
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Hostping: Diagnosing Intra-host Network
Bottlenecks in RDMA Servers

Kefei Liu, BUPT; Zhuo Jiang, ByteDance Inc.; Jiao Zhang, BUPT and
Purple Mountain Laboratories; Haoran Wei, BUPT and ByteDance Inc.;
Xiaolong Zhong, BUPT; Lizhuang Tan, ByteDance Inc.; Tian Pan and

Tao Huang, BUPT and Purple Mountain Laboratories
https://www.usenix.org/conference/nsdi23/presentation/liu-kefei

Hostping: Diagnosing Intra-host Network Bottlenecks
in RDMA Servers

Kefei Liu†, Zhuo Jiang§, Jiao Zhang†‡∗, Haoran Wei†§, Xiaolong Zhong†,
Lizhuang Tan§, Tian Pan†‡ and Tao Huang†‡

†BUPT ‡Purple Mountain Laboratories
§ByteDance Inc.

Abstract
Intra-host networking was considered robust in the RDMA
(Remote Direct Memory Access) network and received lit-
tle attention. However, as the RNIC (RDMA NIC) line rate
increases rapidly to multi-hundred gigabits, the intra-host net-
work becomes a potential performance bottleneck for network
applications. Intra-host network bottlenecks may result in de-
graded intra-host bandwidth and increased intra-host latency,
which can severely impact network performance. However,
when intra-host bottlenecks occur, they can hardly be no-
ticed due to the lack of a monitoring system. Furthermore,
existing bottleneck diagnosis mechanisms fail to diagnose
intra-host bottlenecks efficiently. In this paper, we analyze
the symptom of intra-host bottlenecks based on our long-
term troubleshooting experience and propose Hostping, the
first bottleneck monitoring and diagnosis system dedicated to
intra-host networks. The core idea of Hostping is conducting
loopback tests between RNICs and endpoints within the host
to measure intra-host latency and bandwidth. Hostping not
only discovers intra-host bottlenecks we already knew but
also reveals six bottlenecks we did not notice before.

1 Introduction

RDMA has been applied to many applications [14] [17] [28]
[30] [42] [46] in data centers to achieve high throughput
and ultra-low latency. As the last hop of network commu-
nication, intra-host networking can significantly impact the
performance of network applications. However, the intra-host
network is far from flawless, and intra-host bandwidth may
degrade due to sudden link failures or occupation by other
traffic. Previously, the intra-host bandwidth was much greater
than the RNIC line rate (e.g., ~63 Gb/s PCIe Gen 3 x8 for 25
Gb/s RNIC), providing sufficient bandwidth redundancy for
RNIC traffic. Therefore, the intra-host network rarely became

The first two authors contributed equally to this paper. This work is done
while Kefei Liu, Haoran Wei, and Xiaolong Zhong are doing a joint research
project at ByteDance. (∗Jiao Zhang is the corresponding author.)

an obstacle to network communication, and bottlenecks in the
host network received little attention.

However, bottlenecks in the host network are on the rise.
With the increasing demand for high throughput and ultra-low
latency, the RNIC line rate increases rapidly (from 25 Gb/s
to 200 Gb/s). In contrast, the intra-host bandwidth does not
improve equally (e.g., PCIe bandwidth increases from ~63
Gb/s to ~252 Gb/s). As a result, when intra-host bandwidth de-
grades, traffic on the RNIC is more likely to be throttled. What
is worse, both the topology and traffic patterns within the host
become much more complicated, making bandwidth degra-
dation caused by sudden link failures or traffic contention
happens more frequently. Besides, as intra-host services be-
come more complex, configuration items in the host also
increase considerably, leading to a high probability of miscon-
figurations. Some of them, such as enabling Access Control
Service, will redirect GDR (GPU Direct RDMA) traffic to the
CPU, leading to a drastic increase in intra-host latency and
severe degradation of intra-host bandwidth.

Intra-host bottlenecks 1 may significantly degrade network
performance. In our distributed machine learning system,
one single intra-host bottleneck can significantly degrade the
whole system and may even block the training process. This
phenomenon is common in our data center. When it occurs,
operators may need hours to days to diagnose the root cause.

Why do intra-host bottlenecks have such a severe impact? If
the intra-host bandwidth is lower than the RNIC receiving rate,
the RNIC receive buffer may accumulate or even be saturated.
When this occurs in a lossy environment (without PFC) [39],
RNIC may drop packets. Since RDMA is vulnerable to packet
drops, even a low drop rate will result in drastic throughput
degradation [24]. While in a lossless environment, RNIC will
send PFC pause frames (Tx pause frames) to the upstream
switch’s egress port to stop its traffic. If the RNIC sends pause
frames continually, it may eventually lead to a PFC storm
[21] [24] [36], which may bring down the whole network.

1In the following, we use "intra-host bottleneck" as the bottleneck in the
host network and "network bottleneck" as the bottleneck in the inter-host
network, i.e., switches and cables.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 15

Therefore, when an intra-host bottleneck occurs, it should be
discovered, diagnosed, and resolved as soon as possible.

However, due to the lack of an efficient intra-host bottle-
neck monitoring system, bottlenecks can hardly be noticed
when they occur. When customers complain to the network
team about performance degradation, the upper layer service
usually has been severely influenced by the bottleneck. In
addition, the phenomena caused by intra-host and network
bottlenecks may be similar. Thus, when network performance
degrades, operators need first to judge whether the host or the
network should be blamed. Furthermore, when finding the
bottleneck lies in the host, operators need to log in to the host,
execute a series of test cases and conduct some profiling tools
to infer the bottleneck. The whole process is time-consuming.
What is worse, existing profiling tools could only be used for
specific devices, such as Intel PCM [2] for Intel CPUs, AMD
uProf [1] for AMD CPUs, and Nvidia SMI [9] for Nvidia
GPUs. As each host may have devices from different ven-
dors, operators may need different toolsets for each diagnosis,
which brings additional learning and execution overhead.

To solve the limitations above, we propose Hostping, the
first bottleneck monitoring and diagnosing system dedicated
to intra-host networks. It could be deployed on all RDMA
servers with low overhead and adapt to devices from differ-
ent vendors. When intra-host bottlenecks occur, Hostping
could quickly discover them and automatically diagnose their
root causes. Thus, when network performance degrades, we
can rapidly judge whether the host or the network should be
blamed.

We need to address three challenges to achieve these design
targets. Firstly, we need to find and measure metrics that
could effectively discover and diagnose intra-host bottlenecks.
Secondly, we need to keep responsive to intra-host bottlenecks
with low overhead. Finally, we need to efficiently diagnose
intra-host bottlenecks based on measured data.

Based on our long-term troubleshooting experience, we
realized that leveraging intra-host bandwidth and latency as
metrics could effectively discover and diagnose most intra-
host bottlenecks. This guides the core idea of Hostping: con-
duct loopback tests between RNICs and endpoints (GPUs and
memory nodes [33]) within the host to measure intra-host
latency and bandwidth. By registering memory regions in
different endpoints, Hostping could evaluate the latency and
bandwidth of any intra-host path that a message received by
an RNIC can take. To keep Hostping responsive to intra-host
bottlenecks without degrading application performance, we
design a hardware monitor to determine when to launch it.
Finally, we propose an efficient diagnosing mechanism that
could effectively identify the root cause of intra-host bottle-
necks even under the interference of service traffic on RNICs.

We evaluate Hostping on over 300 servers in our distributed
machine learning system. During the deployment, Hostping
not only discovers intra-host bottlenecks we already knew but
also reveals six bottlenecks we did not notice before, such

as CPU root port failures and memory channel flapping. To
summarize, this paper makes the following contributions:

• We analyze the symptom of intra-host network bottlenecks
based on our long-term troubleshooting experience and
realize that most intra-host bottlenecks have one or both of
the following symptoms: intra-host bandwidth degradation
and intra-host latency increase.

• We design Hostping, the first bottleneck monitoring and
diagnosing system dedicated to intra-host networks.

• We propose an efficient diagnosing mechanism that could
effectively identify the root cause of intra-host bottlenecks
even under the interference of service traffic on RNICs.

2 Background & Motivation

2.1 Intra-host Bottlenecks
When sending/receiving a message, the RNIC will read/write
it from/to an intra-host endpoint (e.g., memory node, GPU)
through multi-hops in the host network, such as PCIe links,
memory channels, and inter-socket buses (e.g., Intel QPI
[51]/UPI [11] and AMD xGMI [12]). We refer to the round-
trip latency and the maximum available bandwidth between
the RNIC and the endpoint as intra-host latency and intra-
host bandwidth2, respectively.

Previously, intra-host bandwidth was much greater than the
RNIC line rate, providing sufficient bandwidth redundancy.
Therefore, the host rarely became an obstacle to network com-
munication, and intra-host bottlenecks received little attention.
In recent years, with the increasing demand for high through-
put and ultra-low latency from applications, the RNIC line
rate has increased rapidly. In contrast, the intra-host band-
width does not improve equally. As a result, when intra-host
bandwidth degrades due to link failures or contention from
other intra-host traffic, it is more likely to trigger network
performance degradation.

What is worse, both the topology and traffic patterns within
the host become much more complex, making the intra-host
bandwidth degradation commonplace [13] [16] [19] [35] [37].
To satisfy the ever-increasing demand for computation capa-
bility, more GPUs and RNICs are integrated into one single
host. For example, the latest Nvidia DGX-A100 [5] server
incorporates 8 Nvidia A100 GPUs and 4 Mellanox 200 Gb/s
RNICs. This leads to much more complicated intra-host traf-
fic patterns and more bandwidth contention. In addition, as
the number of root ports [43] on the CPU socket is limited,
more PCIe switches are required to interconnect these devices.
As a result, the intra-host topology becomes more complex,
leading to more frequent intra-host link failures.

2It could be further divided into sending bandwidth from the endpoint
to the RNIC and receiving bandwidth from the RNIC to the endpoint. If
not explicitly mentioned, it indicates the minimum value of the sending and
receiving bandwidth.

16 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Furthermore, as intra-host services become more compli-
cated, configuration items in the host also increase consid-
erably, leading to a high probability of misconfigurations.
Among them, some misconfigurations may lead to severe
intra-host bottlenecks. For example, ACS (Access Control
Service) is a PCIe configuration used in IO virtualization.
GDR is a widely used communication method in machine
learning, which uses the GPU to communicate directly with
the RNIC without any involvement of the CPU and host mem-
ory. However, all GDR traffic will be redirected to the CPU
with ACS enabled, leading to a drastic increase in intra-host
latency and severe degradation of intra-host bandwidth.

2.2 The Impact of Intra-host Bottlenecks

When bottlenecks appear in the host, the intra-host bandwidth
may be lower than the RNIC receiving rate, and the RNIC
receive buffer may accumulate. If the receive buffer is satu-
rated in a lossy environment (without PFC) [39], the RNIC
will drop packets. Since RDMA is vulnerable to packet drops,
even a low drop rate will result in drastic throughput degrada-
tion [24]. While in a lossless environment, when the RNIC
receive buffer exceeds a threshold, it will send pause frames
to the upstream switch’s egress port to stop its traffic. If the
RNIC sends pause frames continually, it may finally lead to a
PFC storm, which may bring down the whole network.

One single intra-host bottleneck may significantly degrade
the distributed machine learning system. To achieve better
training performance, developers aggregate more and more
servers in a distributed system. However, this leads to more
frequent performance bottlenecks. In data-parallel training,
before updating the neural network parameters, all involved
GPUs need to aggregate their local gradients [16] [28] [45]. In
this process, GPUs may communicate in one or several rings
[22] [38] [41] consisting of intra-host links (e.g., NVLinks [8],
PCIe links) and network links to achieve optimal bandwidth
utilization. This ring-based communication is extremely sen-
sitive to network and intra-host bottlenecks. A single RNIC
suffering from degraded intra-host bandwidth may signifi-
cantly slow down the aggregation process of the whole system.
We conducted a ring-based nccl all-reduce test [7] with eight
hosts, and each host has a 200 Gb/s RNIC for network commu-
nication. Fig.1 shows the throughput of each host during the
test. In this scenario, an RNIC’s PCIe link has degraded band-
width due to a link failure, leading to a slow sending/receiving
rate. As a result, the throughput for all the hosts drops drasti-
cally to 50 Gbps (~70% lower than the ideal).

Frequent intra-host bottlenecks bring more challenges for
performance bottleneck diagnosis. When packet drops or
bandwidth degradation occur on a path, how to diagnose the
root cause? This problem generally lies in the network when
few intra-host bottlenecks appear, and operators only need
to check each link and switch on the path in sequence. How-
ever, as intra-host bottlenecks occur much more frequently,

0 120 240 360 480
Time Stamp (s)

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

Figure 1: One single bottleneck degrades the throughput of
the entire machine learning system by 70%. The upper lines
are ideal, and the lower lines are abnormal. The throughput
of each host is calculated every 30 seconds.

the same phenomenon may also be caused by the degraded
intra-host bandwidth. As a result, operators must first dis-
tinguish whether the host or the network should be blamed,
which brings more challenges for bottleneck diagnosis.

2.3 Limitations of Existing Intra-host Bottle-
neck Diagnosis Mechanisms

When an intra-host bottleneck occurs, it must be discovered,
diagnosed, and resolved as soon as possible. Unfortunately,
as far as we know, there are currently no monitoring and
diagnosing systems dedicated to the host network in data
centers, and intra-host bottleneck diagnosis is inefficient.
Unresponsive. When bottlenecks occur in a host, they can
hardly be noticed in time due to the lack of an efficient intra-
host bottleneck monitoring system. However, when customers
(e.g., the machine learning team) complain to the network
team about performance degradation, the upper layer service
has usually been severely influenced. Thus, operators require
a responsive monitoring system to quickly discover intra-host
bottlenecks, avoiding application performance degradation.
Time-consuming. When a system suffers from degraded per-
formance, operators usually need to run benchmark tests, such
as perftest [10] and nccl-test [7], to narrow down the prob-
lem. However, these tests reflect “end-to-end” performance,
including senders, networks, and receivers. Thus, they cannot
quickly determine whether the bottleneck occurs in the net-
work or the host. When finding the bottleneck lies in the host,
root cause diagnosis is still challenging due to the complex
intra-host topology. Operators need to log in to the host, exe-
cute a series of test cases, and conduct some profiling tools to
evaluate all intra-host links. The entire process above needs
to be conducted manually, which is time-consuming.
Fragmented. When an intra-host link has anomalous per-
formance, operators may need to run some profiling tools
to determine whether the link is occupied by other traffic.
However, these tools are usually vendor-specific, such as Intel
PCM for Intel CPUs, AMD uProf for AMD CPUs, Nvidia
SMI for Nvidia GPUs, and Mellanox Neohost [4] for Mel-
lanox RNICs. Unfortunately, each host in data centers may
have a different combination of equipment, such as different

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 17

network adapters (Mellanox, Broadcom, or Intel), different
CPUs (Intel or AMD), and different GPUs (Nvidia or AMD).
As a result, when diagnosing bottlenecks in the host, operators
need to utilize different combinations of tools, which brings
additional learning and execution overhead.

2.4 Targets of Hostping
Considering the limitations above, we desire to develop a
dedicated intra-host bottleneck monitoring and diagnosing
system, which could be deployed on all RDMA servers with
little overhead and adapt to devices from different vendors.
When intra-host bottlenecks appear, the system can quickly
discover them and automatically diagnose their root causes.
Thus, when network performance degrades, we can rapidly
judge whether the bottleneck lies in the host or the network.
In conclusion, this system should have the following charac-
teristics:

• Responsiveness: It should quickly discover intra-host bot-
tlenecks and diagnose their root causes.

• Deployability: It should be implementable with commodity
hardware.

• Scalability: It should be compatible with equipment from
different vendors.

• Lightweight: It should have negligible interference with
services in the host.

3 Hostping Overview

In this section, we will first introduce the challenges we should
address to achieve the targets of Hostping (3.1). Then we
will analyze the symptoms of intra-host network bottlenecks
based on our long-term troubleshooting experience, which
guides the core idea of Hostping (3.2). Finally, we will briefly
illustrate the framework of Hostping (3.3).

3.1 Challenges
To realize the targets of Hostping, there are three main chal-
lenges to be solved:
Find and measure metrics that could effectively discover
and diagnose intra-host bottlenecks. As the topology and
traffic patterns within the host become much more complex,
the root causes of intra-host performance bottlenecks are het-
erogeneous. We need to find some unified metrics that could
effectively uncover intra-host bottlenecks and precisely infer
their root causes. Besides, since the intra-host network is like
a black box, measuring these metrics with high accuracy is
also challenging.
Be responsive to intra-host bottlenecks with low overhead.
Diagnosing intra-host performance bottlenecks requires eval-
uating all the links in the host. Due to the complexity of the

host topology, this is not an easy task and will have a non-
negligible impact on the applications within the host. For
example, active probing consumes CPU memory, GPU video
memory, and bus bandwidth. How can we quickly perceive
intra-host bottlenecks with low overhead to the performance
of applications running in the host?
Effectively diagnose intra-host performance bottlenecks
based on measured data. During the operation of Hostping,
we will collect many performance data through active probing
and monitoring. However, the complex intra-host topology
makes it challenging to infer intra-host bottlenecks from scat-
tered data. Besides, the data measured by active probing may
be influenced by the service traffic on the RNIC. In this sce-
nario, the degraded performance data does not necessarily
mean the emergence of an intra-host bottleneck. We need to
find an efficient bottleneck diagnosis mechanism to determine
whether there is an intra-host bottleneck and find its root cause
effectively based on scattered performance data.

3.2 Symptoms of Intra-host Bottlenecks

As mentioned above, intra-host bottlenecks are varied. How to
use the least number of metrics to uncover most intra-host bot-
tlenecks? Based on our long-term troubleshooting experience,
we realize that although different root causes may be blamed,
most intra-host bottlenecks have one or both of the following
symptoms: intra-host bandwidth degradation and intra-
host latency increase. Furthermore, leveraging intra-host
bandwidth and latency as metrics could effectively discover
and diagnose most intra-host bottlenecks. This guides the core
idea of Hostping: conduct loopback tests between RNICs and
endpoints within the host to measure intra-host latency and
bandwidth. Next, we will introduce these two symptoms and
their possible causes.

3.2.1 Bandwidth Degradation

Intra-host bandwidth degrades when an intra-host link is failed
or is occupied by other traffic in the host. The RNIC receive
buffer will accumulate when the intra-host bandwidth is lower
than the RNIC receiving rate. If this situation continues, it will
finally trigger packet drops (in lossy environments) or PFC
pause frames (in lossless environments), leading to severe
network performance degradation.

As the host topology becomes more complicated, the pos-
sibility of link failures in the host boosts. In addition, due to
the large number of data center hosts, even if link failures are
unusual on a particular host, they frequently occur throughout
the data center. We encounter abnormal servers even daily
in severe cases. What is worse, the locations of failures are
varied, requiring a great deal of time for debugging. The host
topology inside one of our most used training machines is
shown in Fig.2, which has two Intel Xeon CPUs connected
through Intel UPI (Intel UltraPath Interconnect). Each CPU

18 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: The host topology in one of our most used training
machines. ¶-¹ show the GDR distance between an RNIC
and a GPU. ¬-° show the link failures we encountered in
practice, and ± shows intra-host bandwidth degradation due
to bandwidth contention.

root complex [43] is attached with four Nvidia A100 GPUs3

and two Mellanox CX6-DX 200 Gb/s RNICs through multi-
ple PCIe switches. As shown in Fig.2, we have encountered
failures of ¬ RNIC PCIe links, GPU PCIe links, ® CPU
root ports, ¯ memory channels, and ° UPI in practice. Some
issues cannot be detected via static commands such as lspci
and can only be discovered through benchmark tests.

Furthermore, services in the host are becoming more com-
plicated, leading to more bandwidth contention. When the
host bandwidth is occupied by other traffic, traffic on the
RNIC may be congested (Fig.2 ±). Here, we give two practi-
cal examples. First, as RDMA devices are far from flawless,
TCP and RDMA traffic may co-exist in the same host to meet
high availability and a Service-Level Agreement [21]. How-
ever, the processing of TCP in the Linux kernel may consume
a lot of memory bandwidth, leading to a slow receiving rate
for RDMA traffic. Besides, in the training scenario, a physical
machine is usually split into multiple Virtual Machines (VMs)
to fully utilize host resources. In this case, communication
between two VMs in the same host may trigger loopback
traffic, which consumes the RNIC PCIe bandwidth and slows
down the receiving rate from other hosts [32]. As shown in
Fig.3, both link failures and bandwidth contention may throt-
tle RNIC throughput and trigger a large number of PFC pause
frames.

3.2.2 Latency Increase

When sending/receiving a message, the RNIC will read/write
it from/to an endpoint (e.g., memory node, GPU) through
multi-hops in the host network, such as PCIe links, memory
channels, and inter-socket buses. We refer to the round-trip
latency from the RNIC receive buffer to the endpoint as intra-
host latency. Intra-host latency increases when there are too

3GPUs are connected via NVLinks and NVSwitches [8] for intra-host
GPU-to-GPU communication (not shown in Fig.2).

PCIe downgrade Normal
0

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

67.0

197.0

Throughput Pause Duration Ratio

0
5
10
15
20
25
30
35
40

Pa
us

e
D

ur
at

io
n

R
at

io
(%

)35.7

0.0

Traffic contention Normal
0

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

150.0

197.0

Throughput Pause Duration Ratio

0
5
10
15
20
25
30
35
40

Pa
us

e
D

ur
at

io
n

R
at

io
(%

)

24.7

0.0

Figure 3: Both link failures (¬-°) and bandwidth contention
(±) will lead to intra-host bandwidth degradation, which may
throttle RNIC throughput and trigger a large number of PFC
pause frames.

Distance 1 Distance 3 Distance 40.0

0.5

1.0

1.5

2.0

2.5

H
os

tL
at

en
cy

(u
s)

1.0

2.2
2.4

Distance 1 Distance 3 Distance 40

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

195.0

125.5 116.4

Figure 4: As the GDR read distance increases (from ¶ to ¹),
the intra-host latency rises, especially when going through
the CPU root complex. Accordingly, the throughput degrades
due to limited outstanding read request TLPs.

many hops between the RNIC and the endpoint. High intra-
host latency hurts application latency and may significantly
degrade intra-host bandwidth. When an RNIC needs to read
from an endpoint, it sends PCIe read request TLPs (Trans-
action Layer Packets) [34] to the endpoint, and the endpoint
will respond data to the RNIC after receiving the request.
Therefore, when intra-host latency increases, the RNIC needs
to send more read requests to sustain the line rate. However,
RNICs limit the maximum outstanding read requests. As a
result, intra-host bandwidth degrades when intra-host latency
increases significantly.

Next, we leverage GDR traffic to illustrate the impact of
high intra-host latency on intra-host bandwidth. GDR has
been widely used in data centers to improve training perfor-
mance in distributed machine learning systems. With GDR,
the RNIC can write and read GPU video memory directly
without using host memory, effectively improving the intra-
host latency and intra-host bandwidth. However, GDR suffers
from high latency when traffic traverses the CPU root com-
plex. As shown in Fig.2, there are four types of communica-
tion distances between an RNIC and a GPU: ¶ traversing a
single PCIe switch, · traversing multiple PCIe switches with-
out traversing the CPU root complex, ¸ traversing the CPU
root complex without traversing the UPI, and ¹ traversing
the UPI.

In the experiment, we use GDR read to test the impact
of different communication distances on intra-host latency
and bandwidth. We leverage Mellanox Neohost to measure

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 19

Figure 5: The core idea of Hostping: conduct loopback tests
between RNICs and endpoints (GPUs and memory nodes)
within the host to measure intra-host latency and bandwidth.

the intra-host latency. Since the latency of ¶ and · is al-
most the same, we only compare the intra-host latency and
the GDR bandwidth of ¶, ¸, and ¹ in the experiment. As
shown in Fig.4, when the RNIC communicates with the clos-
est GPU (distance ¶), the host latency is 1 µs, and the RNIC
can achieve almost the line rate. For distance ¸, when GDR
packets need to pass through the CPU root complex, the host
latency rises dramatically to 2.2 µs, and the throughput drops
sharply to 125.5 Gbps. As for distance ¹, traversing the UPI
bus brings an additional 200 ns delay, and the throughput
degrades to 116.4 Gbps. Just 1.4 µs of additional intra-host
latency results in a 40% drop in intra-host bandwidth.

3.3 Framework of Hostping

As shown in Fig.5, the core idea of Hostping is conducting
loopback tests between RNICs and endpoints within the host
to measure intra-host latency and bandwidth and leveraging
the measured data to infer intra-host bottlenecks. Hostping is
implemented based on commodity RNICs. Thus, it could run
on all RDMA servers in data centers.

In the loopback test, the RNIC will read messages from one
endpoint to its buffer and then write them back directly. In
this process, all communication occurs inside the host without
any network participation. Therefore, we could leverage the
loopback latency and bandwidth to reflect intra-host latency
and bandwidth. Furthermore, by conducting loopback tests
between an RNIC and all endpoints in the host, we could
evaluate the latency and bandwidth of all intra-host paths that
a message received by the RNIC can take. When network per-
formance degrades, if RNICs find no anomalies in loopback
tests, we infer that the bottleneck occurs in the network. On
the contrary, when the loopback test to an endpoint shows
anomalous results, we confirm that a bottleneck exists on the
path between the RNIC and the endpoint.

Fig.6 shows the framework of Hostping. The Hostping
agent is deployed on RDMA servers and consists of three
components: hardware monitor, Hostping engine, and data
analyzer. The Hostping engine implements the core logic of
Hostping and consists of two functions: (1) leverage RNICs
to measure intra-host latency and bandwidth; (2) monitor
bus utilization (PCIe links, inter-socket buses, and memory

Figure 6: The framework of Hostping.

channels). The hardware monitor judges when to run the
Hostping engine based on host status and abnormal metrics on
RNICs. The data analyzer is responsible for diagnosing intra-
host bottlenecks based on the data collected by the Hostping
engine. All these modules will upload the information they
collect to the cloud, which will be the basis for subsequent
bottleneck diagnosis.

4 Hostping Design

In this section, we will first illustrate the functions of the
Hostping engine and how to measure intra-host latency &
bandwidth with the loopback test (4.1). Then, we will intro-
duce how to utilize the hardware monitor to keep Hostping
highly responsive to intra-host bottlenecks with low overhead
(4.2). Finally, we will present how to diagnose intra-host bot-
tlenecks with the data analyzer (4.3).

4.1 Hostping Engine
4.1.1 Measure Intra-host Latency & Bandwidth

Next, we will illustrate how to measure intra-host latency
and bandwidth in the Hostping engine. Fig.7 demonstrates
the process of the loopback test. First, the Hostping engine
leverages ibv_reg_mr [3] to register two memory regions
(read and write) in an endpoint for sending and receiving,
respectively. Next, the Hostping engine uses ibv_post_send
[3] to post a write WQE (Work Queue Element. Tell the RNIC
to read the message of a specified size from the read region
and write it to the write region) and doorbell the RNIC to
fetch the WQE. Then the RNIC will send a request to read the
message from the read region. Since the receiver is the same
RNIC as the sender, the RNIC will directly write the message
back to the write region instead of sending it to the network.
Finally, after all PCIe write packets are sent out, the RNIC will
generate a completion notification and inform the Hostping
engine that the transmission is finished. By measuring the
span between the call of ibv_post_send and the polling of
completion, the Hostping engine could figure out the loopback
latency. Moreover, by registering memory regions in different
endpoints, we could get the loopback latency between the

20 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: The process of the loopback test. Hostping engine
figures out loopback latency by measuring the span between
the call of ibv_post_send and the polling of completion.

RNIC and any intra-host endpoint. The measured loopback
latency could be approximated4 as follow:

Lat = Tproc +Lathost +
Size

BWhost
(1)

Tproc contains two periods: (1) the duration between the
call of ibv_post_send in the Hostping engine and the RNIC
sending the first read request, and (2) the duration between
the RNIC sending out all the PCIe write packets and the CPU
polling the completion. The intra-host bandwidth (BWhost)
is determined by the minimum bandwidth in PCIe read and
write. Besides, the measured latency also includes intra-host
latency (Lathost). When we leverage a small message, the
measured latency is close to:

lim
size→0

Lat = Tproc +Lathost (2)

It is hard to measure Tproc on commodity RNICs. Never-
theless, Tproc generally remains the same when the RNIC is
underutilized and does not suffer from intra-host bottlenecks.
In this case, we could leverage the change of small message la-
tency to reflect the variation of intra-host latency. Thus, when
the measured latency of a small message increases drastically,
we could infer that there is an intra-host bottleneck leading to
abnormal intra-host latency. On the contrary, when we use a
very large message, the measured latency is close to:

lim
size→∞

Lat =
Size

BWhost
(3)

Then the latency reflects intra-host bandwidth. Actually,
we do not need to use a very large message in practice. We
could use the difference between the latency of large and
small messages (Equation 1 - Equation 2) to obtain Equation
3. In practice, our large message size is 128K bytes for 200
Gb/s RNICs, and our small message size is 1 byte.

4Here size refers to the message size. For simplicity, we do not consider
PCIe encapsulation overhead (e.g., TLP header).

4.1.2 Monitor Bus Utilization

While the loopback test could reveal anomalous intra-host
paths and links, it fails to diagnose the root cause of anomalies
in some scenarios. For example, when the loopback test shows
a memory channel has degraded bandwidth, how to further
determine whether the root cause lies in traffic contention or
a link failure?

To solve this problem, we implement a monitoring mod-
ule in the Hostping engine to monitor bus utilization (PCIe
links, inter-socket buses, and memory channels). Therefore,
when the loopback test shows an intra-host link has degraded
bandwidth, we could further check its utilization. If the link
is overloaded, we infer that the root cause lies in traffic con-
tention. Otherwise, the link is possibly failed. Unlike previous
vendor-specific tools, our monitor could automatically adapt
to devices from different vendors, and operators no longer
need to learn and use various tools for different devices.

4.2 Responsiveness with Low Overhead

When performance bottlenecks occur in the host network, we
hope Hostping can automatically, quickly, and accurately lo-
cate their root causes. However, high responsiveness and low
overhead are usually a trade-off. We can frequently run loop-
back tests to judge whether there are performance bottlenecks
in the host. However, loopback tests consume CPU/GPU
memory and intra-host bandwidth, leading to contention with
service traffic. Thus, frequent loopback tests will have a non-
negligible impact on applications in the host. How could we
ensure responsiveness to bottlenecks with low overhead to
application performance?

Generally, data center hosts keep switching between busy
and idle status. When the host is idle (little traffic on RNICs
and all GPUs are inactive), we could frequently run loopback
tests to keep responsive to intra-host bottlenecks, regardless
of the overhead. When the host is busy with services and
the network performance is degraded due to intra-host bottle-
necks, abnormal metrics on the RNIC, such as packet drops
and Tx pause frames, will usually appear. These metrics are
indicators of intra-host bottlenecks. Therefore, we could exe-
cute loopback tests when these abnormal metrics appear. This
way, Hostping keeps responsive to intra-host bottlenecks with
low overhead to application performance.

We implement a hardware monitor in the Hostping agent
to achieve the targets above. It (1) monitors host status and
abnormal metrics on RNICs and (2) determines when to run
the Hostping engine. In general, it has two functions:

• Monitor RNIC throughput and GPU status periodically.
If the throughput of all RNICs is less than the thresh-
old T hplow, and all GPUs are idle, execute the Hostping
engine to detect if there are intra-host bottlenecks. Oth-
erwise, skip this execution.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 21

• Monitor abnormal metrics on all RNICs. If the Tx pause
duration ratio is larger than PFChigh or packet drops
appear, execute the Hostping engine immediately to di-
agnose intra-host bottlenecks.

4.3 Bottleneck Analysis
In this section, we will demonstrate how the data analyzer
leverages the data collected by the Hostping engine to de-
termine whether there is a bottleneck within the host and
diagnose its root cause. We first discuss how to diagnose
intra-host bottlenecks when the host is idle. In general, the
analyzer determines intra-host path status (normal or abnor-
mal) by comparing the measured intra-host path bandwidth
with the baseline and leverages path status to infer anoma-
lous links. This idea is inspired by binary network tomogra-
phy [15] [18] [27]. Besides, the analyzer compares measured
intra-host path latency with the baseline to assist in root cause
diagnosis. The baseline path bandwidth and path latency are
obtained via loopback tests on a batch of idle hosts with the
same devices and configurations.

y j = ∏
i: linki∈path j

xi,∀ j, (4)

The measured path bandwidth reflects the minimum link
bandwidth on it. As shown in Equation 4, y j,xi ∈ {0,1}, repre-
sents the status of path j and link i, respectively (1 for normal
and 0 for abnormal). If the measured path bandwidth is lower
than the baseline by Abnormalth, we infer that one or more
links on this path suffer from degraded bandwidth and mark
this path as abnormal. However, a path with the expected
bandwidth is not necessarily bottleneck-free. It depends on
whether the RNIC can reach the line rate on this path. For
affinitive endpoints of the RNIC (memory nodes5, GPUs un-
der the same root port as the RNIC), the path bandwidth could
reach the RNIC line rate. If the bandwidth of these paths is
as expected, we consider them normal. However, as demon-
strated in Section 3.2.2, the RNIC could not reach the line rate
for GPUs under different CPU root ports due to high intra-
host latency. In this case, if the bandwidth of a link degrades
but is still higher than the RNIC rate, the measured bandwidth
is still close to the baseline. For these paths, we only judge
whether they are abnormal based on the baseline.

With adequate path status, we can judge the status of each
link within the host. Our algorithm is shown in Algorithm
1. In a symmetric topology like Fig.2, conducting loopback
tests between RNICs and their affinitive endpoints could eval-
uate all intra-host links. Nevertheless, we do full-mesh tests
when the host is idle to improve the accuracy of bottleneck
inference. If no abnormal paths could be found, we conclude
that there is no bandwidth bottleneck. Otherwise, we will

5We draw this conclusion from the server introduced in Section 3.2.1. For
some types of servers, the RNIC cannot reach the line rate when communi-
cating with the memory in remote NUMA nodes.

Algorithm 1 Detect Links with Bandwidth Degradation
Input: normal and abnormal paths
Output: abnormal and gray links
1: function DETECTABNORMALLINKS()
2: InitLinkStatus()
3: for path j in normal paths do
4: for linki in path j do
5: linki.status← normal
6: for path j in abnormal paths do
7: if ∃ links ∈ path j in uncertain status then
8: for linki in all these links do
9: linki.status← abnormal

10: linki.abnormal_cnt ++

11: if ∃ links ∈ path j in abnormal status then
12: for linki in all these links do
13: if marked abnormal by a new RNIC then
14: linki.abnormal_cnt ++

15: if ∀ links ∈ path j in normal status then
16: for linki in path j do
17: linki.status← gray
18: return abnormal links and gray links
19: function INITLINKSTATUS()
20: for linki in all links do
21: linki.status← uncertain
22: linki.abnormal_cnt← 0

diagnose anomalous links based on Algorithm 1. First, we
mark all intra-host links as uncertain. Next, we traverse all
normal paths and mark all links on them as normal. Then, we
traverse all abnormal paths. If an abnormal path has uncertain
links, we mark all these links as abnormal, and abnormal_cnt
records how many RNICs mark a link as abnormal. If all the
links on an abnormal path are normal, some links may be
flapping. Then we set all the links on this path to gray.

When the host is idle, most bottlenecks could be attributed
to link failures or misconfigurations. The analyzer first judges
whether the RNIC is a bottleneck. If the path status between
an RNIC and all its affinitive endpoints is abnormal, then the
RNIC PCIe link may be failed. If the PCIe link connected to
a GPU is marked as abnormal, the analyzer will further check
the path latency between the GPU and its affinitive RNIC. If
the latency is also abnormal, a misconfiguration (e.g., enabling
ACS) may be the root cause. Otherwise, a link failure should
be blamed. For other abnormal links, the analyzer diagnoses
them as failed links. In addition, links marked as gray in
three consecutive loopback tests will be identified as flapping
links. All abnormal links and their possible root causes will be
reported to operators for further operations, such as hardware
inspection and reconfigurations.

When abnormal metrics on an RNIC trigger the Host-
ping engine, the host is usually busy with services, and some
RNICs, especially the abnormal RNIC, may have heavy ser-

22 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

vice traffic. In this case, the path bandwidth measured by
these RNICs will degrade due to the contention of service
traffic, even if there is no bottleneck. Thus, we cannot judge
the status of these paths according to the bandwidth baseline.

Nevertheless, these RNICs could still indicate abnormal
paths. In the server introduced in 3.2.1, applications usually
use an RNIC to communicate with its affinitive endpoints
(memory nodes, GPUs under the same root port) to achieve
optimal performance. Furthermore, memory channels and
inter-socket buses generally provide considerable bandwidth
redundancy. Therefore, the measured bandwidth between the
RNIC and its affinitive endpoints is usually identical if no
bottleneck occurs, no matter how much influenced by ser-
vice traffic on the RNIC. Thus, among the RNIC’s affinitive
endpoints, if the measured path bandwidth to one endpoint
is significantly lower than that to the other endpoints (by
Abnormalth), we infer this path is abnormal. However, we
have no idea whether other paths are normal due to degraded
RNIC loopback bandwidth, leading to reduced diagnosis ac-
curacy. As a workaround, we could check whether there are
idle RNICs on the host, which could still judge path status
according to the baseline.

As applications usually use an RNIC to communicate with
its affinitive endpoints, bottlenecks generally occur on the
paths between the abnormal RNIC and its affinitive endpoints.
Thus, we could focus on finding bottlenecks on these paths.
When triggered by abnormal metrics, the Hostping engine
only conducts loopback tests between RNICs and their affini-
tive endpoints. First, this method is sufficient to diagnose the
status of the memory channel and the inter-socket bus with
low overhead to service traffic. In addition, the service traffic
may affect the measured bandwidth between the affinitive
GPU of the abnormal RNIC and the RNIC under other root
ports. As a result, the analyzer may incorrectly judge these
paths as abnormal, leading to an inaccurate diagnosis. Thus,
for the links under the same root port as the abnormal RNIC,
we only use this abnormal RNIC to judge their status.

The inference of abnormal links is still based on Algorithm
1. However, as RNICs with heavy traffic cannot judge whether
a path is normal, some normal links may be marked as ab-
normal. In this case, links with the highest abnormal_cnt
are most likely abnormal and should receive more attention.
When abnormal metrics trigger the Hostping engine, abnor-
mal links are usually fully loaded. Based on this, we can infer
the root cause by monitoring these links. Links with utiliza-
tion higher than Utilhigh will be diagnosed as overloaded links,
while link failures or misconfigurations may be the root cause
of other abnormal links. However, as the abnormal RNIC
suffers from intra-host bottlenecks, the latency measured by
it will rise anomalously. Thus, we cannot judge whether the
degraded GPU PCIe link is caused by a link failure or a mis-
configuration. Operators then need to do a further inspection.
Notably, if no abnormal link could be found, the RNIC PCIe
link may be the bottleneck, and the analyzer will further check

if it is overloaded with loopback traffic to determine whether
traffic contention or a link failure should be blamed.

5 Implementation

For the hardware monitor, throughput and abnormal metrics
are provided by our RNIC vendors, and GPU status is ob-
tained based on Nvidia Management Library (NVML) [6].
For the threshold, T hplow is 5% of the RNIC line rate to judge
whether the RNIC is idle. PFChigh is 3% (every second, trans-
mission is paused by 30ms) to trigger the Hostping engine.
During the deployment, the monitor checks the host status ev-
ery five minutes6 and collects abnormal metrics every second
to decide whether to start the Hostping engine.

For the Hostping engine, we implement the probing module
with the verbs API and rdma-core libraries [3]. The bus mon-
itor is implemented based on the API and metrics provided
by our vendors: Intel’s and AMD’s API for CPU root ports,
memory channels, and inter-socket buses, NVML for GPU
PCIe links, and Mellanox’s metrics for RNIC PCIe links.

The data analyzer takes the metrics collected by the Host-
ping engine as input and infers the most susceptible root
causes for intra-host bottlenecks. Abnormalth is 20% to judge
whether the latency or bandwidth of a path is abnormal, and
Utilhigh is 90% to judge whether a bus is overloaded.

The cloud data storage is implemented based on our time-
series database. Every time the Hostping engine starts, all the
information collected and deduced by the Hostping agent will
be uploaded to the cloud. These data help us better understand
the frequency and root causes of bottlenecks. Moreover, oper-
ators may need historical data to determine the root causes in
some scenarios.

6 Evaluation & Intra-host Bottlenecks Found

We evaluate Hostping on over 300 servers in our distributed
machine learning system. The host topology is shown in Fig.2
and introduced in Section 3.2.1, which is the most complex
intra-host topology in our data center servers. In this sec-
tion, we will summarize the bottlenecks we found during the
deployment of Hostping. For known bottlenecks, Hostping
could effectively diagnose their root causes. In addition, Host-
ping also reveals six bottlenecks we did not notice before. We
roughly classify the bottlenecks found by Hostping into three
scenarios according to their root causes.
Scenario 1: Intra-host bandwidth degrades due to link
failures. As the host topology becomes more complex, link
failures occur frequently. During the deployment, we encoun-
tered dozens of instances where failed links resulted in de-
graded intra-host bandwidth, including failures of #1 RNIC
PCIe links (Fig.8 (a)), #2 GPU PCIe links (Fig.8 (b) & Fig.10

6As link failures and misconfigurations infrequently appear in a host, 5
minutes is a fine granularity.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 23

(a) (b) (c)

(d) (e) (f)

Figure 8: The intra-host end-to-end bandwidth matrices measured by the Hostping engine when hosts are idle. The topology
between RNICs and endpoints is shown in Fig.2. (a)-(e) show intra-host bandwidth degradation due to link failures. (f) shows the
impact of inappropriate configurations. Green, red, and gray indicate that the path status is normal, abnormal, and uncertain,
respectively.

Wednesday 15/12/2021
0

50

100

150

200

250

300

M
ea

su
re

d
B

an
dw

id
th

(G
bp

s)

Flapping
Normal

Figure 9: Memory channel flapping on the server. When this
occurs, the bandwidth of the memory channel switches be-
tween normal and abnormal.

(a)), #3 memory channels (Fig.8 (b)), and #4 UPI (Fig.8 (c)).
For the sake of space, Fig.8 (b) contains #2 and #3. Their
problem may be loose PCIe interfaces, dust on connecting
fingers, or hardware failures and requires further troubleshoot-
ing. Based on the matrix, the analyzer could accurately infer
abnormal links. Note that in Fig.10 (a), although RNIC2 has a
large amount of service traffic, it could still judge that the path
to GPU4 is abnormal according to other measured paths. With
Hostping, operators could quickly discover and deal with link
failures, avoiding application performance degradation.

[New] #5 CPU root port failures. Before deploying Host-
ping, we only knew four kinds of link failures (#1 to #4).
During the deployment, we found that the CPU root port may
also experience hardware bandwidth degradation. When this
happens, the bandwidth between the RNIC and the GPU un-
der the failed root port is normal. While traffic passes through
the failed root port may suffer from degraded bandwidth. The
corresponding bandwidth matrix is shown in Fig.8 (d) and (e).
They have the same root cause, except that (e) has slight band-
width degradation, and RNICs under other root ports cannot
find anomalies. Nevertheless, Hostping could still accurately
diagnose the root cause in this case.

[New] #6 Memory channel flapping. With the assistance

of Hostping, we found a host suffers from degraded mem-
ory channel bandwidth due to a link failure. However, no
performance issues could be discovered in subsequent man-
ual testing. By continuously running Hostping and collecting
measured data, we found that the root cause lies in the flap-
ping memory channel. As shown in Fig.9, the bandwidth of
the host memory channel switches between normal and ab-
normal. With historical data, we could understand the causes
of intra-host bottlenecks more clearly. This case shows the
necessity to run Hostping periodically.

Scenario 2: Inappropriate configurations lead to degraded
performance. #7 Enabling ACS results in high PCIe latency.
We have mentioned this case in 2.1. With ACS enabled, all
GDR traffic will be guided to the CPU instead of directly to
the GPU, resulting in drastic performance degradation. As
shown in Fig.8 (f), all PCIe bridges are configured as ACS
enabled in this case. As a result, both the latency and band-
width between the RNIC and the GPU under the same root
port turn abnormal. Hostping could accurately diagnose this
bottleneck and remind operators to check the configuration.

[New] #8 Disabling ATS results in high PCIe latency. We
found this case in a virtualized environment. In IO virtualiza-
tion, if Address Translation Service (ATS) is disabled on the
RNIC, all GDR packets will be directed to the CPU root com-
plex for address translation. Similar to #7, with ATS disabled,
the latency between the RNIC and the GPU under the same
root port increases, leading to drastic bandwidth degradation.
By enabling ATS, the translation can be finished in the RNIC
to achieve optimal GDR performance.

[New] #9 Enabling "slow start" on the RNIC. This is a
lossy feature provided by our RNIC vendor. When enabled on
an RNIC, the RNIC sending rate will start from a small value
instead of the line rate. Although "slow start" could alleviate
congestion under Incast scenarios, it increases the completion
time of short flows. Thus, it usually remains disabled in most

24 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) (b) (c)

Figure 10: The bandwidth matrices measured when hosts are busy with services. (a) shows hardware bandwidth degradation due
to the GPU PCIe link failure. (b) and (c) show degraded intra-host bandwidth caused by traffic contention.

scenarios. When "slow start" is enabled, the RNIC bandwidth
to all intra-host endpoints will be lower than the baseline (sim-
ilar to Fig.8 (a)). At first, Hostping diagnosed the root cause
as the RNIC PCIe link failure. However, we found no bottle-
necks during continuous bandwidth tests. After configuration
inspection, we finally uncovered the root cause.

[New] #10 Setting "Tx window" too small on the RNIC.
This is also a lossy feature. "Tx window" will limit the maxi-
mum in-flight bytes of each queue pair on an RNIC. There-
fore, "Tx window" influences the maximum bandwidth a QP
could achieve and needs to be set reasonably to alleviate net-
work congestion without degrading throughput. Similar to #9,
when an RNIC’s "Tx window" is too small, its bandwidth to
all intra-host endpoints will be lower than the baseline.

Scenario 3: Intra-host bandwidth degrades due to traffic
contention. [New] #11 Overloaded Inter-socket buses. Dur-
ing the deployment, we found some malfunctioning applica-
tions overloaded the UPI of a host, and cross-socket receiving
traffic on RNIC0 triggered a large number of Tx pause frames.
Fig.10 (b) shows the corresponding bandwidth matrix mea-
sured by Hostping. In this case, RNIC0 and RNIC2 have a
large amount of service traffic. Nevertheless, they could still
judge that two paths (RNIC0 to mem1 and RNIC2 to mem0)
are abnormal according to other measured paths. With the help
of the other two idle RNICs, the analyzer infers that the UPI
is most likely to be abnormal (with the highest abnormal_cnt).
Furthermore, leveraging the bus monitor, it diagnoses the root
cause as the overloaded UPI. The operator then will find out
the traffic source that overloads the UPI.

#12 Overloaded memory channels. TCP and RDMA traffic
may co-exist in the same host to keep high availability [21]. In
this case, the processing of TCP may consume a lot of memory
bandwidth, leading to a slow receiving rate for RDMA traf-
fic. However, we did not discover this case in A100 servers
during the deployment of Hostping. As a supplement, we
conduct an experiment to evaluate how Hostping behaves
when the memory channel is overloaded. We use several pro-
cesses to overload the channel of mem0. Besides, RNIC0 and
RNIC2 receive traffic writing to mem0 and mem1, respec-
tively. Fig.10 (c) shows the corresponding bandwidth matrix.
Although RNIC0 and RNIC2 have a large amount of receiv-
ing traffic, they could still judge that their paths to mem0 are
abnormal. Similar to #11, in this case, the analyzer infers that
the channel of mem0 is most likely abnormal and diagnoses

the root cause as the overloaded memory channel.
In this scenario, we evaluate the performance of Hostping

when intra-host links are overloaded. Furthermore, the results
show that Hostping could still effectively diagnose intra-host
performance bottlenecks under the interference of service
traffic on RNICs.

7 Experiences Learned

Conduct Hostping before running applications. As the
intra-host topology becomes more complex, the likelihood of
link failures in the host network boosts. Based on our experi-
ence, some failures may already exist when the server leaves
the factory. Thus, it is essential to evaluate the intra-host net-
work performance before delivering the server to customers.
In addition, as intra-host services become more complicated,
configuration items in the host also increase considerably, and
the configuration methods are varied. For example, the set-
ting of Address Translation Service requires a reboot to take
effect. In contrast, Access Control Service is enabled by de-
fault and needs to be disabled after each reboot. Furthermore,
configurations may not be completed successfully for some
reason. Therefore, misconfigurations occur occasionally. We
recommend conducting Hostping after each reboot to ensure
proper configurations before running applications.
Perceive intra-host bottlenecks with VoQ ECN marking.
Although intra-host bottlenecks should be addressed in a tar-
geted manner (e.g., hardware replacement, reconfigurations),
we argue that congestion control mechanisms should be able
to perceive intra-host bottlenecks. Thus, they could alleviate
the triggering of packet drops and Tx pause frames to pro-
vide better network performance before the bottleneck could
finally be resolved. Generally, packets could only be ECN-
marked in a switch’s egress port, and ECN-based congestion
control mechanisms could only perceive network congestion.
Fortunately, some latest RNICs provide a new function called
VoQ (Virtual Output Queuing) ECN marking, enabling the
receiver RNIC to ECN-mark packets when its receive buffer
exceeds a threshold. By enabling this function, ECN-based
congestion control mechanisms, such as DCQCN [50], can
also perceive intra-host bottlenecks. Thus, the sender could
timely slow down its sending rate to alleviate the triggering
of packet drops or Tx pause frames.
Pay attention to intra-host topologies. Although GDR is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 25

supported at any distance within the host, it is highly recom-
mended not to conduct GDR across CPU root ports. When
this occurs, the GDR bandwidth degrades severely, which may
lead to a large number of Tx pause frames or packet drops.
Furthermore, when testing some AMD servers, we found
a large number of Tx pause frames and drastic throughput
degradation when the RNIC (200 Gb/s) writes to the memory
in the remote socket. This is due to the low cross-socket hard-
ware bandwidth on these servers, and the root cause lies in
the host architecture. Thus in these servers, we should avoid
using RNICs to communicate with the memory in the remote
socket for optimal performance.

8 Related Work

Bottlenecks in the RNIC and intra-host network. With
the increasing RNIC line rate, the intra-host network and
the RNIC have become potential performance bottlenecks in
network communication. Some literature has studied these
bottlenecks. Kong et al. [32] implement a tool to help data
center operators uncover potential performance bottlenecks
in the RNIC. Martinasso et al. [37] analyze congestion be-
haviors in PCIe fabric and develop a congestion-aware per-
formance model for PCIe communication. Zhang et al. [49]
study RDMA sharing characteristics and analyze performance
isolation anomalies in RDMA. Neugebauer et al. [40] study
the performance impact of PCIe in the host network. Dong et
al. [16] analyze different types of traffic congestion in the host
network and propose a new server architecture to alleviate
intra-host congestion. Faraji et al. [19] show the implication
of distance between GPUs on the GPU-to-GPU communi-
cation performance in the host network. Farshin et al. [20]
study when Intel Data Direct I/O (DDIO) technology becomes
a bottleneck in multi-hundred-gigabit networks and how to
optimize DDIO-enabled systems for I/O intensive applica-
tions. These studies help us better understand the potential
bottlenecks in the RNIC and intra-host network.
Bottleneck diagnosis tools. Diagnosis tools could be broadly
classified as system-based tools and intra-host tools. System-
based tools aim to diagnose performance bottlenecks in the
whole system. Pingmesh [25] implements an end-to-end con-
nectivity and latency monitoring system for network trou-
bleshooting and SLA tracking. Netbouncer [44] leverages
the IP-in-IP technique to probe designated paths and then
diagnoses device and link failures in data center networks.
Deepview [48] builds a near-real-time system for virtual disk
failure localization. Microscope [23] leverages queuing in-
formation at network functions to identify the root causes of
performance bottlenecks. SNAP [47] collects network infor-
mation such as TCP statistics and socket-call logs to pinpoint
the problem in data center network applications. In contrast,
intra-host tools are dedicated to diagnosing bottlenecks in the
host. Haecki et al. [26] implement a latency diagnosis tool
to identify the source of network latency in end-host stacks.

Mellanox Neohost [4] provides plenty of diagnosis counters
on Mellanox RNICs. Nvidia SMI [9] provides the status of
Nvidia GPUs. Intel PCM [2] and AMD uProf [1] provide
the internal resource utilization of the CPU, including the
utilization of buses and interfaces connected to the CPU, such
as inter-socket buses, memory channels, and CPU root ports.

9 Conclusion & Future Work

Intra-host networking has become a potential bottleneck for
RDMA networks, and intra-host bottlenecks can severely de-
grade network performance. This paper proposes Hostping
to monitor and diagnose intra-host bottlenecks. We analyze
the symptom of intra-host bottlenecks based on our long-term
troubleshooting experience and realize that most intra-host
bottlenecks have one or both of the following symptoms: intra-
host bandwidth degradation and intra-host latency increase.
Thus, Hostping measures intra-host bandwidth and latency
as performance metrics to detect and diagnose intra-host bot-
tlenecks. Furthermore, we propose an efficient diagnosing
mechanism that could effectively identify the root cause of
intra-host bottlenecks even under the interference of service
traffic on RNICs. During the deployment, Hostping not only
discovers performance bottlenecks we already knew but also
reveals six bottlenecks we did not notice before.

The deployment of Hostping makes us realize that more
work needs to be done. Firstly, when the host is busy with ser-
vices, due to the influence of service traffic, it is challenging to
accurately diagnose intra-host link status based on binary path
status. If the end-to-end traffic information within the host
can be obtained, it will provide more insights into intra-host
bottlenecks. Secondly, after finding an overloaded link, we
hope Hostping could automatically identify the traffic source,
such as malfunctioning applications. Finally, in addition to
intra-host network bottlenecks, RNIC bottlenecks, such as
scalability problems [29] [30] [31], can also lead to severe
network performance degradation. Thus, it is also important
to diagnose bottlenecks in the RNIC.

Acknowledgments

We would like to thank our shepherd, Raja Sambasivan, and
the anonymous reviewers who helped us improve the quality
of this paper. We would also like to thank Huaping Zhou for
his insightful feedback. This work is supported in part by the
National Natural Science Foundation of China (NSFC) under
Grant 61872401 and Grant 62132022, a BUPT-ByteDance Re-
search Project, and the Fok Ying Tung Education Foundation
under Grant 171059.

26 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] AMD uProf. https://developer.amd.com/amd-u
prof/.

[2] Intel Performance Counter Monitor. https://gith
ub.com/opcm/pcm.

[3] Linux rdma-core. https://github.com/linux-rdm
a/rdma-core.

[4] Mellanox Neohost. https://support.mellanox.c
om/s/productdetails/a2v50000000N2OlAAK/mel
lanox-neohost.

[5] Nvidia DGX-A100. https://www.nvidia.com/e
n-us/data-center/dgx-a100/.

[6] Nvidia Management Library. https://developer.
nvidia.com/nvidia-management-library-nvml.

[7] Nvidia nccl-tests. https://github.com/NVIDIA/nc
cl-tests.

[8] Nvidia NVLink and NVSwitch. https://www.nvid
ia.com/en-us/data-center/nvlink/.

[9] Nvidia System Management Interface.
https://developer.nvidia.com/nvidia-sys
tem-management-interface.

[10] OFED perftest. https://github.com/linux-rdm
a/perftest.

[11] Intel® Xeon® Scalable Processors Datasheet.
https://www.intel.com/content/dam/www/publ
ic/us/en/documents/datasheets/2nd-gen-xeo
n-scalable-datasheet-vol-1.pdf, 2019.

[12] Workload Tuning Guide for AMD EPYCTM 7002 Series
Processor Based Servers. https://developer.am
d.com/wp-content/resources/56745_0.80.pdf,
2020.

[13] Marcelo Amaral, Jordà Polo, David Carrera, Seetharami
Seelam, and Malgorzata Steinder. Topology-Aware
GPU Scheduling for Learning Workloads in Cloud En-
vironments. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12, 2017.

[14] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Niko-
las Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. A1: A Distributed In-Memory Graph
Database. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages
329–344, 2020.

[15] Ítalo Cunha, Renata Teixeira, Nick Feamster, and
Christophe Diot. Measurement Methods for Fast and Ac-
curate Blackhole Identification with Binary Tomography.
In Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement, pages 254–266, 2009.

[16] Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye,
Shaochuang Wang, Fei Feng, Li Zhao, Xiaoyong Liu,
Liuyihan Song, Liwei Peng, et al. EFLOPS: Algorithm
and System Co-Design for a High Performance Dis-
tributed Training Platform. In 2020 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 610–622. IEEE, 2020.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[18] Nick Duffield. Network Tomography of Binary Network
Performance Characteristics. IEEE Transactions on
Information Theory, 52(12):5373–5388, 2006.

[19] Iman Faraji, Seyed H Mirsadeghi, and Ahmad Afsahi.
Topology-Aware GPU Selection on Multi-GPU Nodes.
In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages
712–720. IEEE, 2016.

[20] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kostić. Reexamining Direct Cache Access to
Optimize I/O Intensive Applications for Multi-hundred-
gigabit Networks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 673–689, 2020.

[21] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When Cloud Storage
Meets RDMA. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 519–533, 2021.

[22] Andrew Gibiansky. Bringing HPC techniques to deep
learning. Baidu Research, Tech. Rep, 2017.

[23] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based Performance
Diagnosis for Network Functions. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 390–403, 2020.

[24] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In Proceedings of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 27

https://developer.amd.com/amd-uprof/
https://developer.amd.com/amd-uprof/
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://developer.amd.com/wp-content/resources/56745_0.80.pdf
https://developer.amd.com/wp-content/resources/56745_0.80.pdf

the 2016 ACM SIGCOMM Conference, pages 202–215,
2016.

[25] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, and Hua and Chen. Pingmesh: A Large-
Scale System for Data Center Network Latency Mea-
surement and Analysis. Computer communication re-
view, 45(4):139–152, 2015.

[26] Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh,
Gerd Zellweger, Bo Gan, Timothy Merrifield, Sujata
Banerjee, and Timothy Roscoe. How to diagnose
nanosecond network latencies in rich end-host stacks. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 861–877, 2022.

[27] Yiyi Huang, Nick Feamster, and Renata Teixeira. Prac-
tical Issues with Using Network Tomography for Fault
Diagnosis. ACM SIGCOMM Computer Communication
Review, 38(5):53–58, 2008.

[28] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 463–479, 2020.

[29] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1–16, 2019.

[30] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using RDMA Efficiently for Key-Value Services.
In Proceedings of the 2014 ACM Conference on SIG-
COMM, pages 295–306, 2014.

[31] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided Datagram RPCs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 185–201, 2016.

[32] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), pages 287–305,
2022.

[33] Christoph Lameter. NUMA (Non-Uniform Memory
Access): An Overview: NUMA becomes more common
because memory controllers get close to execution units
on microprocessors. Queue, 11(7):40–51, 2013.

[34] Jason Lawley. Understanding Performance of PCI Ex-
press Systems. WP350 (v1. 2). Xilinx, 97, 2014.

[35] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R Tallent, and Kevin J Barker. Evaluat-
ing Modern GPU Interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect. IEEE Transactions on Par-
allel and Distributed Systems, 31(1):94–110, 2019.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
High Precision Congestion Control. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion, pages 44–58. 2019.

[37] Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R
Alam, Thomas C Schulthess, and Torsten Hoefler.
A PCIe Congestion-Aware Performance Model for
Densely Populated Accelerator Servers. In SC’16: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pages 739–749. IEEE, 2016.

[38] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka,
Yuichi Kageyama, et al. Massively Distributed SGD:
ImageNet/ResNet-50 Training in a Flash. arXiv preprint
arXiv:1811.05233, 2018.

[39] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting Network Support for RDMA.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
313–326, 2018.

[40] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 327–341, 2018.

[41] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in TensorFlow. arXiv
preprint arXiv:1802.05799, 2018.

[42] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and Concurrent RDF Queries with
RDMA-Based Distributed Graph Exploration. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 317–332, 2016.

[43] Richard Solomon. PCI Express Basics. PCI-SIG, Oct,
2011.

28 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active Device and Link Failure Localiza-
tion in Data Center Networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 599–614, 2019.

[45] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu,
Junxue Zhang, and Kai Chen. Rat-Resilient Allreduce
Tree for Distributed Machine Learning. In 4th Asia-
Pacific Workshop on Networking, pages 52–57, 2020.

[46] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lin-
tao Zhang, and Lidong Zhou. Fast Distributed Deep
Learning over RDMA. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–14, 2019.

[47] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rex-
ford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling Network Performance for Multi-Tier
Data Center Applications. In 8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 11), 2011.

[48] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang,
Nick Swanson, Xinsheng Yang, Randolph Yao, Murali
Chintalapati, Arvind Krishnamurthy, and Thomas An-
derson. Deepview: Virtual Disk Failure Diagnosis and
Pattern Detection for Azure. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 519–532, 2018.

[49] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), pages 1307–1326, 2022.

[50] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA De-
ployments. ACM SIGCOMM Computer Communication
Review, 45(4):523–536, 2015.

[51] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and
Robert J Safranek. Intel® QuickPath Interconnect Ar-
chitectural Features Supporting Scalable System Ar-
chitectures. In 2010 18th IEEE Symposium on High
Performance Interconnects, pages 1–6. IEEE, 2010.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 29

	Introduction
	Background & Motivation
	Intra-host Bottlenecks
	The Impact of Intra-host Bottlenecks
	Limitations of Existing Intra-host Bottleneck Diagnosis Mechanisms
	Targets of Hostping

	Hostping Overview
	Challenges
	Symptoms of Intra-host Bottlenecks
	Bandwidth Degradation
	Latency Increase

	Framework of Hostping

	Hostping Design
	Hostping Engine
	Measure Intra-host Latency & Bandwidth
	Monitor Bus Utilization

	Responsiveness with Low Overhead
	Bottleneck Analysis

	Implementation
	Evaluation & Intra-host Bottlenecks Found
	Experiences Learned
	Related Work
	Conclusion & Future Work

