
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

StarryNet: Empowering Researchers to Evaluate
Futuristic Integrated Space and Terrestrial Networks

Zeqi Lai and Hewu Li, Tsinghua University and Zhongguancun Laboratory;
Yangtao Deng, Tsinghua University; Qian Wu, Jun Liu, and Yuanjie Li,
Tsinghua University and Zhongguancun Laboratory; Jihao Li, Lixin Liu,
and Weisen Liu, Tsinghua University; Jianping Wu, Tsinghua University

and Zhongguancun Laboratory
https://www.usenix.org/conference/nsdi23/presentation/lai-zeqi

STARRYNET: Empowering Researchers to Evaluate Futuristic Integrated Space and
Terrestrial Networks

Zeqi Lai†‡, Hewu Li†‡∗, Yangtao Deng†, Qian Wu†‡, Jun Liu†‡, Yuanjie Li†‡, Jihao Li†, Lixin Liu†

Weisen Liu†, Jianping Wu†‡

†Tsinghua University, ‡Zhongguancun Laboratory

Abstract
Futuristic integrated space and terrestrial networks (ISTN) not
only hold new opportunities for pervasive, low-latency Inter-
net services, but also face new challenges caused by satellite
dynamics on a global scale. It should be useful for researchers
to run various experiments to systematically explore new prob-
lems in ISTNs. However, existing experimentation methods
either attain realism but lack flexibility (e.g., live satellites),
or achieve flexibility but lack realism (e.g., ISTN simulators).

This paper presents STARRYNET, a novel experimenta-
tion framework that enables researchers to conveniently build
credible and flexible experimental network environments
(ENE) mimicking satellite dynamics and network behaviors
of large-scale ISTNs. STARRYNET simultaneously achieves
constellation-consistency, networked system realism and flex-
ibility, by adopting a real-data-driven, lightweight-emulation-
aided approach to build a digital twin of physical ISTNs in
the terrestrial virtual environment. Driven by public and real
constellation-relevant information, we show STARRYNET’s
acceptable fidelity and demonstrate its flexibility to support
various ISTN experiments, such as evaluating different inter-
networking mechanisms for space-ground integration, and
assessing the network resilience of futuristic ISTNs.

1 Introduction

Thanks to the resurgence in the space industry [41, 46, 48],
big competitors such as SpaceX and Amazon are actively
planning and deploying hundreds or even thousands of broad-
band satellites in low earth orbits (LEO). Such emerging
mega-constellations (e.g., Starlink [34], Kuiper [9]) can be
integrated into existing terrestrial Internet, i.e., constructing
an integrated space and terrestrial network (ISTN) to: (1)
provide pervasive last-mile network access; (2) enable low-
latency and high-bandwidth Internet transit [40, 52, 56]; and
(3) facilitate efficient acquisition and delivery for big data
from space (e.g., earth observation images) [44, 74, 77, 78].

∗Hewu Li is the corresponding author.

While holding great promise, several unique characteristics
of LEO satellites (e.g., high LEO dynamics) impose new chal-
lenges at various layers of the ISTN networking stack, and
open a door to many new research problems, such as: (1) how
should LEO satellites and ground facilities be interconnected
to provide low-latency and continuous network services? (2)
how should satellite routers be integrated into existing terres-
trial Internet routing? and (3) are current constellation and
protocol designs resilient enough to satellite failures in com-
plex and harsh space environments? With many unexplored
problems facing the “NewSpace” industry, it is thus foreseen
that in the near future, there will be a surge of new ideas on the
system and networking research relevant to ISTNs. But, how
can researchers build an experimental network environment
(ENE) to test, evaluate and understand their new thoughts?

Typically, existing approaches for creating an ENE can
be classified into three categories: (1) live networks or plat-
forms [7, 20, 34, 75, 81], which allow experiments in real
deployments; (2) network simulation [60, 61, 76], which uses
discrete events to model and replicate the behavior of a real
network; and (3) network emulation [6, 55, 68, 69], which
can test real applications/protocols in a virtual network. How-
ever, as will be illustrated in §3, all existing approaches have
their limitations in creating a desired ENE for ISTNs: (1) the
feasibility and flexibility of live satellite networks are techni-
cally and economically limited for normal researchers; (2) the
abstraction level of simulation might be too high to capture
low-level system effects, hiding practical issues such as the
resource competition under heavy workload, energy drain or
software errors; (3) existing emulators fail to characterize the
high dynamicity of LEO satellites and thus are insufficient to
build an experimental environment with acceptable fidelity.

The key challenge of building an expected ENE for ISTN
research is: it is difficult to simultaneously achieve realism and
flexibility in the experimental environment. First, terrestrial
devices inherently lack the ability to reasonably mimic the
high dynamics, system and network behaviors of realistic
satellites. Second, mega-constellations typically consist of
thousands of satellites. Thus the network scale required by an

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1309

ENE for mega-constellations might be far more than the extent
supported by existing ENE methods (e.g., [54, 55, 69]). Third,
as a large number of satellites simultaneously move at a high
velocity, continuously mimicking such frequent variations at
scale could involve significant system overhead on the ENE.

This paper presents STARRYNET, an integrated experimen-
tation framework that empowers researchers to conveniently
build ENEs with acceptable realism, flexibility and cost (e.g.,
requiring only a few number of local/cloud machines) to sat-
isfy various experimental requirements of ISTNs. The de-
sign of STARRYNET is inspired by a key insight obtained
from the satellite Internet ecosystem: many organizations
or communities in this ecosystem have released and shared
their constellation-relevant data, including regulatory informa-
tion [2,73], satellite trajectories [16,38], ground station distri-
bution [26,39] and measurements from user terminals [32,33],
etc. Therefore, the key idea behind STARRYNET is to build
an experimental digital twin, i.e., a virtual presentation of a
physical ISTN, in terrestrial environments by: (1) leveraging
terrestrial machines to virtualize a large number of lightweight
virtual nodes to emulate satellites in mega-constellations; and
(2) exploiting a crowdsourcing approach to collect, combine
and use realistic constellation information to drive the emula-
tion of spatial and temporal characteristics of ISTNs.

To achieve acceptable realism, STARRYNET employs a
constellation synchronizer based on realistic constellation-
relevant information to make the virtual ENE as consistent as
possible to a real ISTN, such as: (1) constellation consistency:
the ENE is built with the same scale of a physical mega-
constellation, where each node emulates a satellite, a ground
station or a terrestrial host. The spatial and temporal char-
acteristics, such as time-varying satellite locations and inter-
visibility, are also configured and updated in each node based
on our data-driven model-based analysis; (2) system and net-
working stack consistency: the ENE can support the run of
unmodified applications as in real deployments; and (3) capa-
bility consistency: network and computation capabilities in
the ENE are configured based on real hardware specifications.
Further, to flexibly support various ISTN experiments and
mimic large-scale and highly-dynamic mega-constellations,
STARRYNET adopts a constellation orchestrator that judi-
ciously schedules and manages system resources on multiple
machines to collaboratively construct ENE on demand.

We evaluate the ability of STARRYNET based on real con-
stellation information in two steps. First, we show the accept-
able fidelity of STARRYNET by comparing the experiment re-
sults obtained by STARRYNET with live satellite networks and
other state-of-the-art ISTN simulators. Second, facing futuris-
tic ISTN scenarios, we demonstrate STARRYNET’s flexibility
by conducting three case studies to: (1) explore the trade-
space of various space-ground inter-networking mechanisms;
(2) evaluate the resilience of routing protocols in various con-
stellation designs; and (3) perform hardware-in-the-loop tests
to measure system effects under various workloads.

Summarily, this paper makes the following key contribu-
tions: (1) we design STARRYNET, a data-driven, emulation-
aided ISTN experimentation framework (§4); (2) we imple-
ment STARRYNET with a collection of open APIs for creat-
ing and manipulating user-defined ENEs (§5); (3) we eval-
uate and analyze STARRYNET’s experimentation overhead
and fidelity (§6), and show STARRYNET’s flexibility (§7)
by conducting various case studies driven by realistic con-
stellation information. STARRYNET is now available at:
https://github.com/SpaceNetLab/StarryNet.

2 Preliminaries
Integrated space and terrestrial networks (ISTN). Recent
satellite operators/organizations are actively developing their
mega-constellations [4,8,9,25,34,36], with hundreds to thou-
sands of low earth orbit (LEO) satellites working together as a
system. These satellites can be equipped with high-speed inter-
satellite links (ISLs), and construct an LEO satellite network
(LSN). An LSN can further be integrated into existing terres-
trial Internet via globally distributed ground stations [3,26,39]
and very-small-aperture terminals (VSAT) [31], construct-
ing an integrated space and terrestrial network (ISTN) that
promises to provide pervasive, low-latency, broadband Inter-
net services [40, 52, 56, 57] for terrestrial users globally.
Unique characteristics of ISTNs, as well as the new chal-
lenges. Two critical characteristics differentiate LSNs from
existing terrestrial networks, and involve new challenges on
the integration of satellites and terrestrial Internet. First, LEO
satellites are moving at a high-speed with the respect to the
earth surface. An LEO satellite might be visible for a cer-
tain ground vantage point only within a few minutes in one
pass. Such high dynamics could inevitably result in technical
challenges (e.g., frequent connectivity disruptions and routing
re-convergence) at the networking stack of ISTNs. Second,
while evolved, resources (e.g., bandwidth, CPU, energy) are
still limited and costly in space, as compared with terrestrial
network systems. Resource-intensive technologies might not
be doable for resource-constrained satellites to sustain good
network performance (e.g., applying sophisticated network
coding techniques for packet recovery in remote space).
Call for new research for futuristic ISTNs. The above char-
acteristics and challenges accordingly raise a series of unex-
plored research problems in ISTNs, such as: (1) topology:
how should LEO satellites and ground facilities be intercon-
nected under the high space-ground dynamicity? (2) rout-
ing: how should we integrate hundreds or thousands of LEO
satellites into Internet routing and tackle the potential per-
formance degradation due to intermittent connectivity? (3)
system effect: how much energy would a new functionality
consume in space under various workloads? It is foresee-
able that in the near future, in parallel with the evolution of
real mega-constellations, there would be a surge of new re-
search focusing on emerging satellite network systems. But,
how should researchers test, assess and understand their new

1310 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SpaceNetLab/StarryNet

Category / Tools (i) Constellation
Consistency

(ii) System and Networking
Stack Realism

(iii) Flexible and
Scalable Environment

(iv) Low-cost and
Easy-to-use

Live LSNs
or platforms

Live Starlink ([34]) ✓ ✓ ✗ ✗

PlanetLab ([20]) ✗ ✓ ✗ limited
Emulab ([7]) ✗ ✓ ✗ limited

Simulators
and orbit
analysis tools

STK ([35]) ✓ ✗ ✓ limited
GMAT ([11]) ✓ ✗ ✓ ✓

SNS3 ([76]) for GEO only ✗ ✓ ✓

Hypatia ([60]) ✓ ✗ ✓ ✓

StarPerf ([61]) ✓ ✗ ✓ ✓

Emulators
and variations

MiniNet ([55, 68]) ✗ ✓ ✓ ✓

DieCast ([54]) ✗ ✓ limited at scale ✓

Etalon ([69]) ✗ ✓ limited at scale ✓

STARRYNET (this paper) ✓ ✓ ✓ ✓

Table 1: Comparison of popular network experimentation platforms across different ENE requirements for ISTNs.

thoughts? The community requires a technically and econom-
ically feasible approach to construct Experimental Network
Environments (ENE) and advance futuristic ISTN research.

3 How Can Researchers Evaluate Their New
Thoughts for ISTNs?

3.1 ENE Requirements
Ideally, an ENE built for ISTN research is expected to simul-
taneously accomplish acceptable realism and flexibility. We
summarize four baseline requirements as follows.
• (1) Constellation-consistency. The ENE is expected to be

spatially and temporally consistent to the characteristics of
real mega-constellations. For example, the ENE is desired
to mimic a large number of network nodes at the same
scale of a real mega-constellation, and can characterize the
high dynamicity of LEO satellites, as well as its impact on
network conditions (e.g., connectivity, delay variations).

• (2) System-level and networking stack realism. The ENE
is expected to run user-defined system codes and network
functionalities like in a real system and networking stack.

• (3) Flexible and scalable environment. Emerging mega-
constellations are evolving rapidly. As most state-of-the-art
constellations are still not in their final stage, the ENE is
expected to flexibly support various network topologies at
different scales to meet diverse research requirements.

• (4) Open, low-cost and easy-to-use interface. Finally, it
is expected that the ENE could be open to the community,
and can provide low-cost and easy-to-use programmable
interfaces for researchers to carry out various experiments.

3.2 Why Existing ENEs are Insufficient?
Existing approaches for building an ENE can be classified
into three categories, differing in their realism, flexibility and
cost: (1)live LSNs/platforms, (2)simulators, and (3)emulators.
Live LSNs or platforms. A straightforward approach for
ISTN experimentation is to construct an ENE based on live
LSNs, e.g., recently SpaceX’s Starlink has started its initial

services in certain regions. Although this approach guaran-
tees good realism, directly manipulating and inspecting a
live LSN might be technically and economically difficult for
a common research group. Current live LSNs are also lim-
ited in their flexibility when they face diverse, exploratory
research requirements. Realistic mega-constellations are still
under-constructed and evolving rapidly, and their regulatory
information in practice cannot be flexibly modified for what-if
analysis. Further, the network community has many public
experimentation platforms [7, 20] that can be shared among
researchers. However, these platforms are originally designed
for tests in terrestrial networks, not for ISTNs, and thus cannot
characterize the unique network behaviors under large-scale
LEO dynamics.
Simulators and orbit analysis tools for ISTNs. Numerical
or discrete-event-based simulation presents another extreme
as compared with live LSNs and platforms. STK [35] and
GMAT [11] are representative orbit analysis tools that can
perform complex analysis of spacecrafts as well as ground
stations. However, both STK and GMAT mainly focus on
orbit and spacecraft analysis and have limited support for net-
work simulation. More recently, SNS3 [76], Hypatia [60] and
StarPerf [61] are emerging simulators for ISTNs. SNS3 is an
extension to the ns-3 platform, and it models a full satellite
network with a geostationary (GEO) satellite and bent-pipe
payload. Hypatia is a framework for simulating and visual-
izing the network behavior of emerging mega-constellations.
Similarly, StarPerf is a simulator that enables users to charac-
terize, estimate and understand the achievable network perfor-
mance under a variety of constellation options. Although the
above simulators can flexibly simulate various satellite char-
acteristics as well as the impact of high dynamics on network
behaviors, a fundamental limitation of those simulators is that
they can not support the run of system codes/functionalities
and interactive network traffic as in real deployments. The
abstraction-level of simulators might be too high to capture
system-level effects, and could hide other practical issues (e.g.,
software overhead under heavy workloads) in real systems.
Network emulators, and their variations. Emulation is a
hybrid approach that integrates real applications, protocols

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1311

and operating systems in a synthetic network environment.
Similar to live networks, emulators can load and run real
codes with interactive network traffic. Similar to simulators,
emulators can support controllable and diverse topologies and
their virtual hardware requires fewer resources as compared
with live networks. The community has many prior efforts
focusing on emulated environments, e.g., VM- or container-
based emulation [6, 45, 54, 55, 68–70, 72, 79–81, 84, 85].

However, existing emulators suffer from two limitations
when they are applied for generating ENEs for ISTN research.
First, they are not constellation-consistent, since existing em-
ulators inherently lack the ability of mimicking planet-wide
LEO dynamics and time-varying network behaviors in ISTNs.
Second, the network scale for mega-constellations could be
significantly larger than that in prior experimentation. For
example, authors in [54] use 10 physical machines (25 VMs
on each) to support a networked cluster with 250 nodes.
Etalon [69] is a container-based emulator and its local testbed
uses four servers to emulate 48 hosts in a data center network.
Different from prior scenarios, ISTN experiments require a
much larger network environment: only the first shell of Star-
link Phase-I includes about 1584 LEO satellites. Since both
VMs and containers can involve software overhead on the
physical host machine, it is difficult for existing emulators
(e.g., [54, 55, 68]) to support such large-scale and dynamic
emulations for mega-constellations.
Our motivation. Table 1 summarizes the landscape of ex-
isting experimentation approaches that can be used to build
ENEs. Collectively, we find that none of existing approaches
can simultaneously satisfy the four expected features. Lim-
itations of existing approaches thus motivate us to seek for
a constellation-consistent, credible, flexible, and low-cost
methodology to advance the test and evaluation of new re-
search for futuristic ISTNs. We present such a framework,
namely STARRYNET, aiming at empowering researchers to
build ENEs accomplishing the four goals as described in §3.1.

4 STARRYNET Design
4.1 System Overview

Key idea. The design of STARRYNET is inspired by an im-
portant insight obtained from the satellite Internet ecosys-
tem: many organizations (e.g., regulators and satellite op-
erators) and end users have shared a collection of public
data for the community, including constellation regulatory
information [2, 73], orbital data observed from realistic satel-
lites [16, 38], ground station distributions [3, 26, 39], and
performance results measured from terrestrial user termi-
nals [32, 33], etc. Based on this important fact, STARRYNET
creates ISTN experimental environments on demand by ju-
diciously combining: (1) crowd-sourced real data trace; (2)
model-based orbit and network analysis; and (3) large-scale
network system emulation, to construct a real-data-driven dig-
ital twin, i.e., a virtual presentation synchronized to a real

Real-World Facilities

GStationsSatellites Terminals

Abstraction
(APIs, §4.5)

Env-APIs

Sat-APIs

Constellation Orchestrator (§4.4)

Physical Machines
(Worker Cluster)

Efficient
State

Updater

Resource
Manager

Multi-host
Resource
Allocation

Constellation Observer (§4.2)
Satellite Database
Ground Station Database
User Terminal Database

Researcher

User-Defined
Functionalities

Constellation
Configurations

setup

result

inter-
active
traffic

experiment
config feedback

community-driven data collection

Experimental Network
Environment for ISTN

Constellation
Model

Constellation Synchronizer (§4.3)
GS

Model
Network
Model

Computation Model

Figure 1: STARRYNET system architecture.

physical ISTN in terrestrial environments. In particular, the
key idea behind our STARRYNET design can be summarized
as follows: (1) leveraging a crowd-sourcing approach to col-
lect, combine and explore realistic constellation-relevant in-
formation to calculate the spatial and temporal characteristics
consistent to real mega-constellations; then (2) driven by such
realistic information, exploiting a large number of networked
virtual nodes and links to flexibly emulate a customized exper-
imental environment, which characterizes system-level effects
and network behaviors consistent to a real ISTN.
System architecture. Figure 1 depicts STARRYNET’s archi-
tecture, including four core components as described below.

• A Constellation Observer (§4.2) that leverages a crowd-
sourcing approach to collect public constellation informa-
tion, network performance, ground station distributions etc.,
from the satellite ecosystem. It maintains several databases
to support, guide and drive the construction of ISTN exper-
imental environments for various research requirements.

• A Constellation Synchronizer (§4.3) which exploits a col-
lection of hybrid models to calculate the spatial and tempo-
ral characteristics of a specific mega-constellation, based
on collected data as well as user-defined configurations.
Specifically, such characteristics include constellation scale,
visibility, connectivity, time-varying propagation delay, etc.,
which are further used to configure the network emulation.

• A Constellation Orchestrator (§4.4) for automating the
management, coordination and allocation for resources used
to build the experimental environment upon multiple physi-
cal machines. The orchestrator can also interact with real-
world facilities (e.g., real satellite hardware) to support
network experiments with interactive Internet traffic.

• A Unified Abstraction (§4.5) offering flexible and easy-
to-use APIs for researchers to create and manipulate the
configurations of the ISTN experimental environment.

1312 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.2 Constellation Observer
The constellation observer is designed as a collector for
constellation-relevant information, and it maintains three
databases related to satellite, ground station and user ter-
minal information respectively. Specifically, the observer
searches and collects the latest: (1) regulatory information
(e.g., from [2, 10, 73]) which describes frequency and orbital
coordination of mega-constellations; (2) operating satellites
information (e.g., from [16, 38, 71]); (3) ground station distri-
butions (e.g., from [3,26,39]); (4) Internet user statistics (e.g.,
from [59]) which can be used to generate the distribution
of terrestrial users; and (5) network measurements from end
users (e.g., from [32, 33]). The constellation observer classi-
fies the above information, and saves them in the databases,
which then can be used to drive other components and build
ENEs to flexibly support various research experiments.

4.3 Constellation Synchronizer
STARRYNET’s synchronizer leverages a collection of models
to calculate various constellation characteristics and network
behaviors, and accordingly generate a virtual network pre-
sentation synchronized to a real ISTN. At runtime, values
in these models are assigned primarily based on real ISTN
information collected by the constellation observer. In ad-
dition, to improve the flexibility, STARRYNET also allows
researchers to manually configure model values based on his
or her customized experimental requirements.

4.3.1 Hybrid models
Constellation model. STARRYNET’s synchronizer charac-
terizes a satellite system in both constellation-granularity
and orbit-granularity descriptions. First, STARRYNET uses
the Walker notation [82] to describe a constellation: N/P/p,
where N is the number of satellites per plane, P is the number
of planes, and p is the number of distinct phases of planes to
control spacing offsets in planes. Second, the orbit-granularity
description enables a fine-grain notation for orbits in a certain
constellation via specifying several primary orbital elements,
including: (1) inclination, which is the angle between an orbit
and the Equator as satellites move; (2) altitude, which is the
height above sea level and determines the orbital velocity; (3)
phase offset [56], which is a factor between [0,1], describing
the relative position between two satellites in adjacent orbits.
Ground station model. STARRYNET leverages the follow-
ing parameters to describe a ground station: (1) geographic
location; (2) the number of available antennas for ground
communication; (3) the elevation angle, which determines the
light-of-insight (LoS) of the ground station and can affect the
available duration of space-ground communication.
Network model. The inter-satellite or ground-satellite net-
work connectivity is mainly affected by following factors:
(1) the visibility between two communication ends; (2) the
amount of available ISLs or antennas in satellites or ground
stations; and (3) the connectivity policy, which decides how

to establish a connection between two communication ends.
STARRYNET enables two prefabs of connectivity policies for
inter-satellite connection: (1) +Grid [58], where each satellite
connects to two adjacent satellites in the same orbit and to
two in adjacent orbits; (2) Motif [40], which is a repetitive
pattern where each satellite connects to multiple visible satel-
lites and each satellite’s local view is the same as that of any
other. For ground-satellite connectivity, STARRYNET offers
multiple optional schemes that control a ground station to
connect to a visible satellite, e.g., selecting the one with the
shortest distance or the longest remaining visible time. Since
the delay is typically determined by the network topology and
speed of the light, STARRYNET calculates the propagation
delay of each link based on the physical distance between
two ends. As network capacity might be too speculative in
practice, link capacity is set by user-specific configurations.
Computation model. The computation capability of satellites
varies greatly in different real-world deployments. Generally,
conventional space-grade processors have limited capabil-
ity [53,65] as compared with that used in terrestrial computer
systems. For example, the operating frequency of spaceborne
processors (e.g., BAE-RAD series [21,22]) ranges from 110 to
466MHz per core. Recently, satellite operators and researchers
start to use commercial off-the-shelf (COTS) processors in
space stations [14] or in LEO small satellites [23, 44] to re-
duce the manufacturing cost. To support various experimental
requirements, STARRYNET allows researchers to manually
configure the CPU capability of each satellite node through
approximating the frequency and number of available cores
of each emulated node, by scaling download CPU frequency
and enforcing a maximum time quota for each node.

4.3.2 Constellation consistency

Spatial consistency. Based on constellation-wide informa-
tion, STARRYNET first determines the amount of required
containers. Each container runs realistic system environments
and networking stack to emulate a satellite in the constella-
tion, a ground station or a terrestrial user terminal. Second,
using orbit-granularity information, STARRYNET calculates
the latitude, longitude and height (i.e., LLH information) of
each satellite at any given time slot. Finally, exploiting the
above LLH information and minimum elevation angles, STAR-
RYNET calculates the visibility between arbitrary two satel-
lites, or between satellites and ground facilities.
Temporal consistency. Since emerging LEO satellites are
inherently moving at a high velocity, the locations, inter-
visibility, and network conditions (e.g., connectivity and prop-
agation delay between two nodes) of an ISTN are changing
over time. To achieve realism, these states should be tempo-
rally consistent to real scenarios. STARRYNET splits time into
slots, calculates LLH information in each slot, and follows the
hybrid models to determine time-varying network conditions
in different slots. Such dynamic states will further be used for
driving the dynamic emulation operated by the orchestrator.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1313

4.4 Constellation Orchestrator
The orchestrator is designed for four goals. First, the orches-
trator exploits container-based emulation to construct an emu-
lated ISTN environment upon one or many physical machines
(depending on the constellation size). Second, the orches-
trator configures the computation and network capability of
each emulated node, according to users’ configurations and
the spatial and temporal results calculated by the constella-
tion synchronizer. For example, a space-ground connectivity
should be dynamically updated based on the time-varying
visibility between its two ends. Third, the orchestrator can
connect the emulated ISTN to real-world network facilities
(if any, e.g., real satellite prototypes or terminals) and support
interactive Internet traffic. Finally, at runtime the orchestrator
leverages a measurement agent to monitor and report the run-
time resource usage (e.g., CPU/memory/bandwidth usage) to
the user as a feedback of the experiment for further analysis.

4.4.1 Multi-machine support for constellation emulation
Since each emulated satellite consumes computation, network
and storage resources in practice, it is challenging to sup-
port the emulation of large-scale constellations on a single
machine, especially when additional user-defined payloads
(e.g., a new satellite routing protocol) need to be loaded for
experimentation. STARRYNET addresses this limitation by
integrating resources on multiple machines to support large-
scale, time-varying constellation emulations. When deployed
on multiple machines, STARRYNET’s orchestrator divides
these machines into two parts. First, one machine, selected
as the resource manager, manages, schedules and allocates
resources upon all machines to jointly create and maintain the
ENE. Second, other machines, working as worker clusters,
receive and follow commands from the resource manager. For
each node in the ISTN (e.g., a satellite or ground station), the
orchestrator creates a container to emulate it, and creates a
virtual bridge connecting two nodes to emulate a link.
Topology creation on multiple machines. One big challenge
made by extending an emulated mega-constellation to mul-
tiple machines is to ensure that the emulated constellation
is topologically consistent to the real constellation. Figure 2
shows an example of emulating an LEO satellite constella-
tion including two adjacent orbits on two physical machines.
Specifically, Figure 2a plots two Starlink inclined orbits, each
of them having 22 satellites evenly spaced with available
ISLs. Assume that we use two machines for this emulation,
and each machine creates 22 containers to emulate 22 satel-
lites. In a real constellation, each satellite connects its two
neighbors in the same orbit, and to another satellite in the
adjacent orbit. Ideally, an emulated topology for the constel-
lation in Figure 2a can be easily created if each machine has
more than 22 physical network interfaces. However, in prac-
tice the number of available interfaces of a machine is likely
to be limited. As shown in Figure 2b, if we directly bridge the
emulated network interface of each satellite to the physical

interface, due to the lack of traffic isolation, emulated satel-
lites in two machines will establish an “all-to-all” topology
which is inconsistent to the grid-like topology in Figure 2a .

STARRYNET addresses this inconsistency on multiple ma-
chines by creating multiple VLANs to emulate independent
ISLs, interconnect satellites in two machines and isolate inter-
satellite traffic as that in a real constellation. As plotted in
Figure 2c, we build a VLAN for each ISL crossing different
machines (e.g., vlink A1-B1 interconnects emulated satellite
A1 and B1), and thus STARRYNET obtains the correct virtual
network topology consistent to the real constellation topology
as illustrated in Figure 2a upon multiple machines.
Topology update on multiple machines. Due to the high
dynamics of ISTN, the network topology fluctuates over time.
If a connectivity change occurs on a single machine, i.e., all
affected nodes are located on the same machine, STARRYNET
deletes the old virtual link, and creates a new link connect-
ing corresponding nodes. Otherwise, if a connectivity change
involves nodes on multiple machines, STARRYNET exploits
a VLAN-based approach to limit the link update operation
to a single machine. Figure 3 plots an example of the emu-
lation of space-ground handovers upon multiple machines.
Assume there are three satellites, two ground stations in two
sequential time slots. In the first slot, satellite S2/S3 connects
to ground station GS1/GS2 respectively. As satellites move,
the space-ground connectivity changes, and S1/S2 connects
to GS1/GS2 respectively in the second slot. STARRYNET
emulates the ground-satellite links (GSLs) by two VLAN-
based virtual links, and performs the correct handover by
properly adjusting the connectivity change between S1/S2/S3
and vlink-GS1/GS2, in different slots on machine A.

4.4.2 Efficient time synchronization and state update
Another challenge made by multi-machine extension is the
time synchronization and link update overhead. Specifically,
to achieve temporal consistency, STARRYNET’s constellation
synchronizer assigns a sequence of update events to the or-
chestrator to inform each emulated satellite when an update
(e.g., a location/connectivity change) should happen. To trig-
ger such events, a baseline approach is to let the centralized
manager send commands to all emulated satellites in every
slot, and trigger corresponding update events. However, such
a real-time approach has limited scalability as the amount
of emulated satellites increases, since each event requires to
update the state of a certain virtual interface/container, and
continuously and simultaneously performing a large number
of updates can overload the manager, result in delayed update,
and invalidate the temporal consistency of the emulation.

To reduce the state update overhead caused by mimick-
ing temporal dynamics in mega-constellations, STARRYNET
leverages a prediction-based multi-thread event memorization
approach. We define the synodic period as the amount of time
that it takes for the constellation to reappear at the same pro-
jection upon the earth surface. In the emulated environment,

1314 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

Orbit direction

Orbit direction

(a) Two orbits with ISLs.
67

S‐A1

Machine A

S‐A2

S‐A3

S‐B1

Machine B

S‐B2

S‐B3

……

plink‐A

plink‐B

elink‐A1

elink‐A2

elink‐A3

elink‐B1

elink‐B2

elink‐B3

(b) Emulated topology without traffic isolation.
68

S-A1

Machine A

S-A2

S-A3

S-B1

Machine B

S-B2

S-B3

……

elink-A2

elink-A3

elink-B1

elink-B2

elink-B3

plink-A

plink-B

vlink-A1

vlink-A2

vlink-A3

vlink-B1

vlink-B2

vlink-B3
Emulated ISLs

elink-A1

(c) Emulated topology with emulated ISLs for traffic isolation.

Figure 2: Multi-machine extension to support consistent topology emulation of satellite networks. Machine A and B interconnect
by their physical interfaces plink-A/B (plink: physical link, elink: emulated link, vlink: virtual network link created by VLAN).

69

orbit direction

S1 S2 S3

Time
Slot 1

orbit direction

S0 S1 S2

Time
Slot 2

GS1 GS2

GS1 GS2
GS1 GS2

elink‐GS1

S1 S2 S3

vlink‐GS1 vlink‐GS2

elink‐GS2

elink‐S1
(slot 2) elink‐S2

(slot 2)

elink‐S3
(slot 1)elink‐S2

(slot 1)

M
achine A

M
achine B

Emulated GSLs

vlan

vlan

Figure 3: Emulated ground satellite links (GSLs) and space-
ground handover in two time slots on multiple machines.

at the beginning of each synodic period, the orchestrator pre-
generates an event list for each satellite that includes all its
update events during the current synodic period. At runtime,
each emulated satellite adopts an independent event update
thread to read the local event list in each slot, and triggers
the corresponding event scheduled in the current slot. Time
clocks upon all machines are synchronized by the NTP [17].

4.5 Open APIs for ISTN Experiments
Environment APIs. STARRYNET provides the environment
APIs for a researcher to load trace from the database, and cre-
ate/control/run an ENE upon one or multiple machines with
user-defined ISTN configurations. Once constellation and GS
information are completely loaded, these configurations are
delivered to the synchronizer to calculate spatial and temporal
characteristics, which are further used by the orchestrator to
construct the ENE. The environment APIs also allow users
to configure the interval of discrete time slot to adjust the
dynamicity. Note that the ENE not only maintains the run-
time of emulated constellations, but also needs to run the test
workload deployed by the researcher. We design a resource
threshold ∆ to control the percentage of CPU/memory used by
the framework. In other words, at least (100%-∆) of the total
CPU/memory should be left for the researcher’s test cases.
Self-node APIs. STARRYNET’s self-node APIs are designed
to be called by the researcher’s programs on each emulated
satellite. These APIs expose underlying satellite-related in-
formation to user programs. Specifically, in each emulated
satellite, user program can obtain the index of current satel-
lite/orbit, sunlight state, time-varying geo-location informa-

tion, current satellite velocity and the index of adjacent reach-
able satellites, etc. Such satellite-specific information can be
used for developing new on-board capabilities in ISTNs.

5 Implementation and Usage
We highlight the salient aspects of STARRYNET’s implemen-
tation and usage in this section.
Framework implementation. STARRYNET’s observer is
implemented as a combination of a crawler based on
Scrapy [27], together with a MySQL-based data store.
We implement STARRYNET’s synchronizor based on
SkyField [29], an astronomy library that supports the calcu-
lation of high precision research-grade positions for satellites.
STARRYNET’s orchestrator is implemented upon Docker [6]
and it spans the emulated constellation across multiple ma-
chines. We use OpenvSwitch [19] to emulate and configure
links, and use tc [67] to dynamically set artificial network
conditions according to the numeric results calculated by
STARRYNET’s synchronizer. Specifically, we optimized the
link management module in tc to satisfy the requirement of
light-weight state update. To accomplish flexibility, STAR-
RYNET’s abstraction is implemented as a combination of a
lib-STARRYNET library and a collection of shell commands.
Collectively, the core components of STARRYNET are imple-
mented in about 6500 lines of Python codes and scripts.
Framework usage. We illustrate the usage of STARRYNET
with a concrete example as plotted in Figure 4: a researcher
wants to evaluate a novel geo-location-based routing mecha-
nism based on [63], under the Starlink constellation. In par-
ticular, this experiment can be conducted with STARRYNET
in three steps. First, leveraging STARRYNET’s APIs, the re-
searcher writes a user-defined experimental program (Fig-
ure 4a) for test. In this example, we show a geo-routing policy
similar to [63], which runs on each satellite, and forwards
received packets to the adjacent satellite that is the geograph-
ically closest to the destination. Second, the researcher pre-
pares a set of manifest files describing the constellation con-
figurations, e.g., orbital information and ground station dis-
tribution (Figure 4b). Finally, the researcher runs a batch of
shell commands exposed by STARRYNET to load manifest
files (e.g., starlink.json and gs.json), create experimental en-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1315

geo_routing.py

from lib_starrynet import *;

def geocast_next_hop(dst_addr):

 # Obtain adjacent satellites info

 n_sats = sn_get_sat_neighbors()

 # Find the sat closest to dst

 for sat in n_sats:

 if dis(sat, dst_addr)

 < dis(next_sat, dst_addr):

 next_sat = sat

 return next_sat

(a) User-defined experimental program.

"starlink":[#starlink.json

 { "name": "Starlink-S-I",

 "altitude": "550km",

 "inclination": "53.0",

 "plane_count": "72",

 "satellites_per": "22" }]

"ground-station":[#gs.json

{ "name": "Chicago",

 "latitude": "41.850",

 "longitude": "-87.650",

 "altitude": "0.144km"},...]

(b) Constellation configurations.

#(1)initialize sn and monitor an interface of the manager machine

@manager:/$ sn manager init --m-addr=192.168.0.1

#(2)connect each worker machine to the manager to join the framework

@workers:/$ sn worker join --m-addr=192.168.0.1

#(3)load manifest files and create the ENE named ”sl_cons”

@manager:/$ sn create --name sl_cons -c 'starlink.json' -gs 'gs.json'

#(4)manually set uplink/downlink capacity to 20Mbps/200Mbps

@manager:/$ sn network --name sl_cons –-gsl-up=20 –-gsl-down=200

#(5)start the ENE, and run it for 3600 seconds

@manager:/$ sn start sl_cons --duration=3600 –-delta=0.5

#(6)run user-specific program in all satellites in the first orbit

@manager:/$ sn cmd sl_cons.orbit[0] python /home/geo_routing.py

(c) Load configurations to initialize the ENE and run experiment.

Figure 4: A getting-started example of STARRYNET (sn).

vironment (e.g., “sl_con”) on multiple machines, configure
network parameters (e.g., uplink/downlink capacity), and run
the user-specific program on emulated satellites (Figure 4c).

6 Framework Evaluation
In this section, we evaluate STARRYNET by exploring two
important aspects related to the framework. Q(i): Can STAR-
RYNET flexibly scale to various experimental requirements,
with acceptable system and configuration overhead? Q(ii):
How faithful are the results obtained by STARRYNET, as com-
pared with other state-of-the-art simulators, and live network
performance? Our framework evaluations are conducted on a
typical enterprise cluster, including eight DELL R740 servers
connected to a LAN. Each server is equipped with two Intel
Xeon 5222 Processors (4-core, 3.8GHz for each processor),
8*32G DDR4 RAM, and Ubuntu20.04-LTS.

6.1 Ability to Satisfy Various Experimental Re-
quirements for ISTNs

Elastic scaling to various constellation configurations. In
reality, satellite operators incrementally deploy their satellite
mega-constellations, which consist of multiple shells. As de-
picted in Table 2, STARRYNET is able to flexibly create a user-
defined experiment environment for different shells, or multi-
shell combinations of representative mega-constellations to
satisfy various research requirements. The emulated constel-
lation size can scale from about 300 (e.g., the T1 shell of
Telesat) to 4408 (e.g., the full-scale Starlink Phase I with five
shells) following different users’ configurations.
Environment setup overhead. STARRYNET’s APIs have
concealed complex underlying processing for trajectory cal-

culation and resource orchestration for the emulation. Thus
a researcher can easily establish each ENE listed in Table 2,
by writing about a dozen lines of code based on constellation
prefabs (e.g., like Figure 4b) predefined in STARRYNET’s
database. The creation time of a certain ENE upon STAR-
RYNET tightly depends on the experiment scale, and the hard-
ware capability of these machines used for experiments. Con-
cretely, as shown in Table 2, the total creation time, including
both node and link creations, increases as the constellation
size scales up, and ranges from several minutes (for small size
ENE) to tens of minutes (for large size ENE) in our current
STARRYNET implementation.
System overhead. Table 2 also plots the average CPU and
memory overhead consumed on each machine by running var-
ious ENEs. We make several observations. First, as expected,
when the constellation size increases, STARRYNET requires
more worker machines, consuming more CPU/memory re-
sources to emulate ISTN nodes, links, and their constellation-
wide dynamics. Second, if STARRYNET updates satellite dy-
namics more frequently (i.e., with shorter update intervals),
it consumes more resources to accomplish fine-granularity
updates. Note that in this experiment we limit the CPU us-
age below ∆ = 50% in each machine. This is because in an
ENE, the runtime overhead of the underlying STARRYNET
should not use up all CPU/memory resources. It is reason-
able to leave sufficient resources for the tested workloads and
functionalities running upon the ENE.

6.2 Fidelity Analysis
Next we analyze the fidelity of STARRYNET by comparing
the experiment results obtained by STARRYNET with live
satellite networks and other state-of-the-art simulators.
Network performance under a live Starlink topology. We
leverage STARRYNET to establish an ENE following the net-
work topology of a recent live Starlink test conducted in
Europe in 2021 [33]. Specifically, this real-world Starlink
topology involves several key components as illustrated in
Figure 5: (1) a user terminal together with a Starlink satellite
dish located at the campus Klagenfurt Primoschgasse; (2) a
SpaceX’s ground station located in Frankfurt, Germany; (3)
a Point of Presence (PoP) connecting the ground station to
terrestrial Internet; and (4) a Web server deployed in Vienna.
This experiment publicly reports the ping and iperf results
measured between user terminal and the Web server, over
the ISTN integrating Starlink satellites and terrestrial Inter-
net. We use STARRYNET, Hypatia [60] and StarPerf [61] to
generate network performance under the same topology con-
figuration. The latter two are state-of-the-art ISTN simulators.
Figure 6 plots the comparison for the latency results. First, we
find that existing simulators underestimate the latency, since
their latency estimations are based on a high-level abstrac-
tion without considering system effects like packet processing
overhead. Second, STARRYNET achieves acceptable fidelity,
as it attains similar latency performance in each case (i.e., aver-

1316 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Height (km) Constellation Size
 (number of satellites)

Minimum #
of Required

Workers
Starlink S1 (72*22, 53°) 550 1584 5.9 4.6 10.5 7.2% 7.0% 6.3% 3.9% 3.5% 3.4% 2
Starlink S2 (72*22, 53.2°) 540 1584 5.9 4.6 10.5 7.2% 7.0% 6.3% 3.9% 3.5% 3.4% 2
Starlink S3 (36*20, 70°) 570 720 3.0 2.1 4.9 1.2% 1.1% 1.0% 2.7% 2.6% 2.6% 1
Starlink S4 (6*58, 97.6°) 560 348 1.9 1.3 3.2 1.0% 1.0% 1.0% 2.7% 2.6% 2.4% 1
Starlink S5 (4*43, 97.6°) 560 172 1.6 1.2 3.2 1.0% 1.0% 1.0% 2.3% 2.3% 2.3% 1
Starlink Full (4408 satellites) hybrid 4408 13.3 7.9 21.2 39.6% 37.0% 34.3% 10.4% 9.1% 8.9% 7
Kuiper K1 (34*34, 51.9°) 630 1156 4.4 3.8 8.2 2.6% 2.4% 2.3% 3.8% 3.5% 3.2% 2
Kuiper K2 (36*36, 42°) 610 1296 4.7 4.2 8.9 3.9% 3.6% 3.2% 4.0% 3.6% 3.5% 2
Kuiper K3 (28*28, 33°) 590 784 3.2 2.4 5.6 1.3% 1.2% 1.2% 2.7% 2.6% 2.6% 2
Kuiper Full (3236 satellites) hybrid 3236 5.7 4.8 10.5 24.6% 23.9% 23.2% 6.3% 6.2% 6.2% 6
Telesat T1 (27*13, 98.98°) 1015 351 1.9 1.3 3.2 1.0% 1.0% 1.0% 2.6% 2.5% 2.4% 1
Telesat T2 (40*33, 50.88°) 1325 1320 4.8 4.2 9.0 3.9% 3.7% 3.3% 4.0% 3.6% 3.5% 2
Telesat Full (1671 satellites) hybrid 1671 3.1 2.4 5.5 7.2% 7.0% 6.4% 4.2% 3.7% 3.6% 3

Avg. CPU (%)
Interval = 1/2/3 (s)

Avg. Memory (%)
Interval = 1/2/3 (s)

Creation Time (min)
Nodes/Links/Total

Metrics

Constellation

Table 2: Ability to support mega-constellation emulation with various experimental configurations and system overheads.

107

Satellite
Dish

User
Terminal

Starlink LEO
Satellite

Starlink
Ground
Station

Cloud
Web

Server

PoP

Figure 5: A live Starlink topology.

15
25
35
45
55
65
75

Average 50th 70th 90th

RT
T

(m
s)

Live Starlink StarryNet
StarPerf Hypatia

underestimated

Figure 6: Latency comparison.

0

40

80

120

160

200

Uplink Downlink

Th
ro
ug
hp

ut
(M

bp
s)

Live Starlink
Network

StarryNet

Figure 7: Throughput comparison.

0

4000

8000

12000

Raspberry
 Pi 4B

Jetson
 TX2

C
o

re
M

ar
k

sc
o

re Real Hardware

StarryNet

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D

F

RTT(ms)

StarPerf

Hypatia

StarryNet

Figure 8: Latency comparison
in an ISL-enabled topology.

0

4000

8000

12000

Raspberry
 Pi 4B

Jetson
 TX2

C
o

re
M

ar
k

sc
o

re

Real Hardware

StarryNet

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D

F

RTT(ms)

StarPerf

Hypatia

StarryNet

Figure 9: Flexible computa-
tion capability.

age/50th/70th/90th percentile) as compared with the real mea-
sured data from live Starlink. This is because STARRYNET
jointly combines model calculation, data-driven calibration
and real networking stack to create the ENE.

Bandwidth is a metric that can be affected by many op-
erational factors. Therefore, in a research experiment STAR-
RYNET allows the researcher to manually configure the link
capacity on demand. For example, we follow the realistic
Starlink trace in [33] to set the uplink/downlink capacity, and
run iPerf to measure the TCP throughput in each direction.
Since Hypatia and StarPerf can not load real network traffic
by iPerf, we compare the throughput results of live Starlink
and STARRYNET. Specifically, evaluation results in Figure 7
demonstrate that STARRYNET can be tuned to accurately
emulate the bandwidth of a live ISTN.
Network performance under an ISL-enabled topology.
As of the date of this paper submission, most real mega-

constellations like Starlink and Kuiper are still in their early
stage and under heavy construction. Although Starlink has
started to deploy laser ISLs on its LEO satellites, those ISLs
are still under internal test, and it is difficult to directly com-
pare the network performance estimated by STARRYNET
with a real ISL-enabled satellite network. To analyze the fi-
delity of STARRYNET when ISLs are activated, we compare
the performance results obtained by STARRYNET with other
ISTN simulators. Figure 8 plots the CDF of latency between
a collection of real ground-station pairs [26] with the same
constellation configuration based on the ISL-enabled Starlink
network. The latency results of STARRYNET are measured by
ping test in the emulated ENE, while the results of other sim-
ulators are generated by numeric or event-driven calculation.
As shown in Figure 8 the latency obtained by STARRYNET is
slightly higher than other simulators, because STARRYNET
incorporates realistic system-level overhead (e.g., packet pro-
cessing) which could be neglected in simulators.

On-demand computation capability. Researchers may need
to conduct their experiments on different satellite hardware
with various computation capabilities. For example, authors
in [53] studied the application performance achieved by two
space-grade processors RAD-5545 [21] and HPSC [13]. Re-
cent works like [23, 44] explored new satellite functionalities
running upon commercial low-power processor such as Rasp-
berry Pi [24] and Jetson TX2 [18]. STARRYNET is able to
flexibly adjusting the computation capability on each emu-
lated satellite to satisfy various experimental requirements. To
validate the computational flexibility, we use CoreMark [5],

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1317

a well-known processor benchmark to measure the perfor-
mance of the real hardware and its facsimile created by STAR-
RYNET. As plotted in Figure 9, CoreMark score is a metric
that quantifies the computation capability. Higher scores indi-
cate stronger computing capability. For various computation
requirements, STARRYNET can mimic similar processor ca-
pability based on concrete experimental requirement.

7 Evaluating Futuristic ISTN Research with
STARRYNET: Case Studies

Next we conduct several case studies to show how STAR-
RYNET can be used to advance futuristic ISTN research.

7.1 Exploring the Design Space of Integrating
LEO Satellites and Terrestrial Facilities

To realize the promise of low-latency and pervasive accessibil-
ity of ISTN, the first step should be interconnecting LEO satel-
lites and terrestrial facilities (e.g., ground stations and user
terminals). While many existing studies have proposed differ-
ent space-ground topology designs, it still lacks a systemati-
cally analysis and comparison on these integration paradigms,
in terms of their network performance and corresponding
cost. We leverage STARRYNET to explore how different de-
sign choices of space-ground integration (as illustrated in
Figure 10) could affect the performance and cost of an ISTN.
(1) Satellite relays for last-mile accessibility (SRLA). Satel-
lites and ground facilities can be integrated based on the clas-
sic “bent-pipe” architecture to provide last-mile network ac-
cessibility as illustrated in Figure 10a, which is the status-quo
of many today’s satellite constellations like OneWeb. Data
from the ground are first transmitted to the satellite, which
then sends it right back down again like a bent pipe. The only
processing performed by satellites is to retransmit the signals.
(2) Satellite relays for ground station networks (SRGS).
Figure 10b depicts another “bent-pipe”-based integration
paradigm originally introduced in [57], where geo-distributed
ground stations work as routers to construct a network. Each
satellite switches packets between two ground stations con-
nected to the satellite. Packets from the sender are routed to
the receiver by paths built upon satellites and ground stations.
(3) Ground station gateway for satellite networks (GSSN).
Figure 10c shows an ISL-based internetworking approach pro-
posed by [52]. ISL-enabled satellites can build space routes
for long-haul communication, without the need of a large
number of ground station relays, as well as user-side satellite
dishes. Satellites and ground stations build a Layer-3 network.
During an end-to-end transmission, packets from the sender
are first routed to a ground station via terrestrial Internet, then
to the receiver side ground station over ISL-enabled satellites,
and finally to the receiver over the terrestrial Internet.
(4) Directly accessed satellite networks (DASN). Figure 10d
plots a paradigm where users’ satellite dishes directly con-
nect to ISL-enabled satellite networks, and two users can

establish long-haul communication without the assistance of
geo-distributed ground stations [51, 56]. Satellites work not
only as routers, but also as access points/gateways allocating
addresses for different terrestrial users.
Experiment setup. We leverage STARRYNET to build an
ENE for each paradigm, analyze their cost, and evaluate
their network performance. Specifically, we establish an ENE
based on Starlink’s first constellation shell and its ground sta-
tion distribution. We randomly pick geo-distributed user-pairs
and establish communication sessions between these pairs
over the satellite network. On each emulated satellite, we
load BIRD [37] routing software and run OSPF as the routing
protocol to achieve the shortest path for data transmission.
Observations. Table 3 summarizes the average end-to-end
latency and the latency breakdown of different space-ground
topology designs. We observe an obvious latency reduction
accomplished by laser ISLs, and DASN obtains the lowest
end-to-end latency on average. Since ground stations typi-
cally can not be deployed upon oceans (70% earth surface),
SRGS suffers from the highest latency as compared with other
schemes due to the insufficient deployment of ground stations.

As satellites move, two main factors affect the end-to-end
network reachability. First, users in certain regions may lose
available satellite access due to the LEO dynamics. For ex-
ample, users in high latitude areas may suffer from intermit-
tent satellite access. Second, frequent connectivity changes
can trigger routing re-convergence. As plotted in Table 3,
SRGS suffers from the lowest reachability due to the com-
bination of LEO dynamics and limited coverage of insuffi-
cient ground stations. GSSN obtains low reachability because
frequent satellite-ground handovers result in continuous re-
convergence, during which routes are fluctuating and unstable.

For SRLA, SRGS and GSSN, the IP address of user’s satel-
lite dish is allocated by the fixed user-side ground station, and
the addresses of senders or receivers do not change during the
communication. However, for DASN, each satellite works not
only as a router, but also as an access point/a gateway which
allocates IP addresses for terrestrial dishes connect to it. Due
to the LEO dynamics, terrestrial dishes have to frequently
change access satellite as well as their subnet. Consequently,
addresses are frequently updated, which may further disrupt
high layer transport connections and application sessions.

The above four topologies have different deployment and
operating costs in addition to LEO satellites. SRLA and SRGS
require a large number of available ground stations near users
to guarantee continuous satellite coverage. For SRGS, it also
requires sufficient geo-distributed ground stations to ensure
stable and low-latency routes over satellites and ground sta-
tions. GSSN and DASN require the extra deployment of ISLs.
Users in SRLA, SRGS and DASN have to purchase a dedi-
cated dish to access satellites. In GSSN, users connect to the
ground station gateway via terrestrial networks, and do not
need to install additional satellite dishes.
Implications. As summarized in Table 3, there is no clear win-

1318 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Earth surface

Terrestrial
Internet

User User

LEO Satellites

GSGS

Sender Receiver

no ISL
support

Terrestrial
Internet

packets

(a) SRLA: satellite relays for last-mile accessibility.

Sender Receiver

no ISL
support

packets

Earth surfaceUser User
GSGS

(b) SRGS: satellite relays for ground station networks.

Earth surface
User User

GSGS

inter-satellite links

satellite‐ground routing protocols

Sender Receiver
packets

ISLs

Te
rr
es
tr
ia

l I
nt
er
ne

t

Te
rr
es
tr
ia

l I
nt
er
ne

t

(c) GSSN: ground station access for satellite networks.

Earth surfaceUser User

inter-satellite links
satellite‐ground routing protocols

Sender Receiver

ISLs

packets

(d) DASN: satellite networks directly accessed by terrestrial users.

Figure 10: The design-space for various space-ground integration methodologies.

Inter-Satellite Space-Ground Ground Toal GS Terminal ISLs
SRLA 0 76.25 107 183.25 97.00% ✗ ✓ ✓ ✗
SRGS 0 313.39 0 313.39 51.00% ✗ ✓ ✓ ✗
GSSN 48.46 38.45 20 106.91 57.40% ✗ ✓ ✗ ✓
DASN 48.46 37.65 0 86.11 97.50% ✓ ✗ ✓ ✓

Operating CostAverage end-to-end latency and its breakdown (ms)
Design Reachability Frequent Address Update

Table 3: Comparison for different space-ground integration methodologies.

ner for all four integration methodologies. “Bent-pipe”-based
approaches achieve simplicity without ISL requirements, but
they fail to fully unleash the low-latency potential of ISTNs.
Approaches relying on ISLs can form near-optimal spaces
routes to attain wide-area low-latency communication, but
they involve extra ISL cost, and suffer from higher route
instability and connection disruptions, due to the route re-
convergence and address update caused by LEO dynamics.
All integration approaches have their limitations, and satellite
operators are suggested to choose a proper topology based on
their specific performance requirements and cost budgets.

7.2 Evaluating ISTN Resilience

Satellites are operated in complex outer space environments.
Small satellites deployed in emerging mega-constellations
typically have a short lifetime (e.g., 3-5 years [30]) due to
their low manufacturing cost. Many space factors or events,
such as space debris [15], geomagnetic storms [12], and single
event upset [28], etc., can cause immediate satellite failures.
For example, in February 8, 2022, about 40 Starlink satellites
are doomed by a geomagnetic storm [1]. Therefore, given
the harsh and error-prone space environment, it should be
important for satellite operators and researchers to evaluate
and analyze how resilient an ISTN is, and what kind of sys-
tem/network factors affect the resilience.
Experiment setup. We thus conduct an experiment with
STARRYNET to evaluate the network resilience with different
routing configurations. Specifically, we mimic the impact of a
space failure (e.g., due to a geomagnetic storm) which makes
a fraction of satellites in the constellation inactive and can not
forward network traffic. We load BIRD [37] in our ENE and

run OSPF as the routing protocol in this experiment.

Observations. Figure 11 plots the routing recovery time for
a set of representative city-pairs under various failure ratios.
An on-path satellite failure can cause a network disruption,
and the routing recovery time increases as the constellation
size and failure rate increase. Figure 12 plots the compari-
son for the end-to-end latency before the constellation failure
and after the routing re-convergence. We observe that the la-
tency increases slightly under low failure rate, and the latency
dramatically increases when the failure rate reaches 30%.

Implications. We summarize three key implications from
this experiment. First, we find the mesh-like network based
on a large number of satellites can maintain low latency in
case of low failure rate. This is because the mesh-like satellite
network has high path diversity, offering backup routes for
communication pairs in case of network failures. Second, the
inherent high dynamicity of LEO satellites is a double-edge
sword for the service restoration in an ISTN. On one hand,
for terrestrial users whose access satellite above them fails,
the dynamicity helps because faulty satellites will soon move
out of their line-of-sight. On the other hand, the dynamicity
hurts, as it spreads the failure globally, and could affect the
network accessibility of other users. Finally, while improv-
ing redundancy in physical connectivity and applying robust
mechanisms in protocol design are two critical directions to
improve the ISTN resilience, it is challenging to attain a “win-
win” integration of them in practical systems. Increasing the
satellite density indeed improves the resilience of satellite
accessibility in case of sudden failures, but it also involves
much more nodes and links in the network, and thus imposes
new challenges and requirements on the protocol scalability
and recovery efficiency under various failure scenarios.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1319

0

60

120

180

240

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

Re
co

ve
ry

tim
e

(s
) Kuiper (34 * 34 satellites)

Starlink (72 * 22 satellites)

(a) Route recovery time under 10% failure ratio.

0

60

120

180

240

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

Re
co

ve
ry

tim
e

(s
) Kuiper (34 * 34 satellites)

Starlink (72 * 22 satellites)

(b) Route recovery time under 20% failure ratio.

0

60

120

180

240

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

Re
co

ve
ry

tim
e

(s
) Kuiper (34 * 34 satellites)

Starlink (72 * 22 satellites)

(c) Route recovery time under 30% failure ratio.

Figure 11: Route recovery time under different constellation-wide failures.

0
50

100
150
200
250
300

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

La
te

nc
y

(m
s) Starlink, before failure Starlink, after recovery

Kuiper, before failure Kuiper, after recovery

(a) Increased latency under 10% failure ratio.

0
50

100
150
200
250
300

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

La
te

nc
y

(m
s) Starlink, before failure Starlink, after recovery

Kuiper, before failure Kuiper, after recovery

(b) Increased latency under 20% failure ratio.

0
50

100
150
200
250
300

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

La
te

nc
y

(m
s) Starlink, before failure Starlink, after recovery

Kuiper, before failure Kuiper, after recovery

(c) Increased latency under 30% failure ratio.

Figure 12: Increased latency after route reconvergence under various constellation-wide network failures.

②StarryNet Virtual
Satellites (R740 servers)

① 3U CubeSat

Low-Power
Processor

Power Monitor

p
o

w
e
r

m
e
a
su

re
m

e
n

t

Interactive
ISTN

Traffic

… …

1583 emulated nodes + 1 real prototype

Figure 13: Hardware-in-the-loop testing with STARRYNET.

7.3 Hardware-in-the-loop Testing

In real satellite deployments, it is very important to accurately
estimate how much energy a new system or network func-
tion will consume before the launch. STARRYNET enables
researchers to conduct hardware-in-the-loop testing to ac-
curately evaluate the low-level system effects under various
workloads. As a case study to demonstrate STARRYNET’s
ability, we connect a 3U CubeSat prototype, equipped with a
low-power processor [23,24] running real routing protocols to
the virtual satellite network emulated by STARRYNET, as il-
lustrated in Figure 13. Collectively, the 3U CubeSat prototype
together with the emulation creates a virtual constellation
network with 1584 Starlink satellites. We follow the satel-
lite traffic model proposed in [51] to inject traffic and use
a power monitor to measure the satellite prototype. Table 4
summarizes the power consumption in different states (e.g.,
calculating route convergence and forwarding traffic in vari-
ous data rates). Our hardware-in-the-loop test demonstrates

100 250 500 750 1000
Power consumption (W) 2.83 3.22 4.6 4.99 5.36 5.45 5.46

Data transmission rate (Mbps)
State Idle

Routing
convergence

Table 4: Power consumption under various ISTN workloads.

STARRYNET’s ability to create a hybrid ENE and evaluate
real system effects for user-defined functionalities.

8 Limitation and Future Work

Experimental scope and limitations. Our STARRYNET
framework mainly targets at various network-level experi-
ments for ISTNs, e.g., evaluating a new routing/transport-
layer protocol, or assessing the network performance of a new
topology design in a highly-dynamic, resource constrained
virtual ISTN environment. The scale of the experiment sup-
ported by STARRYNET is closely related to the underlying
resources provided by physical machines. In its present form,
the key limitation of STARRYNET can be summarized as
follows. First, STARRYNET is essentially a data-driven frame-
work combining constellation-relevant modeling and network
emulation. Thus its fidelity tightly depends on the availability
and accuracy of the public information shared by the satellite
ecosystem. For example, in practice, public TLE data may
provide inaccurate orbit information, which can have errors
up to 12 km, and such errors can affect the calculation of
network performance (e.g., inter-satellite visibility and prop-
agation delay). Second, some parameters are hard to obtain
from a practical satellite system today, because most mega-
constellations are still in their early stage with limited access.
For example, it is difficult to obtain the real ISL-enabled Star-
link performance right now, since Starlink’s laser ISLs are
still under internal test. Thus, STARRYNET allows researchers

1320 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to manually configure the ISL parameters (e.g., link capacity)
and customize their experiments based on various experimen-
tal requirements. Third, our framework is primarily based on
virtualization-based network-level emulation, and thus it has
limited ability to emulate physical layer (PHY) characteristics
that can be observed in a live network experiment, e.g., spec-
trum adaptation and multiplexing [42], or the time consumed
by a real satellite dish to detect PHY connectivity changes.
Future work. Satellite Internet mega-constellations are still
evolving rapidly. New constellation designs are constantly
being proposed, and existing constellation schemes are con-
stantly being updated. In our future work, we will follow the
evolution and deployment of realistic satellite Internet con-
stellations. In particular, we will track the latest constellation
information to update STARRYNET’s open database, calibrate
the constellation models and further improve the fidelity of
the STARRYNET framework. Moreover, based on these impli-
cations obtained from our case studies in §7, we will explore
new network techniques tailored for ISTNs, e.g., practical and
resilient satellite routing protocols in the future. Our latest
research progress on STARRYNET will be updated on the
website: https://github.com/SpaceNetLab/StarryNet.

9 Related Work
Section 3.2 has discussed most existing efforts relevant to the
method of building ENEs. In this section we briefly introduce
other ISTN works related to our study in this paper.

The network community has many recent efforts studying
on the topology design [40, 58], routing [47, 52, 56, 57, 83],
transport-layer congestion control [60,64], new satellite appli-
cations [62] and security issues [51] for emerging ISTNs. For
instance, Motif [40] is a recent topology design for LSNs, in
which each satellite is dynamically connected to other visible
satellites to achieve low latency under various traffic configu-
rations. Works in [40,56,57] suggest the use of pre-calculated
shortest-path-based routing and traffic engineering schemes
for ISTNs. On one hand, these pioneering studies indeed
outline the promising network potential of futuristic ISTNs.
On the other hand, the above new thoughts are evaluated by
simulations with a high-level abstraction. STARRYNET can
stimulate new research and advance existing ISTN works by
evaluating them in a more realistic ENE to obtain practical
insights for further optimizations.

The rapid evolution of ISTNs also attracted the attention
of the system community. Specifically, orbital edge comput-
ing (OEC) [43, 44, 66] is a new computation architecture
which leverages computational satellites to pre-process earth
observation (EO) data, and save the data download overhead.
Studies in [49, 50] explored the feasibility of applying deep
neural networks to process on-board satellite data. Since
STARRYNET creates real system runtime and networking
stack in an experimental ISTN environment, it can also help
to evaluate system-level effects of these new algorithms, im-
plementations and programming models designed for ISTNs.

10 Conclusion

To advance futuristic research on ISTNs, this paper presents
STARRYNET, an experimentation framework that empow-
ers researchers to conventionally and flexibly build ENEs
for ISTN research. STARRYNET simultaneously achieves
constellation-consistency, network realism, and flexibility, by
integrating real constellation-relevant information, orbit anal-
ysis and large-scale emulations to construct ENEs. By com-
paring STARRYNET’s results with live network performance
and conducting diverse case studies, we demonstrate STAR-
RYNET’s fidelity and flexibility for various ISTN experiments.
We are confident that the open-source STARRYNET can help
the network and system community to flexibly conduct vari-
ous ISTN evaluations with more credible results.

Acknowledgments

We thank our shepherd Behnaz Arzani and all anonymous
NSDI reviewers for their feedback which greatly improved the
paper. This work was partially supported by the National Nat-
ural Science Foundation of China (NSFC No. 62132004) and
Tsinghua University-China Mobile Communications Group
Co., Ltd. Joint Institute.

References

[1] 40 Starlink satellites doomed by geomagnetic storm.
https://earthsky.org/space/40-starlink-
satellites-doomed-by-geomagnetic-storm/.

[2] Application of Kuiper Systems LLC for Author-
ity to Launch and Operate a Non-Geostationary
Satellite Orbit System in Ka-band Frequen-
cies. https://licensing.fcc.gov/myibfs/
download.do?attachment_key=1773885.

[3] Azure Orbital: Satellite ground station and schedul-
ing service connected to Azure for fast downlink-
ing of data. https://azure.microsoft.com/en-us/
services/orbital/.

[4] China’s megaconstellation project estab-
lishes satellite cluster in chongqing. https:
//spacenews.com/chinas-megaconstellation-
project-establishes-satellite-cluster-in-
chongqing/.

[5] Coremark: a benchmark designed specifically to test
the functionality of a processor core. https://
www.eembc.org/coremark/.

[6] Docker: Empowering app development for developers.
https://www.docker.com/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1321

https://github.com/SpaceNetLab/StarryNet
https://earthsky.org/space/40-starlink-satellites-doomed-by-geomagnetic-storm/
https://earthsky.org/space/40-starlink-satellites-doomed-by-geomagnetic-storm/
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://azure.microsoft.com/en-us/services/orbital/
https://azure.microsoft.com/en-us/services/orbital/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://www.docker.com/

[7] Emulab: a time- and space-shared platform for research,
education, and development in distributed systems and
networks. https://www.emulab.net/.

[8] FCC authorizes boeing broadband satellite constellation.
https://www.fcc.gov/document/fcc-authorizes-
boeing-broadband-satellite-constellation.

[9] FCC Authorizes Kuiper Satellite Constellation.
https://docs.fcc.gov/public/attachments/FCC-
20-102A1.pdf.

[10] FCC International Bureau Filings. https://
fcc.report/IBFS/.

[11] General mission analysis tool. https:
//gmat.atlassian.net/wiki/spaces/GW/
overview?mode=global.

[12] Geomagnetic storm. https://en.wikipedia.org/
wiki/Geomagnetic_storm.

[13] High performance spaceflight computing (HPSC).
https://www.nasa.gov/directorates/spacetech/
game_changing_development/projects/HPSC/.

[14] HPE spaceborne computer. https://www.hpe.com/
us/en/compute/hpc/supercomputing/
spaceborne.html.

[15] Kessler syndrome. https://en.wikipedia.org/
wiki/Kessler_syndrome.

[16] Norad two-line element sets current data. https://
www.celestrak.com/NORAD/elements/.

[17] NTP: The Network Time Protocol. http://
www.ntp.org/.

[18] Nvidia Jetson TX2 Module. https://
developer.nvidia.com/embedded/jetson-tx2.

[19] Open vswitch manual. http://
www.openvswitch.org/support/dist-docs/ovs-
vsctl.8.txt.

[20] PLANETLAB: an open platform for developing, de-
ploying and accessing planetary-scale services. https:
//planetlab.cs.princeton.edu/.

[21] RAD5545 SpaceVPX single-board computer.
Multi-core single-board computer. https:
//www.baesystems.com/en-media/uploadFile/
20210404061759/1434594567983.pdf.

[22] RAD750 family of radiation-hardened products. https:
//www.baesystems.com/en-media/uploadFile/
20210404044504/1434555689265.pdf.

[23] Raspberry pi in space! https://
www.raspberrypi.com/news/raspberry-pi-in-
space/.

[24] Raspberrypi fundation. https://
www.raspberrypi.org/.

[25] Roscosmos for space flights, cosmonautics programs,
and aerospace research. http://en.roscosmos.ru/.

[26] SatNOGS – Open Source global network of satellite
ground stations. https://network.satnogs.org/.

[27] Scrapy. https://scrapy.org/.

[28] Single-event upset. https://en.wikipedia.org/
wiki/Single-event_upset.

[29] Skyfield. https://rhodesmill.org/skyfield/.

[30] SpaceX is Giving the Internet Lift With Star-
link. https://subspace.com/resources/spacex-
is-giving-the-internet-lift-with-starlink.

[31] SpaceX’s Starlink user terminal. https:
//arstechnica.com/information-technology/
2020/12/teardown-of-dishy-mcflatface-the-
spacex-starlink-user-terminal/.

[32] Speed check: Starlink performance. https:
//www.speedcheck.org/starlink-performance-
2021/.

[33] Starlink analysis at the carinthia univer-
sity of applied sciences (CUAS). https:
//forschung.fh-kaernten.at/roadmap-5g/files/
2021/07/Starlink-Analysis.pdf.

[34] Starlink: high-speed, low latency broadband Internet.
https://www.starlink.com/.

[35] Systems Tool Kit (STK). https://www.agi.com/
products/stk.

[36] Telesat. https://www.telesat.com/.

[37] The BIRD Internet Routing Daemon. https://
bird.network.cz/.

[38] UCS satellite database. https://www.ucsusa.org/
resources/satellite-database.

[39] Amazon. AWS Ground Station. https://
aws.amazon.com/ground-station/.

[40] D. Bhattacherjee and A. Singla. Network topology de-
sign at 27,000 km/hour. In Proceedings of the 15th
International Conference on Emerging Networking Ex-
periments And Technologies (CoNEXT), pages 341–354.
ACM, 2019.

1322 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.emulab.net/
https://www.fcc.gov/document/fcc-authorizes-boeing-broadband-satellite-constellation
https://www.fcc.gov/document/fcc-authorizes-boeing-broadband-satellite-constellation
https://docs.fcc.gov/public/attachments/FCC-20-102A1.pdf
https://docs.fcc.gov/public/attachments/FCC-20-102A1.pdf
https://fcc.report/IBFS/
https://fcc.report/IBFS/
https://gmat.atlassian.net/wiki/spaces/GW/overview?mode=global
https://gmat.atlassian.net/wiki/spaces/GW/overview?mode=global
https://gmat.atlassian.net/wiki/spaces/GW/overview?mode=global
https://en.wikipedia.org/wiki/Geomagnetic_storm
https://en.wikipedia.org/wiki/Geomagnetic_storm
https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/HPSC/
https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/HPSC/
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://en.wikipedia.org/wiki/Kessler_syndrome
https://en.wikipedia.org/wiki/Kessler_syndrome
https://www.celestrak.com/NORAD/elements/
https://www.celestrak.com/NORAD/elements/
http://www.ntp.org/
http://www.ntp.org/
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
https://planetlab.cs.princeton.edu/
https://planetlab.cs.princeton.edu/
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.baesystems.com/en-media/uploadFile/20210404044504/1434555689265.pdf
https://www.baesystems.com/en-media/uploadFile/20210404044504/1434555689265.pdf
https://www.baesystems.com/en-media/uploadFile/20210404044504/1434555689265.pdf
https://www.raspberrypi.com/news/raspberry-pi-in-space/
https://www.raspberrypi.com/news/raspberry-pi-in-space/
https://www.raspberrypi.com/news/raspberry-pi-in-space/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
http://en.roscosmos.ru/
https://network.satnogs.org/
https://scrapy.org/
https://en.wikipedia.org/wiki/Single-event_upset
https://en.wikipedia.org/wiki/Single-event_upset
https://rhodesmill.org/skyfield/
https://subspace.com/resources/spacex-is-giving-the-internet-lift-with-starlink
https://subspace.com/resources/spacex-is-giving-the-internet-lift-with-starlink
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://www.speedcheck.org/starlink-performance-2021/
https://www.speedcheck.org/starlink-performance-2021/
https://www.speedcheck.org/starlink-performance-2021/
https://forschung.fh-kaernten.at/roadmap-5g/files/2021/07/Starlink-Analysis.pdf
https://forschung.fh-kaernten.at/roadmap-5g/files/2021/07/Starlink-Analysis.pdf
https://forschung.fh-kaernten.at/roadmap-5g/files/2021/07/Starlink-Analysis.pdf
https://www.starlink.com/
https://www.agi.com/products/stk
https://www.agi.com/products/stk
https://www.telesat.com/
https://bird.network.cz/
https://bird.network.cz/
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database
https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/

[41] K. C. Castonguay. Additive manufacture of propulsion
systems in low earth orbit. Technical report, Air Com-
mand and Staff College, Air University Maxwell AFB
United States, 2018.

[42] R. Chen and W. Gao. TransFi: emulating custom wire-
less physical layer from commodity wifi. In Proceedings
of the 20th Annual International Conference on Mobile
Systems, Applications and Services (MOBISYS), 2022.

[43] B. Denby and B. Lucia. Orbital edge computing: Ma-
chine inference in space. IEEE Computer Architecture
Letters, 18(1):59–62, 2019.

[44] B. Denby and B. Lucia. Orbital edge computing:
Nanosatellite constellations as a new class of computer
system. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS),
page 939–954. ACM, 2020.

[45] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire,
T. Turletti, and C. Lac. Distrinet: a mininet implementa-
tion for the cloud. ACM SIGCOMM Computer Commu-
nication Review, 51(1):2–9, 2021.

[46] L. Dreyer. Latest developments on SpaceX’s Falcon 1
and Falcon 9 launch vehicles and Dragon spacecraft. In
Aerospace conference. IEEE, 2009.

[47] E. Ekici, I. F. Akyildiz, and M. D. Bender. Datagram
routing algorithm for leo satellite networks. In Proceed-
ings of International Conference on Computer Commu-
nications (INFOCOM), volume 2, pages 500–508 vol.2.
IEEE, 2000.

[48] W. Frick and C. Niederstrasser. Small launch vehicles -
A 2018 state of the industry survey.

[49] G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni,
M. Donati, and L. Fanucci. Cloudscout: a deep neural
network for on-board cloud detection on hyperspectral
images. Remote Sensing, 12(14):2205, 2020.

[50] G. Giuffrida, L. Fanucci, G. Meoni, M. Batič, L. Buckley,
A. Dunne, C. van Dijk, M. Esposito, J. Hefele, N. Ver-
cruyssen, G. Furano, M. Pastena, and J. Aschbacher. The
sat-1 mission: The first on-board deep neural network
demonstrator for satellite earth observation. IEEE Trans-
actions on Geoscience and Remote Sensing, 60:1–14,
2022.

[51] G. Giuliari, T. Ciussani, A. Perrig, and A. Singla. Icarus:
Attacking low earth orbit satellite networks. In USENIX
Annual Technical Conference (ATC), pages 317–331.
USENIX, 2021.

[52] G. Giuliari, T. Klenze, M. Legner, D. Basin, A. Perrig,
and A. Singla. Internet backbones in space. ACM SIG-
COMM Computer Communication. Review., 50(1):25–
37, Mar. 2020.

[53] E. W. Gretok, E. T. Kain, and A. D. George. Compar-
ative benchmarking analysis of next-generation space
processors. In Aerospace Conference. IEEE, 2019.

[54] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat,
K. Yocum, A. Snoeren, and G. M. Voelker. Diecast:
Testing distributed systems with an accurate scale
model. ACM Transactions on Computer Systems
(TOCS), 29(2):1–48, 2011.

[55] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. In Conference on emerging
Networking Experiments and Technologies (CoNEXT).
ACM, 2012.

[56] M. Handley. Delay is not an option: Low latency routing
in space. In Proceedings of the 17th ACM Workshop on
Hot Topics in Networks (HotNets), page 85–91, 2018.

[57] M. Handley. Using ground relays for low-latency wide-
area routing in megaconstellations. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks
(HotNets), page 125–132. ACM, 2019.

[58] Y. Hauri, D. Bhattacherjee, M. Grossmann, and
A. Singla. "Internet from Space" without Inter-Satellite
Links. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks (HotNets), page 205–211. ACM,
2020.

[59] Internet World Stats. World internet us-
age and population statistics. https:
//www.internetworldstats.com/stats.htm, 2021.

[60] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre,
and A. Singla. Exploring the "Internet from Space" with
Hypatia. In Proceedings of the Internet Measurement
Conference (IMC), page 214–229. ACM, 2020.

[61] Z. Lai, H. Li, and J. Li. StarPerf: Characterizing Net-
work Performance for Emerging Mega-Constellations.
In 28th International Conference on Network Protocols
(ICNP). IEEE, 2020.

[62] Z. Lai, W. Liu, Q. Wu, H. Li, J. Xu, and J. Wu. Spac-
eRTC: Unleashing the Low-latency Potential of Mega-
constellations for Real-Time Communications. In Pro-
ceedings of International Conference on Computer Com-
munications (INFOCOM), pages 1339–1348. IEEE,
2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1323

https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm

[63] Z. Lai, Q. Wu, H. Li, M. Lv, and J. Wu. OrbitCast:
Exploiting Mega-Constellations for Low-Latency Earth
Observation. In 29th International Conference on Net-
work Protocols (ICNP). IEEE, 2021.

[64] X. Li, F. Tang, J. Liu, L. T. Yang, L. Fu, and L. Chen.
AUTO: Adaptive congestion control based on multi-
objective reinforcement learning for the satellite-ground
integrated network. In USENIX Annual Technical Con-
ference (ATC), pages 611–624. USENIX Association,
2021.

[65] T. M. Lovelly. Comparative Analysis of Space-Grade
Processors. PhD thesis, University of Florida, 2017.

[66] B. Lucia, B. Denby, Z. Manchester, H. Desai, E. Ruppel,
and A. Colin. Computational nanosatellite constella-
tions: Opportunities and challenges. GetMobile: Mobile
Computing and Communications, 25(1):16–23, 2021.

[67] man7.org. tc(8) — Linux manual page. https://
man7.org/linux/man-pages/man8/tc.8.html.

[68] MININET. An Instant Virtual Network on your Laptop
(or other PC). http://mininet.org/.

[69] M. K. Mukerjee, C. Canel, W. Wang, D. Kim, S. Seshan,
and A. C. Snoeren. Adapting TCP for reconfigurable
datacenter networks. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).
USENIX Association, 2020.

[70] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-
stein, J. Mickens, and H. Balakrishnan. Mahimahi: Ac-
curate record-and-replay for HTTP. In USENIX An-
nual Technical Conference (ATC). USENIX Associa-
tion, 2015.

[71] W. M. Organization. Observing systems capability anal-
ysis and review tool. https://space.oscar.wmo.int/
satellites.

[72] D. Pediaditakis, C. Rotsos, and A. W. Moore. Faithful
reproduction of network experiments. In Proceedings
of the tenth ACM/IEEE symposium on Architectures for
networking and communications systems (ANCS), pages
41–52, 2014.

[73] S. Services. Petition of Starlink Services, LLC
for Designation as an Eligible Telecommunications
Carrier. https://www.mass.gov/doc/dtc-21-1-
starlink-final-order/download, 2021.

[74] V. Singh, A. Prabhakara, D. Zhang, O. Yağan, and S. Ku-
mar. A community-driven approach to democratize
access to satellite ground stations. In Proceedings of
the 27th Annual International Conference on Mobile
Computing and Networking (MOBICOM). ACM, 2021.

[75] A. Singla. SatNetLab: a call to arms for the next global
internet testbed. ACM SIGCOMM Computer Communi-
cation Review, 51(2):28–30, 2021.

[76] SNS3. Satellite network simulator 3. https://
www.sns3.org/content/home.php.

[77] D. Vasisht and R. Chandra. A Distributed and Hybrid
Ground Station Network for Low Earth Orbit Satellites.
In Proceedings of the 19th Workshop on Hot Topics in
Networks (HotNets), page 190–196. ACM, 2020.

[78] D. Vasisht, J. Shenoy, and R. Chandra. L2D2: low la-
tency distributed downlink for LEO satellites. In Pro-
ceedings of the ACM SIGCOMM Conference, pages
151–164. ACM, 2021.

[79] E. Weingärtner, F. Schmidt, H. Vom Lehn, T. Heer, and
K. Wehrle. SliceTime: A Platform for Scalable and
Accurate Network Emulation. In 8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2011.

[80] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H.
Zahraee, and H. Karl. Maxinet: Distributed emulation
of software-defined networks. In IFIP Networking Con-
ference, 2014.

[81] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed sys-
tems and networks. ACM SIGOPS Operating Systems
Review, 36(SI):255–270, 2002.

[82] L. Wood. Satellite Constellation Design for Network
Interconnection Using Non-Geo Satellites., 2002.
https://openresearch.surrey.ac.uk/esploro/
outputs/bookChapter/Appendix-A-Satellite-
Constellation-Design-for/99513302802346.

[83] Y. Wu, Z. Yang, and Q. Zhang. A Novel DTN Routing
Algorithm in the GEO-Relaying Satellite Network. In
The 11th International Conference on Mobile Ad-hoc
and Sensor Networks (MSN), pages 264–269, 2015.

[84] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby,
P. Levis, and K. Winstein. Pantheon: the training ground
for Internet congestion-control research. In USENIX An-
nual Technical Conference (ATC). USENIX Association,
2018.

[85] Y. Zheng and D. M. Nicol. A virtual time system for
openvz-based network emulations. In Workshop on Prin-
ciples of Advanced and Distributed Simulation. IEEE,
2011.

1324 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
http://mininet.org/
https://space.oscar.wmo.int/satellites
https://space.oscar.wmo.int/satellites
https://www.mass.gov/doc/dtc-21-1-starlink-final-order/download
https://www.mass.gov/doc/dtc-21-1-starlink-final-order/download
https://www.sns3.org/content/home.php
https://www.sns3.org/content/home.php
https://openresearch.surrey.ac.uk/esploro/outputs/bookChapter/Appendix-A-Satellite-Constellation-Design-for/99513302802346
https://openresearch.surrey.ac.uk/esploro/outputs/bookChapter/Appendix-A-Satellite-Constellation-Design-for/99513302802346
https://openresearch.surrey.ac.uk/esploro/outputs/bookChapter/Appendix-A-Satellite-Constellation-Design-for/99513302802346

	Introduction
	Preliminaries
	How Can Researchers Evaluate Their New Thoughts for ISTNs?
	ENE Requirements
	Why Existing ENEs are Insufficient?

	StarryNet Design
	System Overview
	Constellation Observer
	Constellation Synchronizer
	Hybrid models
	Constellation consistency

	Constellation Orchestrator
	Multi-machine support for constellation emulation
	Efficient time synchronization and state update

	Open APIs for ISTN Experiments

	Implementation and Usage
	Framework Evaluation
	Ability to Satisfy Various Experimental Requirements for ISTNs
	Fidelity Analysis

	Evaluating Futuristic ISTN Research with StarryNet: Case Studies
	Exploring the Design Space of Integrating LEO Satellites and Terrestrial Facilities
	Evaluating ISTN Resilience
	Hardware-in-the-loop Testing

	Limitation and Future Work
	Related Work
	Conclusion

