
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

On Modular Learning of Distributed Systems
for Predicting End-to-End Latency

Chieh-Jan Mike Liang, Microsoft Research; Zilin Fang, Carnegie Mellon University;
Yuqing Xie, Tsinghua University; Fan Yang, Microsoft Research; Zhao Lucis Li,
University of Science and Technology of China; Li Lyna Zhang, Mao Yang, and

Lidong Zhou, Microsoft Research
https://www.usenix.org/conference/nsdi23/presentation/liang-chieh-jan

On Modular Learning of Distributed Systems for Predicting End-to-End Latency

Chieh-Jan Mike Liang‡ Zilin Fang∗ Yuqing Xie◦ Fan Yang‡

Zhao Lucis Li⋆ Li Lyna Zhang‡ Mao Yang‡ Lidong Zhou‡

‡Microsoft Research ∗CMU ◦Tsinghua University ⋆University of Science and Technology of China

Abstract
An emerging trend in cloud deployments is to adopt ma-

chine learning (ML) models to characterize end-to-end system
performance. Despite early success, such methods can incur
significant costs when adapting to the deployment dynamics
of distributed systems like service scaling-out and replace-
ment. They require hours or even days for data collection
and model training, otherwise models may drift to result in
unacceptable inaccuracy. This problem arises from the prac-
tice of modeling the entire system with monolithic models.
We propose Fluxion, a framework to model end-to-end sys-
tem latency with modularized learning. Fluxion introduces
learning assignment, a new abstraction that allows model-
ing individual sub-components. With a consistent interface,
multiple learning assignments can then be dynamically com-
posed into an inference graph, to model a complex distributed
system on the fly. Changes in a system sub-component only
involve updating the corresponding learning assignment, thus
significantly reducing costs. Using three systems with up to
142 microservices on a 100-VM cluster, Fluxion shows a per-
formance modeling MAE (mean absolute error) up to 68.41%
lower than monolithic models. In turn, this lower MAE al-
lows better system performance tuning, e.g., a speed up for
90-percentile end-to-end latency by up to 1.57×. All these
are achieved under various system deployment dynamics.

1 Introduction
Predicting cloud system performance is critical for improving
the end-user experience. While this problem has been tradi-
tionally addressed with analysis and handcrafted performance
models, an emerging trend is to incorporate machine learning
(ML) techniques for performance modeling [7,9,23]. Such ap-
proaches [2,3,6,13,14,20,21,34,41] typically use monolithic
ML models, to predict the performance (e.g., user request

This work was done when Zilin Fang, Yuqing Xie, and Zhao Lucis Li
were interns at Microsoft Research.

latency), given configurable knobs of the system component
(e.g., cache size) and observable states (e.g., request rate).

In recent years, the microservice architecture has gained
popularity in building distributed cloud systems [1, 12, 18, 25,
40]. Its per-service flexibility enables continuous integration
and continuous delivery (CI/CD), and per-service horizontal
scaling (e.g., replication) and vertical scaling (e.g., capacity
adjustments) can handle load dynamics. Interestingly, the
monolithic approach of modeling the entire system could still
be applicable to such distributed systems, and doing so frees
operators from explicitly modeling service dependencies.

Unfortunately, our first-hand experience at Microsoft sug-
gests inherent limitations in effectively learning distributed
system’s end-to-end performance. There is a need to continu-
ally adapt performance models to the deployment dynamics.
As services are independently scaled and replaced over time,
deployment updates become frequent operations.

Continually updating monolithic models can incur signifi-
cant time costs, especially if deployment dynamics are han-
dled in an ad-hoc way. First, collecting a sufficient amount of
training data can be time-consuming, as new system dynamics
can take minutes and even hours to be fully warmed-up and
stable [39]. Second, designing and training a new model can
also be time-consuming, even with the help of automation
tools [4, 19, 27]. For example, a system evaluated in §5 has
142 microservices, and requires a performance model that
considers 1,034 service knobs and states. Collecting suffi-
cient data points to train such a complex monolithic model
takes us ∼46 hours, and model training takes additional ∼24
hours. Such a practice hinders the practicality of monolithic
approach, for performance tuning in the real world.

Given the above challenges, we advocate modularized
learning for microservice-based distributed systems. Our key
observation is the locality of deployment dynamics, where
changes happen at the granularity of system components (e.g.,
microservices). So, modularized learning models the perfor-
mance of each service individually, and carefully composes
these models on-demand to follow deployment dynamics.

Fluxion is a framework that realizes modularized learning

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1081

to model end-to-end latency while handling system deploy-
ment dynamics efficiently and effectively. Fluxion introduces
learning assignment, an abstraction to model each service in
a distributed system. Learning assignment is instantiated on
each service instance to model its performance metrics (e.g.,
latency). It can accommodate any service and different ML
modeling techniques (e.g., DNN or Gaussian process). Learn-
ing assignments can be composed into an inference graph to
model a large complex system, similar to how services are
composed into an end-to-end system. Changes in a service of
the system only induce modeling errors in the corresponding
learning assignments. Since the configurations and internal
logic of other services remain the same, their corresponding
learning assignments along with their modeling accuracy also
remain unchanged. Therefore, Fluxion only needs to update
the learning assignments corresponding to the changed ser-
vice, thus significantly reducing the costs.

Three unique characteristics enable learning assignment
to handle system deployment dynamics effectively. First, to
capture the impact from other services, learning assignment
defines external performance dependencies as part of mod-
eling inputs. This enables the composability — multiple as-
signments can be composed into an inference graph, to follow
service dependencies of a complex distributed system on the
fly. Second, instead of considering only the performance met-
ric of interest (e.g., p90 latency), learning assignments can
take in a spectrum of performance metrics from upstream as-
signments (e.g., p50–p99 latencies) in inference graph. This
allows a learning assignment to better observe (and capture)
the impacts of system deployment dynamics from upstream
assignments. Finally, to capture the temporal system dynam-
ics, a learning assignment can host one or more ML models
trained in different time periods and scales.

In summary, this paper makes the following contributions.
(1) We propose a modular approach to modeling end-to-end
latency for complex and dynamic distributed systems, ex-
emplified by microservice systems. (2) The abstraction of
learning assignment and the resulting inference graph effec-
tively capture intrinsic system dynamics, as well as dependen-
cies among services. (3) We conduct comprehensive experi-
ments to demonstrate the significantly superior performance
of Fluxion over existing approaches, under various system de-
ployment dynamics. In some microservice systems spanning
100 VMs, Fluxion’s performance model exhibits up to 68%
lower MAE (mean absolute error). In turn, this enables better
system performance optimization, or p90 latency speed up
by up to 1.57× over the use of baselines. At the same time,
Fluxion reduces the model training time by up to 99.98%.

2 Background and Motivations
2.1 Performance Prediction and Modeling

Performance models predict the end-to-end system perfor-
mance (e.g., user request latencies), given observable states

Figure 1: General workflow of auto-tuning. Fluxion focuses
on step #2, or the efficiency in adapting performance models
to system deployment dynamics.

(e.g., per-service request rates) and configurable knobs (e.g.,
per-service cache size and thresholds). Performance models
can be analytically constructed with mathematical formula-
tions, but doing so does not scale well with the size or com-
plexity of large-scale distributed systems. A typical microser-
vice system can have hundreds (and even thousands [40]) of
services, and requests can traverse 40+ services [25].

Learned performance model. Advances in machine learning
(ML) enable performance modeling to be learned, with regres-
sion techniques such as Gaussian process and DNN. Like pre-
vious efforts that model monolithic systems [2,3,9,13,21,23],
it is possible to treat an entire microservice system as a black-
box. To match system deployment scale, ML models can
monolithically grow in size (e.g., adding DNN neurons). Fur-
thermore, black-box modeling eliminates the need to explic-
itly consider service interactions and dependencies.

For training performance models, each training data point
consists of inputs (i.e., per-service knob settings and observ-
able states) and an output (i.e., a system performance measure-
ment). Data are collected through benchmarks in controlled
environment (e.g., testbeds or isolated sections in production),
or telemetries in production. Trained models may be evalu-
ated with testing data, which are collected in the same fashion.
One common evaluation metric for performance modeling is
MAE (mean absolute error) [37], or the average magnitude
of errors in a set of test predictions made by the model.
Performance auto-tuning scenario. As Fig 1 illustrates, per-
formance models can drive auto-tuning [2, 3, 21–23]. The
goal is to guide non-system-experts to set system knobs, to
optimize for a performance metric. Auto-tuning relies on opti-
mizers (step #3), which iteratively search for global optimum
in the modeled space. Each iteration algorithmically selects
new knob setting (for performance model to predict), based
on performance predictions from previous iterations.

2.2 High Costs to Maintain ML Models
We observe significant time costs in continually keeping
ML-based performance models updated to system deploy-
ment dynamics. Deployment dynamics make performance
models drift over time and impact modeling accuracy, hence
auto-tuning outcomes (c.f. §5). Main sources of deployment

1082 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dynamics include (1) system scaling, i.e., replicating or re-
claiming service instances, and (2) continuous integration and
delivery (CI/CD), i.e., replacing existing services.

We discuss the breakdown of time costs below.

Problem #1: Collecting training data points for perfor-
mance modeling can be time-consuming. As the model
complexity grows, the number of training data points nec-
essary also grows. However, each benchmark requires the
system to be fully warmed-up and stable [39]. In our cases,
one benchmark can take up to 15 minutes, and collecting
sufficient data points can require ∼46 hours.

The problem exacerbates as distributed cloud systems re-
quire a significantly higher model complexity than previously
considered. Unlike monolithic systems with ∼20 knobs and
states to consider, this number can quickly add up to hundreds
and thousands for microservice-based systems. For exam-
ple, Train-Ticket [31] has 41 services. At initialization, it
has 242 model inputs: 148 configuration knobs (e.g., Mon-
goDB’s eviction_dirty_target), 94 states (e.g., Docker’s
cpu-limit and per-service requests per second). As Train-
Ticket scales-out by a factor of 6, there is a total of 210 service
instances, and 1,020 model inputs.

Problem #2: Designing and training new models for per-
formance modeling can be time-consuming. Keeping per-
formance models updated goes beyond simply fine-tuning
models with recent benchmarks. In many cases, the required
changes lie in the model structure. One motivating example
is how replicating services essentially alters the deployment,
with respect to the available knobs, service states, and service
dependencies. As a result, we need a new model of different
input dimension and even different modeling technique.

Although AutoML toolkits can automate this process to
some extent, our experience suggests that it can take at least 20
hours to produce a reasonably accurate ML model for perfor-
mance modeling. Furthermore, it is not feasible to pre-train all
monolithic models for all possible deployment setups. Since
services can be independently replaced and arbitrarily scaled,
the number of possible deployment setups is unbounded.

2.3 Modularized Learning
The principle of modularity has been proven in engineering
scalable and elastic systems. It provides opportunities to real-
ize ML-based performance modeling in an agile and accurate
way. Instead of monolithically modeling the end-to-end la-
tency of distributed systems with one performance model, we
propose modularized learning that breaks down this model to
align with a deployment’s modular units.

Challenges. To practice modularity, it is natural to indepen-
dently model each system component, e.g., a microservice.
Given system components can have vastly different configu-
ration knobs and states, different types of ML models can be
chosen for individual system components. The key challenges
are: (1) to represent different system components, possibly

Figure 2: Learning assignment is a wrapper for ML models.
It has a consistent interface for composability.

using different ML techniques, with a consistent interface;
and (2) to have a composability criteria that combines these
component representations into an end-to-end ML model for
performance modeling.

3 Fluxion Framework

Fluxion is a framework that realizes modularized learning for
distributed systems. To address the two challenges discussed
in §2.3, Fluxion introduces learning assignment to abstract
away model and component heterogeneity and provide a uni-
fied interface to model service-level latency (§3.1). Moreover,
Fluxion presents inference graph to dynamically compose
assignments into an end-to-end performance model (§3.2).

3.1 Learning Assignments
A learning assignment is a basic modeling unit. It hosts one
or more ML models that collectively model a modular unit
in distributed systems. Since system deployment dynamics
typically happen at the unit of services (e.g., scaling and
replacing services), assignments are instantiated on a per-
service-instance and per-performance-metric1 basis. When
deployment dynamics happen, this mapping of modular units
allows Fluxion to localize changes to some learning assign-
ments. Fig 2 illustrates the internal structure of an assignment,
and we elaborate the details next.

Interface. The learning assignment interface is designed to
abstract service-level performance for ML models. Model-
ing individual services is different from modeling the entire
system monolithically. The former needs to take service de-
pendencies into account. E.g., a service’s observed latency in-
herently includes the latency of its downstream services [10].

Therefore, in addition to internal configuration knobs and
internal observable states, the assignment inputs further in-
clude external performance dependencies (e.g., downstream
service latency). The assignment output is a service-level

1E.g., p50 and p90 latencies require two learning assignments.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1083

performance metric. This interface addresses challenge #1
— the consistent service-level performance metrics as input
and output, together with the heterogeneous internal states
and knobs, are sufficiently general to model different services
and to host ML models of different modeling techniques, and
a learning assignment’s output can be connected to another
assignment as an external performance dependency.

Exposing a spectrum of performance metrics. To predict
the end-to-end latency more accurately, a learning assignment
may expect the external performance dependencies to be a
spectrum of performance metrics from dependent services.
For example, to predict end-to-end p90 latency, a learning
assignment may require p50–p90 latencies of the downstream
services (and even their CPU utilization and disk throughput),
so as to decide which metrics are appropriate for considera-
tion. This allows a learning assignment to better observe the
extent of impacts that system deployment dynamics impose
on its downstream services.

However, not all performance metrics are highly relevant to
the one being predicted. An example is the bottom-percentile
latencies vs. the top-percentile latencies. Including irrelevant
performance metrics incurs additional costs. The first is the
training costs. As unnecessary inputs add noises to the train-
ing dataset, some ML models would need more data points to
distinguish and learn from the relevant inputs. And collecting
training data points can be time-consuming (c.f. §2.2). The
second is the unnecessary learning assignments introduced to
predict these irrelevant metrics.

To this end, learning assignment introduces "input selec-
tion" (shown in Fig 2) to prune unnecessary metrics and the
corresponding learning assignments. The problem of input se-
lection can be formulated as follows. Given a set of k learning
assignments (mk) as inputs to a specific learning assignment,
we want to find the k-dimensional binary weight vector (w∗

k).
w∗

k should minimize the prediction error of an weighted sum
of mk, over a batch of n data points (inputs X , and outputs Y).
This is formulated as the following equation:

w∗
k = argmin

wk ∈ W
(

n

∑
i=1

Yi − f (wk,mk(Xi)))
2. (1)

The goal is to search for w∗
k , or the optimal k-dimensional

binary vector. f is a predefined function that aggregate outputs
of k learning assignments, and it can be hand-written code or
non-linear functions such as neural networks. We can expand
f as follows:

f (w,m(X)) =
∑

k
i=1 w(i)m(i)(X)

∑
k
i=1 w(i)

. (2)

In practice, k can be large. For example, RocksDB has k = 99
performance metrics. To select three relevant metrics need
to search 941,094 possible combinations. To find a solution
effectively, §4.1 presents one generic approach in the current
implementation of Fluxion.

(a) Execution graph

(b) Inference graph

Figure 3: A simplified inference graph of a microsevice ap-
plication, Hotel Reservation. Vertices represent services, and
directed edges capture performance dependencies among ser-
vices. Graph inputs include configuration knobs and observ-
able service states. (M) represents models. In this example,
the Recommend service is scaled out to two instances.

Capturing system’s temporal dynamics. A learning assign-
ment can host multiple ML models trained in different time
periods and scales. Doing so promotes the reuse of previously
learned models, in order to better capture temporal dynamics
and predict recurring patterns. An example is the daily vari-
ations in incoming request rates. In this case, we can train a
new model with data points collected each day.

Learning assignment introduces "output weighting" (shown
in Fig 2) to weight over outputs from different time peri-
ods/scales and reduce all models’ outputs to one succinct
value. The formulation of output weighting is similar to that
of input selection, except that k assignments are changed to k
internal models and w∗

k here is a k-dimensional vector of con-
tinuous numbers between 0 and 1 inclusively. And the output
is computed as the weighted sum of all k models’ outputs.

Similarly, to find a good combination of weights is compu-
tationally expensive. §4.1 presents one generic approach in
the current implementation of Fluxion.

3.2 Inference Graph of Learning Assignments

Inference graph is a set of interconnected learning assign-
ments. It represents the performance modeling of an end-to-

1084 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

end system. From external user’s perspective, inference graph
has the same input/output semantics as monolithic models.
In other words, inference graph exposes the following per-
formance modeling inputs: all services’ configuration knobs
and observable states. Its output predicts for an end-to-end
performance metric: the end-to-end tail latency in our case. In-
ference graph addresses challenge #2, i.e., the composability
criteria to compose learning assignments.

3.2.1 Inference Graph Construction

Fig 3 illustrates a simplified inference graph for a microser-
vice system, Hotel Reservation [11].

Graph vertices. An inference graph has two types of vertices:
instance-vertices and service-vertices (c.f. Fig 3b). Instance-
vertices correspond to the learning assignments modeling the
performance of service instances. They expose learning as-
signment inputs (e.g., service configuration knobs, observable
states, and external performance dependencies) and output
(e.g., a service-level performance metric). Service-vertices ag-
gregate instance-vertices that model the same service and per-
formance metric. In Fig 3b, the Recommend service (marked
in dash-line) is scaled out to two instances.

Graph edges. Graph edges are directed dataflows, and they
satisfy services’ external performance dependencies. To draw
the edges correctly, we leverage the observation that the per-
formance dependency of two services is the reverse of their
execution dependency. Since an upstream service invokes
RPC calls to its downstream service, the upstream service’s
latency would depend on the latency of downstream service.
Hence an edge should be connected from the learning as-
signment (i.e., vertex) representing the downstream service
to the one representing the upstream service (i.e., the reverse
direction of the service execution order).

Handling deployment dynamics through inference graph
updating. Since graph vertices and edges have a strong
correspondence to services in the system deployment,
orchestration-induced dynamics can be localized to certain
regions of the inference graph. This implies that other re-
gions can remain unchanged. Fluxion provides APIs to update
graph for common orchestration operations (c.f. §4.1.2). First,
scaling-out a service is conceptually equivalent to replicating
the corresponding instance-vertices, to match the number of
deployed instances. Similarly, scaling-in a service removes
some of the corresponding instance-vertices. Second, upgrad-
ing a service (or even a migration from MySQL to Post-
greSQL) is conceptually equivalent to replacing old service’s
instance-vertices with new service’s.

3.2.2 Graph Inferencing to Predict End-to-End Latency

Graph inferencing is performed through graph traversal. The
traversal starts from graph vertices that do not have external

performance dependencies, or services that do not invoke any
downstream services (e.g., the top vertices in Fig 3b). At each
vertex, the learning assignment output metric is computed
with its ML models. Following graph edges, the output is
then passed to subsequent vertices as an external performance
dependency. The traversal stops at the last vertex in the graph,
or typically the gateway service in a deployment. The output
of this last vertex is the output of the graph, and it predicts
the end-to-end system performance.

3.2.3 Inference Graph Re-training

Inference can be performed immediately after graph is com-
posed, but in cases where the prediction error rate is high,
re-training can mitigate the problem. Fluxion identifies two
major error sources. And, it can effectively reduce the re-
training costs by taking advantage of the inherent modularity
in the graph, rather than re-designing and re-training the entire
monolithic model. Particularly, graph prediction errors can be
traced back to some subsets of vertices.

Graph error source #1: New learning assignments. New
learning assignments are required when new services are de-
ployed to microservice systems or existing services are being
updated. From our experience, their high MAE is typically
due to insufficient training, especially by non-ML-experts.
This case can be mitigated with the use of AutoML toolkits.
Another possibility is service-vertices. Since they aggregate
instance-vertices, scaling out/in a service requires them to
have a new model with a new input dimension. Localizing
new assignments is trivial, and the information is available
through recording graph manipulations over time.

Graph error source #2: Unforeseen prediction inputs. Un-
foreseen prediction inputs can happen when the system re-
ceives unforeseen request types, or unexpected request ratios.
This is a situation monolithic models also have to handle. As
different requests stress different service-to-service execution
paths, a service can observe unfamiliar states (e.g., requests
per second and CPU utilization) or even downstream service
performance. In the monolithic approach, the solution is to re-
train the monolithic models. Modularized learning gives new
optimization opportunities. Fluxion only needs to retrain the
learning assignments being impacted to better handle these
prediction inputs.

Identifying the impacted assignments, i.e., vertices in the
inference graph, to address error source #2 can be non-trivial.
This step is not simply about identifying vertices whose learn-
ing assignments have the largest prediction MAE. A well-
trained learning assignment can still output unexpected pre-
dictions if it receives erroneous inputs from another. The
reason is that local errors of individual assignments can prop-
agate. This is an artifact of how the inference graph output
is a function of all its models. As graph traversal passes the
prediction of a learning assignment to another assignment,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1085

Figure 4: Fluxion architecture overview. It is implemented as
three engines. Graph Engine hosts inference graphs. Testing
Engine implements features for graph uncertainty estimation
and graph debugging. Ingestion Engine ingests and buffers
streams of telemetries, for ML model training and testing.

prediction errors propagate and accumulate.
Unfortunately, it is not trivial to analytically derive formu-

las describing the error accumulation. As ML models apply
non-linear transformations to inputs, this non-linearity also
transforms input errors to prediction errors. Furthermore, a
learning assignment can have multiple model inputs. Not only
can different model inputs be weighted differently, but they
can also be of predictions from different assignments.

Pair-wise debugging approach. Fluxion implements a pair-
wise debugging approach for error source #2. This is an itera-
tive process, and each iteration selects one vertex. The core
idea is to evaluate the likelihood that the vertex’s prediction
error is due to its own learning assignment or parent vertices.

System operators provide a test dataset, which contains
recent deployment benchmarks. Fluxion then computes the
test MAE for each graph vertex. And, it computes the Pear-
son correlation, or r(maeparent , maechild), for each directly
connected pair of graph vertices. With all rs computed, the
debugging procedure follows a depth-first traversal. It starts
from the last graph vertex (i.e., the vertex that produces the
graph output), and performs the following steps — (step #1)
with respect to the current vertex, we rank all parent vertices
by their r in descending order. (step #2) If the top-ranked
parent vertex has an r larger than 0, we traverse the edge to
it and repeat step #1. (step #3) Otherwise, if the top-ranked
parent vertex does not have an r larger than 0, we stop and
return the current vertex as the debugging result.

4 Implementation

Current implementation has 13,012 SLOC, supports PyTorch
and scikit-learn models, and integrates NNI [27]. Fig 4 shows
an overview. A model repository stores models in serialized
form and retrieves them with the unique model ID.

4.1 Graph Engine (GE)

GE serves inference graphs. During auto-tuning, the optimizer
queries GE for performance predictions, just like how it would
query monolithic models. GE implements the input selection
strategy and the output weighting strategy (c.f. §3.1), and it
offers APIs to manipulate inference graphs.

Input selection strategy. Our implementation is based on
Thompson sampling with Beta distribution [30]. For a learn-
ing assignment, each external performance dependency has a
Beta distribution, to estimate the probability of being selected
for w∗

k . The probability density is governed by two variables,
α and β. A larger α increases the mean probability, and a
larger (α + β) decreases the probability variance.

αs and βs are initialized to 0, or system operators can man-
ually specify a larger α to favor certain performance metrics.
Then, the input selection strategy repeatedly updates αs and
βs as follows. Each round starts by randomly generating a
combination of models — specifically, we generate random
numbers from each β-distribution and select k performance
metrics with the largest number. This combination is then
evaluated for the prediction accuracy. If the current round
results in a higher accuracy then the first round, we increment
each performance metric’s α value, otherwise the β value.

This process of updating α and β repeats for a user-defined
number of rounds, or if the random selection converges for
several rounds. Upon termination, we again generate random
numbers from each β-distribution and select k performance
metrics with the largest number.

Output weighting strategy. Our implementation is based
on differential evolution for stochastic minimization [33]. It
makes no assumptions on the search space distribution, and
it is easy-to-use due to few hyperparameters. Differential
evolution is initialized with a population of starting points
in the search space. In rounds of mutation-recombination-
selection, it moves towards the optimum.

A subset of the initial population can be based on cached
w∗

ks. So, the N initial population (w0
1,w

0
2, . . .w

0
N) consists of

uniformly random candidates and previously computed w∗
k .

At each round G, differential evolution creates mutant vectors
storing combinations of individuals (wG

i ,w
G
j ,w

G
k) that are ran-

domly chosen from the current population. Mutant vectors
are then mixed with a pre-determined population candidate,
to produce a new trial candidate. With data points selected by
the Ingestion Engine, we then evaluate this trial candidate. If
the new trial candidate yields a better prediction accuracy, it
is added to the population.

This process of updating population repeats for a user-
defined number of rounds, or if the population converges for
several rounds. Upon termination, the population candidate
that best maximizes Equation 2 is returned.

1086 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.1.1 Learning Assignment APIs

LA.init(X_names, y_name) sets the labels for assign-
ment inputs and output.
LA.add(X, y, del) adds a new model, and trains the
new model with input X and output data y. del specifies
whether existing models should be deleted.
LA.input_selection(X, y) runs the input selection
strategy with the inputs X and output y.
LA.output_weighting(X, y) runs the output weight-
ing strategy with the inputs X and output y.
LA.predict(X) predicts for X.

4.1.2 Graph Update APIs

GE.add(s_name, p_name, a_ptr) adds a new
instance-vertex in the graph, to represent one instance of the
service s_name for the performance metric p_name. a_ptr
points to the learning assignment instance.
GE.connect(s1_name, s2_name) specifies the per-
formance dependency from the service s1_name to s2_name.
Since a service can have multiple performance metrics,
GE.connect adds directed edges for all combinations of
s1_name’s and s2_name’s metrics. It matches learning as-
signments’ input and output labels to make the connection.
GE.scale(s_name, num_inst) replicates/removes
instance-vertices to match num_inst, for all s_name’s per-
formance metrics. And, for each performance metric, it adds
a service-vertex to aggregate instance-vertices. These service-
vertices are initialized to an input dimension of num_inst,
and they can be trained by invoking GE.fit.
GE.replace(s_name, p_name, a_ptr) updates in-
stance vertices to reference the new learning assignment
a_ptr. Service-vertice needs to be initialized by GE.fit.
GE.fit(s_name, p_name, time_window) creates
a learning assignment, for the service-vertex of s_name ser-
vice and p_name metric. Then, it retrieves data points within
the last time_window seconds from IE, and invokes LA.add.

4.2 Testing Engine (TE)
TE implements functionalities to support graph testing. First,
TE.compute_err computes the per-vertex test error, with the
test dataset given in the argument. The current implemen-
tation uses the mean absolute error. The test dataset is in a
tabular format; each row represents one system benchmark,
and columns record service config knob settings and perfor-
mance measurements. Second, TE.debug starts the graph
debugging strategy and returns a learning assignment’s name.

4.3 Ingestion Engine (IE)
IE ingests and buffers per-service telemetry streams for ML
model training and testing. A stream contains one time-series

data type, which can be a performance metric, a configuration
knob, or an observable state. Data are published to IE by
IE.add_data. They are in JSON format with the following
fields: stream_uri, type, seq_num, and val. The type field
can be "continuous", "discrete", or "choices". The seq_num
field is an incrementing integer such as the Unix timestamp.

5 Evaluation

We evaluate and demonstrate the superior performance of
Fluxion, with three complex microservice systems on up to
100 VMs, under deployment dynamics like service scale-out
and replacement. Our major results include:

(1) Fluxion consistently maintains a lower performance
modeling MAE (mean absolute error). Considering the case of
gradually scaling Hotel Reservation from 15 to 142 services,
Fluxion’s MAE is 29.14% lower on average and up to 68.41%
lower than comparison baselines.

(2) Fluxion’s lower MAE enables better end-to-end sys-
tem latency. Considering the case of switching from base-
lines to Fluxion, auto-tuning optimizers achieve a speedup
of 1.24× on average (and up to 1.44×), for TrainTicket’s
90th-percentile latency.

(3) Using a 30-day Azure trace, results show that Fluxion
can capture system dynamics in the temporal dimension. By
recognizing and adapting to the recurring patterns, the daily
training time is reduced by up to 99.98%.

5.1 Microservice Systems
We evaluate the effectiveness of Fluxion, by measuring
both the performance modeling accuracy improvement (or
MAE reduction), and the resulting latency improvement for
microservice-based systems. Our evaluations are based on
case studies — as microservice systems are orchestrated to ex-
hibit deployment dynamics, we run auto-tuning to continually
optimize their tail latency, i.e., the 90th-percentile latency.

Microservice system setup. We deploy three systems: (1)
TrainTicket [31], with 41 unique services, (2) Hotel Reserva-
tion, with 15 unique services from DeathStarBench [11], (3)
Boutique, with 11 unique services from Google [15]. Services
are managed by Kubernetes, and they can be replicated and
replaced. KubeDNS is used for round-robin load-balancing.
Services log per-request latencies for all remote procedure
calls, and measurements are centrally stored in an InfluxDB.
Appendix lists each system’s knobs. For databases, we se-
lect top knobs that have been identified to impact read/write
latency in production, by Microsoft engineers.

Experiment setup. Our comparison baselines are perfor-
mance models of monolithic Gaussian process (GP) and multi-
layer perceptron (DNN) models. These baselines are common
in recent performance optimization efforts [2, 3, 6, 7, 9, 13,
14, 20, 21, 23, 34, 41]. GP uses Matern(5/2) kernel [3]. We

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1087

use NNI [27] to tune DNN hyper-parameters: number of hid-
den layers, hidden layer size, and initial learning rate. We
construct Fluxion graphs with APIs in §4.1.1, and learning
assignments use GP. Externally, baselines and Fluxion graph
have the same inputs and output (c.f. Appendix).

Our testbeds are 3 clusters on Azure — 100-VM cluster
(with Intel E5-2673 CPU and 54GB RAM) for Train Ticket
and Hotel Reservation; 6-VM cluster (with Intel 8272CL CPU
and 8GB RAM) for Hotel Reservation; a 9-VM cluster (with
Intel 8171M CPU and 16GB RAM) for Boutique.

Methodology. We send workloads of requests, with wrk2 [38]
and Locust [24] (c.f. Appendix). We periodically induce the
following stresses to trigger orchestrations, hence deployment
dynamics. First, we change the requests per second (RPS) or
ratio of request types, to stress different services and paths.
This stress then triggers Kubernetes’ HPA (Horizontal Pod
Autoscaler) to replicate or reclaim multiple services, to main-
tain an average service CPU utilization of 60%. Second, we
replace a service. Third, we scale-out the entire system.

After each orchestration operation (i.e., deployment dynam-
ics), we first ensure all modeling approaches’ inputs match
system knobs. This step involves training new baselines, and
also re-composing Fluxion’s graph. In addition, to evaluate
how different approaches would improve with further training,
we collect new training dataset. Each iteration performs one
random benchmark and measures per-request latencies for
∼10 minutes. To compare prediction MAE (mean absolute
error), we collect an additional 100 random benchmarks as
the testing dataset. MAE is computed as the average error
between a benchmark’s actual latency and predicted latency.

5.1.1 Performance Modeling Error Reduction

We evaluate how well Fluxion reduces the MAE of predict-
ing the end-to-end latency, as compared to baselines. In the
presence of deployment dynamics, a consistently lower MAE
suggests a more robust performance modeling.

For TrainTicket, Fig 5b shows that Fluxion consistently
maintains a lower MAE (i.e., MAE reduction is always greater
than 0) for predicting 90th-percentile latency. It achieves 7.30–
38.92% and 4.88%–29.22% lower MAE than monolithic GP
and DNN baselines, respectively; this translates to an average
MAE reduction of 2,181.89 µs and 1,547.27 µs. Similarly, for
Hotel Reservation on the 100-VM cluster, Fig 7b shows that
Fluxion achieves 34.82–60.05% and 27.24–57.39% lower
MAE than monolithic GP and DNN baselines, respectively;
this translates to an average MAE reduction of 7,298.78 µs
and 6,858.30 µs. For Hotel Reservation on the 6-VM clus-
ter, Fig 6b shows that Fluxion achieves 10.04–68.41% and
10.87–66.14% lower MAE than baselines; this translates to
an average MAE reduction of 2,814.09 µs and 2,205.70 µs.
Finally, Fig 8b shows Fluxion’s lower MAE, for Boutique.

Right after deployment dynamics happen (i.e., orchestra-
tion operations), the MAEs of all approaches increase. How-

Step Triggered orchestration Service Knob+state
(1) Init RPS (=50) Deploy "TrainTicket" 49 242
(2) Stress RPS (=100) Scale-out Station (2×) 50 247
(3) Change req ratio Scale-out Station (2×), 51 252

Route (2×)
(4) Change req ratio Scale-out Station (2×), 53 262

Route (2×), Order (2×)
(5) Stress RPS (=250) Scale-out Station (5×), 62 307

Route (6×), Order (4×)
(6) Stress scale Scale-out all services (3×) 105 510
(7) Replace services TiDB replaces MySQL 49 242

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
c
tio

n
 (

%
)

0 2000 4000 6000 8000 10000 12000 14000

0
1
5

3
0

4
5 (1) (2) (3) (4) (5) (6) (7)

vs. GP baseline
vs. DNN baseline

(b) Perf modeling error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 2000 4000 6000 8000 10000 12000 14000

1
1
.2

1
.4

1
.6

1
.8 (1) (2) (3) (4) (5) (6) (7)

vs. GP baseline
vs. DNN baseline
vs. default knobs

(c) System p90 latency speedup (w/ random optimizer)

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 2000 4000 6000 8000 10000 12000 14000

1
1
.2

1
.4

1
.6

1
.8 (1) (2) (3) (4) (5) (6) (7)

vs. GP baseline
vs. DNN baseline
vs. default knobs

(d) System p90 latency speedup (w/ Metis optimizer)

Figure 5: TrainTicket on 100-VM cluster (Intel 2673).

ever, compared to baselines, the relative MAE reduction of
Fluxion becomes significantly higher after an orchestration
operation. Since monolithic baselines require entirely new
models, their modeling accuracy can improve only after col-
lecting sufficient data points and training. For example, as
we gradually scale-out Hotel Reservation from 15 to 142 ser-
vices, we need new GP and DNN baselines to accommodate
the input dimension that grows from 63 to 1,034. Further-
more, Table 6a shows an operation (Step #6) that replaces all
Memcached services by Redis. Although the input dimension
here does not change, we need new baselines because Redis

1088 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Step Triggered orchestration Service Knob+state
(1) Init RPS (=50) Deploy "Hotel Reservation" 15 63
(2) Stress RPS (=500) Scale-out Reservation (2×) 17 72
(3) Change req ratio Scale-out Reservation (2×), 19 80

Rate (2×)
(4) Stress RPS (=800), Scale-out all services (3×) 37 139

change req ratio
(5) Stress scale Scale-out all services (4×) 48 177
(6) Replace services Redis replaces Memcached 15 63

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
c
tio

n
 (

%
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0 (1) (2) (3) (4) (5) (6)

vs. GP baseline vs. DNN baseline

(b) Perf modeling error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

1
1
.1

1
.2

1
.3

1
.4

1
.5

1
.6 (1) (2) (3) (4) (5) (6)

vs. GP baseline vs. DNN baseline vs. default knobs

(c) System p90 latency speedup (w/ random optimizer)

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

1
1
.1

1
.2

1
.3

1
.4

1
.5

1
.6 (1) (2) (3) (4) (5) (6)

vs. GP baseline vs. DNN baseline vs. default knobs

(d) System p90 latency speedup (w/ Metis optimizer)

Figure 6: Hotel Reservation on 6-VM cluster (Intel 8272CL).

brings a different set of configuration knobs to performance
modeling.

On the other hand, Fluxion is able to localize the inference
graph regions (or some learning assignments) that require
updating, without changing the rest of the graph. For example,
when Hotel Reservation scales-out from 15 to 142 services,
graph updates replicate all services’ instance-vertices and
train their service-vertices. The former incurs no costs, and
the latter represents only 15 of the 157 learning assignments
in the inference graph. Similar observations can be made for
TrainTicket (c.f. Fig 5) and Boutique (c.f. Fig 8).

Step Triggered orchestration Service Knob+state
(1) Init RPS (=50) Deploy "Hotel Reservation" 15 63
(2) Stress RPS (=1,200), Scale-out all services (6×) 70 253

change req ratio
(3) Stress scale Scale-out all services (6×), 142 1,034

all Memcached (10×)

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
c
tio

n
 (

%
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0 (1) (2) (3)

vs. GP baseline vs. DNN baseline

(b) Perf modeling error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

1
1
.1

1
.2

1
.3

1
.4

1
.5

1
.6 (1) (2) (3)

vs. GP baseline vs. DNN baseline vs. default knobs

(c) System p90 latency speedup

Figure 7: Hotel Reservation on 100-VM cluster (Intel 2673).

5.1.2 Model Adaptation Time Reduction

After each orchestration operation, all modeling approaches
are updated to match inputs to system knobs. While baselines
need to be re-trained, Fluxion minimizes the overhead by lo-
calizing updates to some inference graph regions. If none or
only a small number) of regions need updating, graph can
immediately achieve low prediction MAE, without collect-
ing training data points. Since collecting data points can be
time-consuming (c.f. §2.2), if more training data points are
necessary, the modeling accuracy will take longer to improve.

We take a deep dive into TrainTicket. After an orchestration
operation, both monolithic GP and DNN baselines generally
need at least 300–400 data points, in order to train new mono-
lithic models that have an MAE close to what Fluxion can
achieve with only 10–25 data points. If each system bench-
mark takes ∼10 minutes, this is a reduction of 2,900–3,750
minutes (or up to 30× reduction).

Furthermore, we highlight the case where Hotel Reserva-
tion is scaled-out to 142 services. With 500 data points, mono-
lithic GP and DNN models achieve an MAE of 29,576.57µs
and 22,575.57µs, respectively. On the other hand, with only
10 data points, Fluxion can already achieve an MAE of
17,716.25µs. Since Fluxion needs to update only a small
subset of the learning assignments in the graph, it requires

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1089

Step Triggered orchestration Service Knob+state
(1) Init RPS (=100) Deploy "Boutique" 11 63
(2) Stress RPS (=200), Scale-out all services (2×) 22 126

stress scale
(3) Stress RPS (=300), Scale-out all services (3×) 33 189

stress scale

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
ct

io
n
 (

%
)

0 1000 2000 3000

0
1
0

2
0

3
0

4
0

5
0

6
0 (1) (2) (3)

vs. GP baseline
vs. DNN baseline

(b) Error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 1000 2000 3000

1
1
.2

1
.4

1
.6

1
.8

2 (1) (2) (3)
vs. GP baseline
vs. DNN baseline
vs. default knobs

(c) System p90 latency speedup

Figure 8: Boutique on 9-VM cluster (Intel 8171M).

much fewer training data points.

5.1.3 End-to-end System Latency Speedup

Intuitively, a better performance model should enable better
performance optimization. Based on Fluxion’s MAE reduc-
tion shown in §5.1.1, this subsection now quantifies how it
can better reduce end-to-end system latencies. To do so, we
couple performance models with auto-tuning optimizers (c.f.
§2.1): (1) a random optimizer that selects the best knob setting
from randomly generated 100,000 settings, and (2) Metis [21].

Fig 5c and 5d show TrainTicket’s 90th-percentile latency
speedup from using Fluxion, over baselines. With Fluxion,
the random optimizer achieves a speedup up to 1.41× and
1.43×, over GP and DNN baselines, respectively; the Metis
optimizer achieves a speedup up to 1.52× and 1.62×. While
the choice of optimizer can impact the auto-tuning outcome,
using Fluxion can result in better performance optimization.
Even as we introduce deployment dynamics, the speedup
is always greater than 1. We note that figures also plot the
speedup over default knobs, to demonstrate the benefits of
performance optimization.

Fig 7c shows similar observations for Hotel Reservation on
the 100-VM cluster — with Fluxion, the random optimizer
achieves a 90th-percentile latency speedup up to 1.43× and

1.40×, as compared to relying on GP and DNN baselines,
respectively. Even for the last orchestration step where Hotel
Reservation is scaled-out to 142 services, the speedup can be
up to 1.40× and 1.39×. Furthermore, compared to the default
knob setting, Fluxion achieves a maximum speedup of 1.57×.

Fig 6c and Fig 6d illustrate the results for Hotel Reservation
on the 6-VM cluster. Fluxion helps the Metis optimizer to
achieve a speedup up to 1.49× and 1.47×, over GP and DNN
baselines, respectively. Fig 8c shows Boutique, where the
random optimizer achieves a speedup up to 1.81× and 1.79×,
over GP and DNN baselines, respectively.

5.2 Microbenchmarks
5.2.1 Exposing a Spectrum of Performance Metrics

We evaluate the benefits of exposing a spectrum of metrics for
external performance dependencies. To do so, we compare
the following inference graphs that predicting Hotel Reser-
vation’s 90th-percentile latency. In the first inference graph,
all services’ learning assignments consider (50, 80–99)th-
percentile latencies as external performance dependencies
from downstream services. In the second inference graph,
they consider only the target performance metric, or the 90th-
percentile latency. The last inference graph considers only
(50, 85, 90, 95)th-percentile latencies, which are suggested
by Fluxion’s input selection strategy.

We delve into the case when Hotel Reservation is scaled-
out by a factor of 6. If we consider all (50, 80–99)th-percentile
latencies, the graph MAE is 9,722.53µs. This is a 10.87%
lower MAE, as compared to the second inference graph’s
MAE of 10,779.22µs. Even across a sequence of orchestra-
tions on the 6-VM cluster, the first inference graph MAE is
at least 1.39% lower than the second inference graph. We
note that the trade off is the inference graph size — the first
graph has 2,170 vertices and 17,647 edges, but the second
graph has only 110 vertices and 167 edges. Since each vertex
references a learning assignment, this trade off can have a
significant implication in terms of the training costs, i.e., 660
more learning assignments to train.

The third latency graph tries to include only highly relevant
metrics. In the case of scaling-out Hotel Reservation above,
this graph achieves a MAE of 10,091.87µs, or 6.81% lower
than considering only the 90th-percentile latency. Further-
more, compared to considering all (50, 80–99)th-percentile
latencies, the third latency graph reduces the graph size to
419 vertices and 1,055 edges. Although there is a modest
3.80% increase in MAE, the number of necessary learning
assignments reduces by 561.

5.2.2 Capturing System’s Temporal Dynamics

We evaluate how well learning assignments can re-use previ-
ously trained models to adapt to recurring patterns in temporal
dynamics. Our evaluations are based on a case study, which

1090 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

auto-tunes per-service VM resource allocations by predicting
incoming VM request’s max CPU utilization and lifetime.
Particularly, as the VM utilization pattern changes over time,
models are trained and added to learning assignments, which
then use output weighting to compute outputs.

Experiment methodology. We use the 30-day Azure VM
utilization trace as the workload, and this production trace
was recorded in 2019 [26]. It records resource utilization
measurements (e.g., 5-min CPU utilization and VM lifetime)
and VM metadata (e.g., VM size and encrypted subscrip-
tion/deployment ID) for 2,695,548 VM requests.

Following Cortez et al. [7], our baselines are monolithic
random forest and extreme gradient boosting tree (XGBoost),
for modeling VM’s max CPU utilization and lifetime, re-
spectively. And, these metrics are bucketized. Model inputs
include encrypted subscription/deployment ID, requested VM
size/category, hour of the day, day of the week. We re-train
monolithic baselines at the beginning of each day in the trace,
with data points from the previous day or all past days. Fur-
thermore, to ensure comparison baselines are properly trained,
we tune their hyper-parameters with NNI [27].

For Fluxion, we set up two learning assignments to rep-
resent VM’s max CPU utilization and lifetime. We then dis-
cretize the continuous trace into non-overlapping batches by
days. At the end of each day in the trace, Fluxion evaluates
the mean absolute error (MAE). A new model is trained and
added only if this MAE is below 85%. The learning assign-
ment gradually accumulates models for future re-uses, and
its output is the weighted sum of all its models’ predictions.
We re-compute the weights by invoking GE.fit() every two
hours, with recent data points.

Performance modeling error reduction. Fig 9a and Fig 10a
suggest that Fluxion can significantly reduce the daily model-
ing MAE. One reason is that GE.fit() can quickly re-adjust
weights with the output weighting strategy, rather than going
through expensive model training. In summary, compared to
baselines trained with the previous day of data, the daily MAE
reduction is 2.04%–11.25% and 3.97%–25.43%, for predict-
ing max CPU utilization and lifetime, respectively. Compared
to baselines trained with all historic data, the daily MAE re-
duction is 0.64%–6.49% and -1.16%–11.20%, for predicting
max CPU utilization and lifetime, respectively. We note that
there are days (e.g., day #20) where Fluxion has a slightly
higher MAE than baselines. The reason is that these days
exhibit a pattern that significantly drifts from previous days.

Model adaptation cost reduction. Fig 9b and Fig 10b sug-
gest that Fluxion significantly reduces the daily training time,
i.e., the time spent on model training and GE.fit(). We note
that this reduction varies by days, as Fluxion does not need to
train new models every day. By re-using models, it trains only
a total of 20 and 23 models for predicting VM’s max CPU
utilization and lifetime, respectively. Furthermore, GE.fit()
is relatively lightweight — invoking GE.fit() 12 times a day

Day

M
A

E
 R

e
d
u
c
ti
o
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

-2
8

1
8

2
8

3
8

4
8

5
8

0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(a) Perf modeling error reduction

Day

T
im

e
 R

e
d
u
ct

io
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

2
5

5
0

7
5

1
0
0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(b) Adaptation time reduction

Figure 9: Benefits of learning assignments in predicting VM
lifetime in the Azure 30-day trace, compared to baselines.
The output weighting strategy promotes the re-use of models
trained at different time periods. We evaluate the prediction
error every two hours to produce daily boxplots.

takes ∼1,620 and ∼1,480 seconds, for modeling VM’s max
CPU utilization and lifetime, respectively. So, compared to
monolithic random forest and XGBoost baselines trained with
the previous day of data, Fluxion reduces the daily training
time by 34.93–99.97% and 68.99–99.98%, respectively. Com-
pared to monolithic random forest and XGBoost baselines
trained with all historic data, Fluxion reduces the daily train-
ing time by 64.55–99.96% and 96.51–99.98%, respectively.

5.2.3 Graph Re-training

As mentioned in §3.2.3, there are two error sources. As previ-
ous evaluation has shown Fluxion’s benefit on error source
#1 (new learning assignments), this section focuses on error
source #2 (unforseen prediction inputs). As the incoming re-
quest pattern changes, different service-to-service execution
paths are stressed. We evaluate how well Fluxion can identify
the learning assignments at fault in the inference graph.

We conduct experiments by altering the ratio of four request
types in the wrk2 workload generator: search, recommend,
reserve, and user. After we scale-out Hotel Reservation by
a factor of 6, we increase the ratio of search, recommend,
and user requests from 10% to 30%. At this point, the graph
MAE for predicting the 90th-percentile latency is 12,444.63µs.
Then, the first iteration of graph debugging identifies Mon-
goDB’s learning assignment. After adding a new model
trained with recent data points, the graph MAE reduces to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1091

Day

M
A

E
 R

e
d
u
c
ti
o
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

-2
8

1
8

2
8

3
8

4
8

5
8

0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(a) Perf modeling error reduction

Day

T
im

e
 R

e
d
u
ct

io
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

2
5

5
0

7
5

1
0
0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(b) Adaptation time reduction

Figure 10: Benefits of learning assignments in predicting
VM’s max CPU utilization in the Azure 30-day trace, com-
pared to baselines. Output weighting promotes the re-use
of models trained at different time periods. We evaluate the
prediction error every two hours to produce daily boxplots.

11,024.66µs (or a 11.41% reduction). Subsequent iterations
identify the following services: User, Recommendation, and
Geo; updating these services reduces MAE to 10,190.89µs (or
a 18.11% reduction), 9,483.48µs (or a 23.79% reduction), and
9,352.04µs (or a 24.85% reduction). Beyond this point, the
graph MAE reduction starts to exhibit a diminishing return.

6 Related Work

Auto-tuning. Performance tuning for distributed systems is
a problem that has continuously received attentions. Instead
of relying on heuristics, previous efforts have demonstrated
the feasibility of ML-based auto-tuning, for systems ranging
from databases [2, 20, 21, 36], storage [6], VM instances [3, 7,
13, 14, 41], cloud services [23], and big data analytics [34].

The focus of this paper is not to apply auto-tuning to new
system scenarios, nor to propose new ML techniques. Rather,
we are motivated by the limitations of driving auto-tuning
with monolithic performance models, especially in the pres-
ence of deployment dynamics. We take the first step at ab-
stractions and pieces to systematically bring the concept of
modularity to performance modeling. Furthermore, one key
question addressed is how this process should be standardized
and generalized, without being coupled to specific modeling
techniques and systems.

Ensemble of models. The system community has proposed

model ensemble as a research opportunity to improve the
development speed and adoption in the real world. Stoica et
al. [32] describe this opportunity as composable AI systems.
Their goal is to query multiple models in different patterns to
balance the tradeoff between accuracy, latency, and through-
put of a model serving system. In contrast, Fluxion focuses
on providing performance modeling for modern systems.

Ensemble learning is a popular machine learning approach
that combines multiple models to achieve a higher prediction
accuracy on a given dataset [16,17,28]. Representative efforts
include bagging [5], boosting [8] and so on. Unlike Fluxion,
these techniques do not consider system deployment dynam-
ics and the inherent modularity of ML-based performance
model for large complex distributed systems.

Previous research efforts have also applied ensemble learn-
ing, to realize incremental learning [29, 35]. They inspire our
design for learning assignments to keep a list of models.

7 Discussion

We discuss overarching issues regarding modularity level.
Fluxion’s current design closely follows the system modular-
ity of services, but a finer or coarser modularity level might
also seem viable. For Fluxion, the main difference would be
in the number of learning assignments. Having said that, we
choose the modularity level of services, in order to align with
what deployment orchestrations typically operate on. While
developers could carefully craft a monolithic system that out-
performs service-based counterpart, doing so would compli-
cate everyday CI/CD orchestrations in production. Therefore,
we advocate developers to follow the well-known principle
of engineering cohesive and loosely coupled services. And,
for training, these services should expose appropriate knobs
and performance feedback.

8 Conclusion

We report the design and implementation of Fluxion. Fluxion
applies the principle of modularity to make performance mod-
eling practical for distributed systems such as microservices.
Even under deployment dynamics, empirical results show that
Fluxion consistently maintains a higher performance model-
ing accuracy than monolithic models. This in turn enables
auto-tuning tools to better reduce end-to-end system latencies.

Acknowledgments

We thank anonymous reviewers and our shepherd, Prof. Ravi
Netravali, for their extensive comments and suggestions.

1092 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Adam Gluck. Introducing Domain-Oriented Microser-
vice Architecture, 2020.

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,
and Bohan Zhang. Automatic Database Management
System Tuning Through Large-scale Machine Learning.
In SIGMOD. ACM, 2017.

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics. In NSDI. USENIX,
2017.

[4] auto-sklearn. auto-sklearn. http://github.com/
automl/auto-sklearn.

[5] Leo Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[6] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez
Zadok. Towards Better Understanding of Black-box
Auto-tuning: A Comparative Analysis for Storage Sys-
tems. In ATC. USENIX, 2018.

[7] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource Central: Understandingand Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. In SOSP. ACM, 2017.

[8] Yoav Freund and Robert E Schapire. A desicion-
theoretic generalization of on-line learning and an appli-
cation to boosting. In European conference on compu-
tational learning theory, pages 23–37. Springer, 1995.

[9] Silvery Fu, Saurabh Gupta, Radhika Mittal, and Sylvia
Ratnasamy. On the Use of ML for Blackbox System
Performance Prediction. In NSDI. USENIX, 2021.

[10] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and
Christina Delimitrou. Sage: Practical Scalable ML-
Driven Performance Debugging in Microservices. In
ASPLOS. ACM, 2021.

[11] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. Unveiling the Hardware and
Software Implications of Microservices in Cloud and
Edge Systems. IEEE Micro, 2020.

[12] Giulio Santoli. Microservices Architectures: Become a
Unicorn like Netflix, Twitter and Hailo, 2016.

[13] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D. Sculley. Google
Vizier: A Service for Black-Box Optimization. In
SIGKDD. ACM, 2017.

[14] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS:
PRedictive Elastic ReSource Scaling for cloud systems.
In CNSM. IEEE, 2010.

[15] Google. Online Boutique. http://github.com/
GoogleCloudPlatform/microservices-demo.

[16] L.K. Hansen and P. Salamon. Neural Network Ensem-
bles. In Transactions on Pattern Analysis and Machine
Intelligence. IEEE, 1990.

[17] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. Adaptive Mixtures of Local
Experts. In Neural Computation. MIT, 1991.

[18] Jeremy Cloud. Decomposing Twitter: Adventures in
Service Oriented Architecture, 2013.

[19] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-Keras:
An Efficient Neural Architecture Search System. In
KDD. ACM, 2019.

[20] Feifei Li. Cloud-native Database Systems at Alibaba:
Opportunities and Challenges. In VLDB, 2019.

[21] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lian-
jie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong Sun.
Metis: Robustly Optimizing Tail Latencies of Cloud
Systems. In ATC. USENIX, 2018.

[22] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, and Lidong
Zhou. The Case for Learning-and-System Co-design.
In SIGOPS Operating Systems Review. ACM, 2019.

[23] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong
Zhou, Lifei Zhu, Zhao Lucis Li, Zibo Wang, Qi Chen,
Quanlu Zhang, Chuanjie Liu, and Wenjun Dai. AutoSys:
The Design and Operation of Learning-Augmented Sys-
tems. In ATC. USENIX, 2020.

[24] Locst. Locust - A Modern Load Testing Framework.
https://locust.io/.

[25] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing Microservice Depen-
dency and Performance: Alibaba Trace Analysis. In
SoCC. ACM, 2021.

[26] Microsoft. Azure Public Datasets. http://github.
com/Azure/AzurePublicDataset.

[27] Microsoft. NNI. http://github.com/Microsoft/
nni.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1093

http://github.com/automl/auto-sklearn
http://github.com/automl/auto-sklearn
http://github.com/GoogleCloudPlatform/microservices-demo
http://github.com/GoogleCloudPlatform/microservices-demo
https://locust.io/
http://github.com/Azure/AzurePublicDataset
http://github.com/Azure/AzurePublicDataset
http://github.com/Microsoft/nni
http://github.com/Microsoft/nni

[28] Robi Polikar. Ensemble Based Systems in Decision
Making. IEEE Circuits and Systems Magazine, 2006.

[29] Robi Polikar, Lalita Udpa, Satish S. Udpa, and Vasant
Honavar. Learn++: An Incremental Learning Algorithm
for Supervised Neural Networks. In Transactions on
Systems, Man, and Cybernetics: Systems. IEEE, 2001.

[30] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni,
Ian Osband, and Zheng Wen. A Tutorial on Thompson
Sampling, 2017.

[31] Software Engineering Laboratory of Fudan Univer-
sity. Train Ticket: A Benchmark Microservice System.
https://github.com/FudanSELab/train-ticket.

[32] Ion Stoica, Dawn Song, Raluca Ada Popa, David A.
Patterson, Michael W. Mahoney, Randy H. Katz, An-
thony D. Joseph, Michael Jordan, Joseph M. Hellerstein,
Joseph Gonzalez, Ken Goldberg, Ali Ghodsi, David E.
Culler, and Pieter Abbeel. A Berkeley View of Systems
Challenges for AI. Technical report, Berkeley, 2017.

[33] R Storn and K Price. Differential Evolution - a Simple
and Efficient Heuristic for Global Optimization over
Continuous Spaces. Journal of Global Optimization,
1997.

[34] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient Performance Prediction for Large-Scale Advanced
Analytics. In NSDI. USENIX, 2016.

[35] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han.
Mining Concept-Drifting Data Streams Using Ensemble
Classifiers. In KDD. ACM, 2003.

[36] Junxiong Wang, Immanuel Trummer, and Debabrota
Basu. UDO: Universal Database Optimization using
Reinforcement Learning. VLDB, 2021.

[37] Cort J. Willmott and Kenji Matsuura. Advantages of
the Mean Absolute Error (MAE) over the Root Mean
Square Error (RMSE) in Assessing Average Model Per-
formance. In Climate Research. Inter-Research, 2005.

[38] wrk2. wrk2. http://github.com/giltene/wrk2.

[39] Lei Zhang, Juncheng Yang, Anna Blasiak, Mike McCall,
and Ymir Vigfusson. When is the Cache Warm? Man-
ufacturing a Rule of Thumb. In HotCloud. USENIX,
2020.

[40] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin
She, Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng
Yang. Overload Control for Scaling WeChat Microser-
vices. In SoCC. ACM, 2018.

[41] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang
Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and
Yingchun Yang. BestConfig: Tapping the Performance
Potential of Systems via Automatic Configuration Tun-
ing. In SoCC. ACM, 2017.

1094 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/FudanSELab/train-ticket
http://github.com/giltene/wrk2

A Appendix

This appendix provides further information regarding our
experiment setup in §5.

• Table 1, 2, and 3 list features (i.e., configuration knobs
and states) that we use as performance model inputs, for
our three microservice systems. These tables break down
these features by microservices.

• Our Fluxion inference graphs use Gaussian Process (GP)
models in learning assignments. These GP models use
the Matern(5/2) kernel.

• We use NNI to automatically tune hyperparameters for
the DNN baseline: the number of hidden layers (3–7),
each hidden layer size (100–2,048), and the initial learn-
ing rate (0.001–0.1). We budget 24 hours of NNI for
each baseline.

• We rely on scripts provided by microservice
systems, to generate different request payloads.
These requests are then sent by wrk2 or Lo-
cust, as recommended by each system. They
are available here: Hotel Reservation (https:
//github.com/delimitrou/DeathStarBench/
tree/master/hotelReservation/wrk2), Boutique
(https://github.com/GoogleCloudPlatform/
microservices-demo/tree/main/src/
loadgenerator), and TrainTicket (https://github.
com/FudanSELab/train-ticket/issues/131).

Service type Configuration knob Observable state
"Frontend" net.ipv4.tcp_rmem (4,096–6,291,456) RPS

net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All innodb_thread_concurrency (8–128) RPS (read)
MySQL innodb_buffer_pool_size (512–3,072) RPS (write)

net.ipv4.tcp_rmem (4,096–6,291,456) RPS (update)
net.ipv4.tcp_wmem (4,096–4,194,304)

All eviction_dirty_target (10–99) RPS (read)
MongoDB eviction_dirty_trigger (1–99) RPS (write)

cache (50–200) RPS (update)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)

All storage.scheduler_worker RPS (read)
TiDB _pool_size (2–32) RPS (write)

rocksdb.write_buffer_size (64–256) RPS (update)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)

All other net.ipv4.tcp_rmem (4,096–6,291,456) RPS
services net.ipv4.tcp_wmem (4,096–4,194,304)

cpu.cfs_quota_us (100–300)

Table 1: Performance model inputs, for TrainTicket.

Service type Configuration knob Observable state
"Frontend" net.ipv4.tcp_rmem (4,096–6,291,456) RPS

net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All hash_max_ziplist_entries RPS (read)
Redis (32–4,096) RPS (write)

maxmemor_samples (1–10)
maxmemory (1–16)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

"Email" max_workers (1–20) RPS
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

"Recommend" max_workers (1–20) RPS
max_response (1–5)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

"Ad" max_ads_to_serve (1–10) RPS
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All other net.ipv4.tcp_rmem (4,096–6,291,456) RPS
services net.ipv4.tcp_wmem (4,096–4,194,304)

cpu.cfs_quota_us (100–300)

Table 2: Performance model inputs, for Boutique.

Service type Configuration knob Observable state
"Frontend" net.ipv4.tcp_rmem (4,096–6,291,456) RPS

net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All memory-limit (30–100) RPS (read)
Memcached threads (1–16)

slab-growth-factor (1.1–2.2)
All eviction_dirty_target (10–99) RPS (read)
MongoDB eviction_dirty_trigger (1–99) RPS (write)

cache (50–200) RPS (update)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)

All other net.ipv4.tcp_rmem (4,096–6,291,456) RPS
services net.ipv4.tcp_wmem (4,096–4,194,304)

cpu.cfs_quota_us (100–300)

Table 3: Performance model inputs, for Hotel Reservation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1095

https://github.com/delimitrou/DeathStarBench/tree/master/hotelReservation/wrk2
https://github.com/delimitrou/DeathStarBench/tree/master/hotelReservation/wrk2
https://github.com/delimitrou/DeathStarBench/tree/master/hotelReservation/wrk2
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main/src/loadgenerator
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main/src/loadgenerator
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main/src/loadgenerator
https://github.com/FudanSELab/train-ticket/issues/131
https://github.com/FudanSELab/train-ticket/issues/131

	Introduction
	Background and Motivations
	Performance Prediction and Modeling
	High Costs to Maintain ML Models
	Modularized Learning

	Fluxion Framework
	Learning Assignments
	Inference Graph of Learning Assignments
	Inference Graph Construction
	Graph Inferencing to Predict End-to-End Latency
	Inference Graph Re-training

	Implementation
	Graph Engine (GE)
	Learning Assignment APIs
	Graph Update APIs

	Testing Engine (TE)
	Ingestion Engine (IE)

	Evaluation
	Microservice Systems
	Performance Modeling Error Reduction
	Model Adaptation Time Reduction
	End-to-end System Latency Speedup

	Microbenchmarks
	Exposing a Spectrum of Performance Metrics
	Capturing System's Temporal Dynamics
	Graph Re-training

	Related Work
	Discussion
	Conclusion
	Appendix

