cases, we make use of UCMP to manipulate
the amount of traffic going towards the backbone planes. This
is an area of potential future work for Aura to support UCMP.

Coordination with non-routing policies: Aura focuses on
specification and validation of routing policies. However,
there are other policies that impact forwarding decisions. First,
there are policies that are specific to services. Services have
their own policies about the use of network resources (e.g.,
load balancing, replication) and can create varying traffic
patterns that could lead to a routing policy adjustment. Fu-
ture research is needed to streamline and coordinate intent
changes between service and network layers. Second, there
are the access control lists (ACLs) that restrict the flow of
traffic across different network domains at Meta, which in
turn affects routing policies. These ACLs also have a policy
specification that is maintained by a different team. Detecting
conflict and maintaining consistency across different intent
management systems is an unsolved problem. Finally, while
Aura manages all the data center routing policies, there are
outside domains such as backbone and edge networks at Meta.
These networks run different routing protocols and have their
own policy intents. One of the extension of Aura is to support
backbone routing intent using RPL, so that we can perform
end-to-end verification. In the future, we plan to explore how
to adapt Aura to other non-routing policies.

8 Related Works

Configuration synthesis: Propane [7], Propane/AT [8] and
SyNet [11] use their own DSL or existing techniques to ex-
press intents. Then the intents are synthesized into low level
configurations. Alternatively, rather than specifying intents,
operators can partially specify the BGP configuration, and
the synthesis approach can fill in the holes. Although these
techniques help reduce operational burden, they cannot han-
dle dynamic changes at scale without requiring constant re-
configurations. Propane [7] and Propane/AT [8] are also lim-
ited to BGP protocol, while Aura supports multiple routing
protocols (BGP and OpenR). Finally, some configuration syn-
thesis systems like SyNet [11] and ConfigAsure [21] are hard
to scale to the size of large datacenter networks, like Meta.
Beyond BGP configuration synthesis, Robotron [25] uses
high-level intents to low-level device configurations with min-
imal human intervention. This involves, designing a network,
generating appropriate switch configurations for the network
and monitoring them. Aura also uses some Robotron com-
ponents such as FBNet, and extends the flexibility of BGP
configuration generation via synthesis.

Supporting dynamic configurations: Typically, systems
focus on supporting dynamic configurations by switching
from one configuration to the other. For instance, zUpdate [18]
and Snowcap [23] determine a transition plan from one con-

figuration to the other. However, these techniques involve
shifting from one configuration to the other via several in-
termediate configurations. As seen in § 2.4, configuration
updates to switches in a large network can take a lot of time,
and transitioning across different configuration would only
exacerbate this issue. Our technique of supporting multiple
policies is similar to fast failover [17] and MPLS reroute [4]
techniques, where backup options are pre-configured without
the need of operator intervention. Alternatively, support for
parallel configuration can be done via virtual routers such as
VROOM [28] which is similar to FBOSS instances where
each instance has its own control plane. However, the key
difference is that only the active instance in FBOSS use the
switch hardware resources, whereas all VROOM instances
use the switch hardware resources.

There have been several other works in SDN [16, 19, 20],
that help in transitioning from one configuration to the other.
However, re-configuring in SDN context is different, than
switch reconfiguration, as forwarding state is changed di-
rectly from a centralized controller, avoiding the challenges
of a large distributed network. Moreover, there are problems
unique to a SDN setting which are not applicable to BGP. For
instance, planning rule updates [19] in SDN is crucial to avoid
packet drops and unintended network behavior. However, in
our setting, configuration change happens a phased manner,
where traffic is drained from switches before a configuration
update. This ensures that the transition between configuration
do not intefere with traffic.

Expressing intents: In recent years, there have been many
efforts to raise the level of abstraction for low level config-
urations. Jinjing [27] introduces LAI to express ACL up-
date synthesis and Propane [7] introduces RIR to express
constraints on policy. Propane’s RIR cannot express intents
across different scopes, whereas both LAI and RIR do not
support device state specifications and preferences based on
these specifications (e.g., I4, I5 and I6).

9 Conclusion
Providing stable and efficient routing in large data centers
is crucial. Existing synthesis systems generate configuration
only once, but production networks require multiple recon-
figuration to support their scale and dynamics. We present
Aura, that enables network operators to express high-level
intents to be automatically configured into the switch policy
implementation with minimal reconfiguration.

Acknowledgment We would like to thank many of Meta
colleagues who have contributed to this work over the years
and toward this paper. These include Jason Wilson, Yan Cai,
Maaz Mohiuddin, Hyojeong Kim, Jingyi Yang, Michael Liu
and many others. We also thank our shepherd Dr. Soudeh
Ghorbani and the anonymous reviewers to help making a
better version of this paper. This work is supported by the
National Science Foundation grants NeTS-2211383.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 641

References

[1] Antlr (another tool for language recognition). https:
//www.antlr.org/.

[2] United airlines jets grounded by computer
router glitch. https://www.bbc.com/news/
technology-33449693, 2015.

[3] Update about the 4 october outage. https:
//www.facebook.com/business/news/
update-about-the-october-4th-outage, 2021.

[4] Mpls traffic engineering fast reroute. https://www.
cisco.com/en/US/docs/ios/12_0st/12_0st10/
feature/guide/fastrout.html#wp1015327, 2023.

[5] Anubhavnidhi Abhashkumar, Kausik Subramanian,
Alexey Andreyev, Hyojeong Kim, Nanda Kishore Salem,
Jingyi Yang, Petr Lapukhov, Aditya Akella, and Hongyi
Zeng. Running BGP in data centers at scale. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 65–81. USENIX As-
sociation, April 2021.

[6] Alexey Andreyev, Xu Wang, and Alex Eckert.
Reinventing facebook’s data center network.
https://engineering.fb.com/2019/03/14/
data-center-engineering/f16-minipack/.

[7] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 328–341, 2016.

[8] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jiten-
dra Padhye, and David Walker. Network configura-
tion synthesis with abstract topologies. SIGPLAN Not.,
52(6):437–451, June 2017.

[9] Richard Chirgwin. Google routing blunder
sent japan’s internet dark on friday. https:
//www.theregister.com/2017/08/27/google_
routing_blunder_sent_japans_internet_dark/,
2017.

[10] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
342–356, 2018.

[11] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-wide configuration syn-
thesis. In International Conference on Computer Aided
Verification, pages 261–281. Springer, 2017.

[12] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Netcomplete: Practical network-
wide configuration synthesis with autocompletion. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 579–594, Renton,
WA, April 2018. USENIX Association.

[13] P Brighten Godfrey, Igor Ganichev, Scott Shenker, and
Ion Stoica. Pathlet routing. ACM SIGCOMM Computer
Communication Review, 39(4):111–122, 2009.

[14] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 58–72,
New York, NY, USA, 2016. Association for Computing
Machinery.

[15] Saif Hasan, Petr Lapukhov, Anuj Madan,
and Omar Baldonado. Open/r: Open
routing for modern networks. https://
engineering.fb.com/2017/11/15/connectivity/
open-r-open-routing-for-modern-networks/,
2017.

[16] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford,
and Roger Wattenhofer. Dynamic scheduling of network
updates. ACM SIGCOMM Computer Communication
Review, 44(4):539–550, 2014.

[17] Ying-Dar Lin, Hung-Yi Teng, Chia-Rong Hsu, Chun-
Chieh Liao, and Yuan-Cheng Lai. Fast failover and
switchover for link failures and congestion in software
defined networks. In 2016 IEEE International Confer-
ence on Communications (ICC), pages 1–6, 2016.

[18] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua
Yuan, Roger Wattenhofer, and David Maltz. zupdate:
Updating data center networks with zero loss. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, pages 411–422, 2013.

[19] Ratul Mahajan and Roger Wattenhofer. On consistent
updates in software defined networks. In Proceedings of
the Twelfth ACM Workshop on Hot Topics in Networks,
pages 1–7, 2013.

[20] Jedidiah McClurg, Hossein Hojjat, Pavol Černỳ, and
Nate Foster. Efficient synthesis of network updates.
Acm Sigplan Notices, 50(6):196–207, 2015.

[21] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram
Kaul. Declarative infrastructure configuration synthe-
sis and debugging. Journal of Network and Systems
Management, 16(3):235–258, 2008.

642 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.antlr.org/
https://www.antlr.org/
https://www.bbc.com/news/technology-33449693
https://www.bbc.com/news/technology-33449693
https://www.facebook.com/business/news/update-about-the-october-4th-outage
https://www.facebook.com/business/news/update-about-the-october-4th-outage
https://www.facebook.com/business/news/update-about-the-october-4th-outage
https://www.cisco.com/en/US/docs/ios/12_0st/12_0st10/feature/guide/fastrout.html#wp1015327
https://www.cisco.com/en/US/docs/ios/12_0st/12_0st10/feature/guide/fastrout.html#wp1015327
https://www.cisco.com/en/US/docs/ios/12_0st/12_0st10/feature/guide/fastrout.html#wp1015327
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://www.theregister.com/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.com/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.com/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/

[22] Jenni Ryall. Facebook, tinder, instagram suffer
widespread issues. https://mashable.com/
archive/facebook-tinder-instagram-issues,
2015.

[23] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.
Snowcap: synthesizing network-wide configuration up-
dates. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 33–49, 2021.

[24] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15,
page 183–197, New York, NY, USA, 2015. Association
for Computing Machinery.

[25] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 426–439, 2016.

[26] Carl A Sunshine. Source routing in computer networks.
ACM SIGCOMM Computer Communication Review,
7(1):29–33, 1977.

[27] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming
Zhang, et al. Safely and automatically updating
in-network acl configurations with intent language. In
Proceedings of the ACM Special Interest Group on
Data Communication, pages 214–226. 2019.

[28] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus Van
Der Merwe, and Jennifer Rexford. Virtual routers on the
move: live router migration as a network-management
primitive. ACM SIGCOMM Computer Communication
Review, 38(4):231–242, 2008.

[29] Zhiping Yao, Hany Morsy, and Jasmeet Bagga. Open-
ing designs for 6-pack and wedge 100. https://
engineering.fb.com/data-center-engineering/
opening-designs-for-6-pack-and-wedge-100/.

A Routing Policy Validation Algorithm

Algorithm 1 shows the algorithm used during emulation to
verify Aura generated configuration.

Algorithm 1 RPL-based routing policy validation
1: procedure traverse(path, tag)
2: . path: a propagation path from RPL
3: . tag: a community tag that identifies policy

4: . Enqueue the originated prefixes into BFS queue
5: Q = Queue()
6: for sw in get_switches(path[0], all) do
7: for R in RIB(sw) do
8: if tag in R.tag then
9: visited_sw = [sw]

10: L = 0
11: N = node(sw, route.prefix, L, visited_sw)
12: Q.enque(N)

13: . Check if the prefix exists in RIBs
14: while !Q.isEmpty() do
15: N = Q.pop()
16: L = N.L + 1
17: for sw in get_switches(path[L], N.sw) do
18: if sw in N.visited_sw then continue
19: route_found = False
20: for R in RIB(sw) do
21: if R.prefix == N.prefix
22: and tag in R.tag
23: and R.nexthop == N.sw then
24: route_found = True
25: R.visited = True
26: if L < length(path) then
27: visited_sw.append(sw)
28: Nnew = node(sw,R.prefix, L, visited_sw)
29: Q.enque(Nnew)
30: assert route_found == True

31: procedure routing_policy_validation(tag)
32: prop_paths = get_propagation_paths_from_rpl(tag)
33: for path in prop_paths do
34: traverse(path, tag)
35: . Verify if there is any prefix leakage
36: for sw in get_switches(all, all) do
37: for R in RIB(sw) do
38: if tag not in R.tag then continue
39: assert R.visited == True

B Issues detected via emulation

We show the issues detected during emulation in Table 2.
Broadly, they are categorized into compiler errors and BGP
agent errors.

C Detecting Ambiguous Statements

Once RPL specification is complete, we use it as input into
a compiler, which generates switch configurations. To avoid
ambiguity, Aura compiler performs certain verification steps
on the RPL specification.

Rule 1: Explicitly specify preference across all paths. It is
possible that an operator designing a policy does not specify
preferences across all the paths. For example, if there were
four paths, P1–P4, and the preference rule stated P1 >P2 >P4,
preference for P3 is unspecified. One possible approach would
be to assign a default preference value. However, depending
on the preference values assigned to the other three paths, the
total ordering of paths is unpredictable. For instance, if the
default preference value is 100, there could exist two sets of or-
dering, P1(100) = P3(100)> P2(50)> P4(25) or P1(200)>

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 643

https://mashable.com/archive/facebook-tinder-instagram-issues
https://mashable.com/archive/facebook-tinder-instagram-issues
https://engineering.fb.com/data-center-engineering/opening-designs-for-6-pack-and-wedge-100/
https://engineering.fb.com/data-center-engineering/opening-designs-for-6-pack-and-wedge-100/
https://engineering.fb.com/data-center-engineering/opening-designs-for-6-pack-and-wedge-100/

Category Identified Issues

Compiler

Leaked intra-fabric prefix to FA
Announced FA loopback address to unwanted scope
VIP prefixes not withdrawn from drained devices
VIP priority misconfigured
Prefix originated from SSWs in one DC was
not propagated to another DC
Drained SSW did not forward default route to FSWs
Prefixes from backbone not propagated to FADUs
Drained FAUU does not withdraw default route
FA loopback addresses leaked to RSW

BGP Unsupported BGP action
agent Config parsing crash in switches

Table 2: Identified issues by emulation.

P2(100) = P3(100) > P4(50). This non-determinism could
make debugging routing behavior more challenging, and even
worse, result in a hidden intent violation. Our solution is to de-
tect underspecified preferences during verification and prompt
the operator to explicitly define each preference.

A similar issue arises when the operator specifies two
parallel preferences: P1 > P2,P3 > P4. The order between
paths in these different preferences can be interpreted as
P1 > P2 > P3 > P4 or P3 > P4 > P1 > P2, and in several other
ways. When verifying a RPL specification, Aura notifies op-
erators to define ordering between all paths.

Rule 2: Detect hidden conditions. RPL supports adding
a condition to a preference (Section 4). For example, the
preference P1(BB_DEFAULT _ROUT E) > P2 > P3 > P4
means that for an announcement containing a community
BB_DEFAULT _ROUT E, P1 should have higher preference
than other paths. However, there is an ambiguity. If the
(BB_DEFAULT _ROUT E) community is not attached, then
the preference for P1 is not specified, and the order of P1
(¬BB_DEFAULT _ROUT E) and the rest of paths is unspeci-
fied as well. During verification, the operator is prompted to
clear this ambiguity by explicitly specifying the preference
for P1 with and without the attached condition, and ensuring
that the partial ordering is maintained.

D RPL changes to change intent

Figure 11 shows the RPL change done by network operators
to allow DRAINED switches to propagate routes with a lower
preference.

Figure 11: Aura changes to support I2.

644 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Challenges
	Background
	Handling Dynamic Configurations
	Expressing Conditional Policies
	Reconfigurations At Scale

	Aura Design
	Base Paths: Minimizing Reconfiguration
	Staging and Labeling: Supporting Dynamic Configurations

	RPL: Expressing Conditional Policies
	Compiler Implementation
	Supporting Base Paths
	Supporting Dynamic Network
	Validating Configuration

	Evaluation
	Minimize Switch Changes
	Aura Reduces Operational Burden
	Aura Configuration Properties

	Operational Experience
	Related Works
	Conclusion
	Routing Policy Validation Algorithm
	Issues detected via emulation
	Detecting Ambiguous Statements
	RPL changes to change intent

