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Abstract
Many large cloud providers operate two wide-area networks
(WANs) — a software-defined WAN to carry inter-datacenter
traffic and a standards-based WAN for Internet traffic. Our
experience with operating two heterogeneous planet-scale
WANs has revealed the operational complexity and cost in-
efficiency of the split-WAN architecture. In this work, we
present the unification of Microsoft’s split-WAN architec-
ture consisting of SWAN and CORE networks into ONEWAN.
ONEWAN serves both Internet and inter-datacenter traffic
using software-defined control. ONEWAN grappled with the
order of magnitude increase in network and routing table sizes.
We developed a new routing and forwarding paradigm called
traffic steering to manage the increased network scale using
existing network equipment. Increased network and traffic
matrix size posed scaling challenges to SDN traffic engineer-
ing in ONEWAN. We developed techniques to find paths in
the network and chain multiple TE optimization solvers to
compute traffic allocations within a few seconds. ONEWAN
is the first to apply software-defined techniques in an Inter-
net backbone and scales to a network that is 10× larger than
SWAN.

1 Introduction

The large-scale commercialization of cloud computing led
cloud providers to provision private wide-area networks
(WANs). These initial deployments connected both datacen-
ters and Internet peering edges of the cloud using a unified
cloud WAN. For instance, Microsoft’s cloud WAN, called the
CORE (AS8075) network, interconnected Microsoft’s data-
centers and Internet peering edges. However, as the cloud
workloads evolved, inter-datacenter traffic began to dominate,
shrinking the capacity available for carrying Internet traf-
fic to peering edges. In response, Microsoft built a second
WAN to offload inter-datacenter traffic. This WAN, called
the software-defined WAN or SWAN (AS8074) used software-
defined traffic engineering (TE) and bandwidth brokering to
achieve higher network utilization [14] than RSVP-TE [2] in
CORE. Deployment of two cloud WANs (Figure 1), one for
Internet traffic and the other for inter-datacenter traffic is an

industry-wide trend with Google [17] and Meta [9] operating
similar split-WAN architectures.

SWAN CORE

Datacenter edge

Datacenter edge

Peering edge
inter-
datacenter
flow

Internet
flow

Figure 1: Before ONEWAN, there were two wide area networks,
CORE (AS8075) and SWAN (AS8074). Datacenter edge connected to
both networks, and peering edge only connected to CORE. Internet
traffic was served by CORE and inter-datacenter traffic by SWAN.
CORE used RSVP-TE and SWAN used SDN based traffic engineering.

Why is one WAN better than two? Maintaining two hetero-
geneous WANs specialized for inter-datacenter (SWAN) and
Internet (CORE) traffic led to several operational challenges.
First, the two-WAN architecture requires that datacenter edges
connect to both SWAN and CORE routers (see Figure 1). The
dual WAN connectivity from datacenter edges led to wasteful
use of expensive network equipment and limited power supply.
This problem was made worse by massive build outs of new
datacenter regions and edge sites. Second, the split-WAN ar-
chitecture makes capacity planning hard. At a given time, one
WAN can be under-utilized while the other is over-utilized.
Moreover, acquiring optical capacity for both WANs in every
geographical region and building the required redundancy on
each network, became prohibitively expensive. Finally, CORE
and SWAN used routers with completely different protocol
stacks. As a result, engineers were trained to configure, moni-
tor and manage two distinct networks. Deploying new WAN
sites took more time since different routers had to be deployed
for the two networks.

In 2020, we observed a steady growth in Internet traffic
from peering edges due to increased use of collaboration
tools spurred by remote work (Figure 2). While the network
capacity between Internet peering edges and the cloud WAN
is scare and expensive, it was not in the purview of TE in the
split-WAN architecture. Thus, it became important to engineer
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the growing traffic on WAN-facing links from peering edges
but the key protocol of the CORE network, RSVP-TE, was not
up to this task as it had reached scaling limits in our network.
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5x

10x

2017 2018 2019 2020 2021 2022
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0.5

1.0

core rsvp

swan onewan

Figure 2: WAN traffic growth, the portions carried by CORE and
SWAN when they were separate networks, and the portions of RSVP-
TE and ONEWAN-TE traffic in the unified network.

Software-defined control in ONEWAN. Due to these op-
erational challenges, we consolidated the split-WAN archi-
tecture into a unified ONEWAN. We decided to implement
ONEWAN using SDN principles (like SWAN) instead of a
standards-based approach (like CORE) for three main rea-
sons. First, the key protocol of the CORE network, RSVP-TE,
was reaching scale limits due the existing size of the CORE
network topology. Second, RSVP-TE needed network-wide
configuration changes which have a global blast radius. In
contrast, we had deployed BLASTSHIELD to control the blast
radius of faults in the SWAN network [22]. Finally, despite
the earlier intention of using SWAN only for discretionary
workloads, SWAN had evolved to carry mission-critical appli-
cation traffic (e.g., Azure, Bing, Office, and Teams) in addition
to discretionary inter-datacenter workloads (e.g., replication,
backup). We measure our service level objectives (SLOs) as
the daily average over percentage of successfully transmitted
bytes in an hour. The SLOs of SWAN exceeded 99.999% for
customer traffic, and 99.9% for discretionary traffic.

Challenges in evolving from SWAN to ONEWAN. In this
work, we discuss the main technical challenges we overcame
to unify the split-WAN architecture into ONEWAN (Table 1):

Increased routing table sizes. SWAN was responsible for
routing datacenter prefixes only, which were few enough for
all SWAN routers to run BGP and store the datacenter routing
tables in the router memory. ONEWAN routers had to contend
with Internet routing tables and it would be cost prohibitive to
make every ONEWAN router hold the entire Internet routing
table. Hence, ONEWAN assigned two roles to routers: (1)
aggregation routers that hold full IP routing tables, and (2)
backbone routers that act as forwarding only nodes that do
not run BGP. We develop a new SDN function in ONEWAN
called traffic steering on aggregation routers to encapsulate

WAN packets with information needed by backbone routers
to do TE without IP routing (§ 3).

Fast failure repair. One of RSVP-TE’s strengths is fast
reroute, which enables it to switch from primary to backup
paths within milliseconds of a failure. This fast convergence is
essential for performance-sensitive services like video stream-
ing and virtual desktop over the WAN. Local repair is SWAN’s
equivalent function of detecting and repairing failed paths us-
ing agents that run on the routers. Improving convergence
times in ONEWAN required significant enhancements and
was an area of new learnings (§ 4).

Scaling TE optimization. ONEWAN has ten times the num-
ber devices of SWAN. The traffic engineering optimization
techniques used in SWAN had to scale to a network size that
is ten times larger. We developed scalable path and linear
programming optimizations to deal with the increased scale
of traffic engineering in ONEWAN (§ 5).

Estimating Internet traffic matrices. Accurate estimation
of traffic matrices is crucial for engineering Internet traffic.
Existing mechanisms for traffic matrix estimation fell short
for ONEWAN since they did not contend with Internet-facing
traffic. We developed a scalable pipeline for accurate traffic
matrix measurement for ONEWAN (§ 6).

Hitless transition in the live network. Finally, the transition
to ONEWAN was done in the live cloud network as it con-
tinued to carry user traffic. We devised techniques to enable
both SWAN and CORE networks to undergo a hitless transition
to ONEWAN (§ 7).

2 ONEWAN Architecture

The consolidation of SWAN and CORE networks into
ONEWAN was a large undertaking that took years of en-
gineering effort in planning, testing, implementing and veri-
fying the new WAN architecture. In this section we motivate
the design choices that led to the ONEWAN architecture.

Figure 3 shows a simplified view of ONEWAN with two
datacenter regions and two edge sites. Datacenter regions are
large campuses with routers at the root of the datacenter net-
work connecting to aggregation routers in regional network
gateways (RNGs). RNGs connect multiple datacenters in a
geographical region with a maximum fiber distance under
100 kilometers. Backbone routers are present in all RNGs and
additional transit gateways that are hubs for long-haul optical
links. Peering edge routers at edge sites connect to aggrega-
tion routers in the same site. Aggregation routers connect to
backbone routers in RNGs and gateways. ONEWAN traffic
engineering (ONEWAN-TE) applies to inter-datacenter flows
between datacenter regions, and Internet flows between edge
sites and datacenter regions. The set of traffic engineered links
consists of all backbone–backbone and aggregation–backbone
links. The Clos interconnect between edge and aggregation
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Challenge Techniques used
Route scale increase Only aggregation routers hold full IP routing tables. Controllers add routes for BGP

next hops instead of BGP prefixes (§ 3).
Avoid costly new builds Develop ONEWAN agents for four firmware versions to cover all existing routers.

Interconnect CORE and SWAN with aggregation routers (§ 3 and § 4).
TE optimization scale increase Traffic matrix-aware path computation. Optimize LP solvers (§ 5.1 and § 5.2).
Route convergence time Fast local repair using diverse backup paths. Tunnel liveness probes that return to

sender using controller routes (§ 4 and § 5.3).
Measuring real-time traffic matrix Use IPFIX sampling with a high throughput pipeline. Anycast source-specific

destinations determined from IPFIX flow records (§ 6).
Minimize risk of outages Divide ONEWAN into geographies managed by separate controllers. Steering

routes control what traffic is migrated ( [22], § 7).
Table 1: Summary of ONEWAN challenges and our approaches for solving them.

routers is always intra-site or intra-campus, is built to high
capacity, and hence is not a part of traffic engineering.
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Figure 3: ONEWAN is a unified network that serves Internet and
inter-datacenter flows using SDN TE. ONEWAN consists of aggre-
gation routers at its boundary and backbone routers in its interior
(gray dots). Datacenter and peering edge routers (black dots) con-
nect to aggregation routers using a Clos interconnect. ONEWAN-TE

applies to any inter-site flow between aggregation routers, be they
inter-datacenter or between edge site and datacenter.

In-place conversion to ONEWAN. Since both CORE and
SWAN networks carry mission-critical customer traffic, the
unification of the two networks had to be done in-place with
no visible impact to client performance. This goal necessi-
tated incremental changes to both physical connectivity and
network configuration to unify SWAN and CORE networks.
The first step for the unification was to physically connect
CORE and SWAN. Figure 4 shows new links that connect CORE
aggregation routers to SWAN backbone routers. When CORE
and SWAN were separate networks, they each had a set of
aggregation routers. In the second step, we eliminated one
set of aggregation routers and their links to save power. We
merged the routing domains of the interior gateway protocol,
which IS-IS [16] in CORE and SWAN, but did not merge the

BGP autonomous systems of the two networks to allow each
network to carry its original traffic.

CORE SWAN ONEWAN

(a) Connect CORE and SWAN (b) Consolidate aggregation
Figure 4: (a) Physically connect CORE and SWAN using aggregation
routers (shown as thick lines). (b) Consolidate two sets of aggrega-
tion routers into one.

Leverage existing network hardware. Our goal was to re-
purpose the WAN routers in SWAN and CORE networks as
opposed to building a clean-slate ONEWAN from the ground-
up with an entirely new fleet of routing hardware to reduce
the capital expenditure in the consolidation process. SWAN
had O(100) routers and O(105) datacenter routes while CORE
had O(1000) routers and O(106) Internet routes. To leverage
existing hardware for the increased scale in ONEWAN, only
aggregation routers run BGP with the full Internet and datacen-
ter routing tables. This allows the remaining backbone routers
to be simpler commodity switches with smaller routing table
memory.

Choice of tunneling mechanism. ONEWAN uses Multipro-
tocol Label Switching (MPLS) [31] to transport IP packets in
a tunnel across the backbone. We note that ONEWAN does
not use any TE protocols like RSVP-TE or TE extensions in
the interior gateway protocols like IS-IS. We use MPLS for
its efficient implementation of label stack encapsulation on
existing routers in SWAN and CORE. Our approach could be
generalized to other tunneling abstractions though it is outside
the scope of this work.

Router roles. Aggregation routers implement a key function
in ONEWAN, called traffic steering, described in detail in
§ 3. Aggregation routers are also used as transit routers in
ONEWAN-TE tunnels. This enables the large number of legacy
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devices in CORE and SWAN to make full use of available
bandwidth in either network. Edge routers are sources or
sinks for traffic. They are either datacenter routers or peering
routers. These routers continue to perform the same function
before and after the consolidation of SWAN and CORE.

3 ONEWAN Traffic Steering

Routing in ONEWAN occurs in three parts (see Figure 5).
First, a steering route on the aggregation router encapsulates
IP packets entering ONEWAN. Second, backbone routers
forward packets received from aggregation routers along traf-
fic engineered tunnels. In the final step, the egress backbone
router uses a segment routed [10] path to route packets to the
network destination. ONEWAN-TE controller computes and
ONEWAN router agents program traffic steering and engi-
neering routes on routers. IS-IS updates the segment routes.

Steering routes. BGP on aggregation routers receives routes
announced by BGP route reflectors or its clients and chooses
a set of one or more equal-cost BGP next hops for each pre-
fix. The BGP next hops are typically aggregation routers at
network egress sites though they could also be endpoints a
few hops beyond the network egress site in legacy portions of
ONEWAN. All ONEWAN sites are assigned a static identifier
called the site label. When BGP looks up the route for the next
hop, the highest preference route is the steering route added
by the ONEWAN-TE controller. The steering route pushes a
stack of two MPLS labels onto packets entering the backbone.
The top label in the stack is the egress site label. The bot-
tom label in the stack is the segment routing node segment
identifier (node SID) of the BGP next hop learned from IS-IS.

The egress site label refers to the backbone exiting site on
the shortest path to the packet’s destination. It is the same site
as the egress aggregation router, though it can be different
in legacy portions of ONEWAN. Ingress backbone routers
use the egress site label to determine the set of traffic engi-
neered tunnels to use. IP flows are weighted load balanced to
a specific tunnel based on their 5-tuple and traffic class. Once
the tunnel is selected, the ingress backbone router swaps the
egress site label with the traffic engineered tunnel label.

The bottom label serves two purposes. First, it provides
forwarding from the egress backbone router towards the end-
point. Second, it provides a fallback if no traffic engineered
tunnel for the egress site is up due to failures. When the
ingress backbone router has no operationally up traffic engi-
neered tunnels to a particular egress site, ONEWAN agent
automatically adds a route to pop the egress site label and
forward the packet using the segment route for the BGP next
hop node SID. The advantage of this design is that failures
in the network are quickly and transparently handled by the
routers without immediate intervention of the controller.

Steering route weights. The steering route sprays packet
flows to connected backbone routers using unequal load bal-

ancing. Although aggregation routers are directly connected
with equal capacity to backbone routers, each backbone router
is not an equal choice for ingress. For example, a backbone
router may have a longer path to the endpoint or may have less
available bandwidth to an egress site. Latency increases in the
former and congestion can occur in the latter. The ONEWAN-
TE controller excludes backbone routers with the shortest path
latency from the ingress aggregation router to the egress site
exceeding the best latency by a threshold. It then calculates
weights using single commodity maximum flow from the
ingress aggregation router to the egress site. Weights are re-
calculated whenever the topology changes. Figure 6 illustrates
the weight calculation for flows from aggregation router a to
endpoint f . Both backbone routers b and c are used to spread
the load because they have similar shortest path latency to the
egress site. The weight to b is 33% because the maximum
flow bandwidth of a−b−T is proportionately less.

Why have two stages of traffic splits? ONEWAN calculates
traffic steering splits using single commodity max-flow and
calculates traffic engineering splits using priority max-min
fairness optimization (§ 5.2) for the following reasons. We
were concerned that the TE optimization and path computa-
tion algorithms may not scale to the full size of ONEWAN
and operating on a subgraph of backbone routers would ease
the scaling challenges. Moreover, aggregation routers are con-
nected with high capacity links to backbone routers and so
do not need traffic engineering. Finally, we wanted steering
routes to be updated quickly in case of failures and did not
want the updates to be slowed down by an optimization phase.

In hindsight, the two traffic splitting mechanisms in
ONEWAN can be unified since our improvements to the TE
optimization (§ 5) enable it to handle the full ONEWAN
topology of backbone and aggregation routers. Aggregation
routers are transits for ONEWAN-TE tunnels between CORE
and SWAN devices and so have to be part of TE optimization.
ONEWAN agents in aggregation routers react to network
topology changes faster than the controller.

Segment routing at the egress backbone router. TE tunnels
terminate at the backbone router instead of the aggregation
router for a separate reason. Segment routing implementations
on vendor routers only allow penultimate hop popping, mean-
ing that the penultimate router must remove the node SID
before delivering the packet to the intended node. Routers do
not easily support popping a label stack. This necessitated
at least one segment routed hop and is why the TE tunnel is
between backbone routers. Support for ultimate hop popping
would eliminate the last segment routed hop.

4 ONEWAN Agent and Local Repair

ONEWAN agents are responsible for installing routes pro-
vided by ONEWAN-TE controllers. ONEWAN agents also
perform local repair. The local repair mechanism detects
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Figure 5: ONEWAN routing occurs in three parts. The first part is the steering route in the aggregation router, the second is the traffic engineered
tunnel between backbone routers, and the third is the segment routed path from the egress backbone router to the network egress point. The
traffic steering and engineering routes are added by the ONEWAN-TE controller.
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Figure 6: ONEWAN-TE example of flows from aggregation router a to
endpoint f . Steering route load balances flows to selected backbone
routers based on shortest-path distance and maximum flow from the
backbone router to the egress site. The backbone routers perform
full traffic engineering optimization.

the forwarding state of tunnels and reprograms actions to
send traffic on surviving tunnels thereby minimizing transient
packet loss due to route blackholes or congestion.

The ONEWAN agent runs as a process on all aggrega-
tion and backbone routers, optionally inside a Docker con-
tainer. It is supported on four different firmware operating
systems. To support the heterogeneity of firmware, the agent
is structured as separate platform-independent and platform-
dependent components, with well-defined APIs between them.
The platform-independent portion has the bulk of the com-
plexity in the agent. Figure 7 shows the agent organization.

Route programming. ONEWAN agents communicate with
ONEWAN-TE controllers using an HTTPS server; no routing
protocol is required. We use OpenFlow [28] match actions and
groups to represent routes. Groups represent the set of traffic
steering and engineering tunnels originating at ingress routers,
tunnel weights for unequal load balancing, traffic class to in-
dicate what type of traffic the tunnel is meant for, whether the

HTTPS server Pop route add

Route manager Tunnel manager

Router programmer Tunnel prober

Target groups

Dynamic groups

Local gRPC
endpoints BFD

Raw
socket

Routes

Liveness
changes

Platform independent

Platform dependent

Figure 7: ONEWAN agent has platform dependent and independent
components. The agent installs routes provided by ONEWAN-TE

controller and switches off tunnels experiencing forwarding faults.

tunnel is primary or backup, and attributes for probing tunnel
liveness. Transit routes use unary actions without groups.

The route programmer implements dynamic route opera-
tions through an internal gRPC or equivalent connection pro-
vided by the router firmware. It converts groups to weighted
cost multipath (WCMP) next hops with 32 members and du-
plicates each tunnel in proportion to its weight.

The target group is the set of tunnels received from the
controller and the dynamic group is the set of tunnels that are
alive, with original weights redistributed among them. When
a group has no primary tunnels alive, the backup tunnels are
elevated to primary. A tunnel is associated with a traffic class,
default matching any traffic class. When a group has no tun-
nels of default traffic class alive, the tunnels of the next traffic
class are modified to be the default traffic class. In Figure 8,
the target group has six tunnels A-F. The backup tunnels E and
F become primary when A and B fail. If A comes back up, it
is the sole primary default tunnel. We explain how ONEWAN-
TE calculates diverse backup and class-aware tunnels in § 5.2
and § 5.3.
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If no tunnels are alive, the agent replaces the dependent
egress site label routes with pop-and-forward (on a backbone
router) or removes the dependent BGP next hop steering routes
(on an aggregation router). Part of agent initialization is the
creation of pop-and-forward routes for the entire allocated
egress site label space, to cover any stray traffic received.
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site label →
pop-forward
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Backup default

Primary default after local repair
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(c) A, B, E, F
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(d) All fail

Figure 8: Local repair. The ONEWAN agent automatically adjusts
the composition and weights of tunnels based on liveness. (a) If
primary default tunnels A and B fail, then backup tunnels E and
F become primary. (b) If A comes back up, it is the sole primary
default tunnel. (c) If only scavenger tunnels C and D survive, they
become primary. (d) If all tunnels fail, the site label route is replaced
with a pop-and-forward action.

Tunnel probing. Aggregation routers use single-hop tunnel
probing using Bidirectional Forwarding Detection [21] to
check the links to backbone routers. Ingress backbone routers
perform end-to-end tunnel probing using a labeled self-ping
mechanism via a raw socket. Tunnel probes use the same
routes as data packets in the forward direction.

Tunnel probes in SWAN relied on IS-IS in the return path.
This caused backup tunnels to fail even though they did not
use failed links in the forward path because the probe return
path was affected by IS-IS route convergence. Without pri-
mary and backup tunnels, the agent removed the controller
route and traffic reverted to IS-IS. Client traffic experienced
IS-IS convergence times and congestion losses as long as
the tunnels were still down. This significantly degraded user
experience. Therefore, probes in ONEWAN return from the
tunnel destination to the tunnel source using controller routes.
The return hops are the reverse of the forward hops and thus
do not share fate with links unrelated to the data tunnel. In
Figure 9, the probe packets return on d−b−a, not d− c−a
even though the latter is shorter. The ONEWAN-TE controller
reuses available data tunnels in the reverse direction when
possible, and creates new tunnels otherwise.

Multiple probe packets can be in flight and the probing
interval is independent of the path round-trip time. A loss of
a configured number of probes marks a tunnel down, and a
successful probe marks a tunnel up. We send probes at 100ms

a

b

dc

Tunnel probe

Data flow

data label reverse label dstIP: a srcIP: d
Figure 9: Tunnel probes use the same routes as the data packets in
the forward direction and return from the destination using the same
links to avoid false failures. The transit routes are programmed by
the controller and agents of transit routers.

intervals and mark the tunnel down after loss of 3 probes.
Fault detection time is thus 300ms plus the distance to the
fault which in the worst case is the tunnel latency.

Local repair. In the split-WAN architecture, Internet traffic
was handled by RSVP-TE in the CORE network. Standards-
based RSVP-TE in the CORE network implements a fast
reroute (FRR) [29] mechanism that allows it to recover from
link failures in O(10) ms. Fault detection time is the distance
to the fault, which in the worst case is the link latency, plus
a small delay for the optical transponder to notify the router.
FRR switches to precomputed bypass tunnels at the point of
fault and runs in or near the line card network processing unit.
Switching times are a few milliseconds.

In contrast with FRR, ONEWAN’s local repair happens at
the ingress router of the tunnel not the point of fault. Faults in
the first hop link are detected by interface down events and
faults in subsequent hops are detected by lost probes. Repair
is initiated in the route processor and subject to greater inter-
process communication and scheduling delays. The route
programmer modifies the WCMP in place to decrease the
number hardware writes performed at the time of repair. As
a result, ONEWAN convergence time is under one second.
Although slower than FRR, ONEWAN meets the convergence
time requirements of video streaming, video conferencing and
other interactive applications currently served by the network.
ONEWAN tunnel probes also validate forwarding because
they exercise the routes used by data packets. The backup tun-
nels are chosen based on diversity and residual bandwidth and
hence experience less transient packet loss due to congestion
(described in § 5.3).

Route programming. ONEWAN is divided into geograph-
ical regions and regional ONEWAN-TE controllers program
routes on devices in their region [22]. All routers program
steering routes in parallel, in a single phase. The pop-and-
forward routes on the backbone routers eliminate the need to
synchronize programming steering and TE routes.

TE routes are also updated in parallel, using three phases
with a barrier between each. A make-before-break sequence
ensures that no route blackholes or loops form during pro-
gramming. The set of routes for all routers is logically divided
into two sets: the transit and tunnel egress routes T , and the
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Metric ONEWAN-TE

Per-device steering + TE routes O(103)

Network level tunnels O(104)

Per-device FIB update (p95) 2.0 sec
Network level FIB update (p95) 3.7 sec

Table 2: ONEWAN-TE scale in terms of routes, tunnels, and update
times per device and for the entire network.

tunnel ingress routes G. Since the G routes depend on the T
routes, make-before-break ensures that traffic cannot enter a
tunnel until each subsequent hop has been programmed. An
important property of ONEWAN-TE route generation is that
the label spaces between successive iterations do not overlap,
except where the paths they represent are identical. The label
range is large enough to allocate unique labels in the worst
case.

The phases of replacing the routes of iteration n, Tn∪Gn,
with routes of iteration n+1, Tn+1∪Gn+1, are as follows:
• The initial state in all routers is Tn∪Gn.
• Tn∪Tn+1∪Gn is sent to agents which perform their route

update and report success or error.
• Tn∪Tn+1∪Gn+1 is programmed. During this phase there

may be a mix of Gn and Gn+1 routes in the network, but
all the T routes they depend on will be present.

• Tn+1∪Gn+1 is programmed.
Traffic shifts in the second phase. Since a phase completes

in under 4 seconds, a moderate scratch capacity avoids tran-
sient congestion. We reserve 15% scratch capacity to handle
transients from programming and traffic microbursts. If an
agent reports an error or connection is lost, the controller rolls
back to the initial state in a single phase. Any inconsistencies
after the rollback are corrected by the ONEWAN agent local
repair.

4.1 Evaluation

Route scale. The number of traffic engineering tunnels was a
significant scaling issue with RSVP-TE in CORE. Large num-
ber of RSVP-TE tunnels increased network convergence time
after link failures and exceeded hardware resources in older
aggregation routers. Table 2 shows that ONEWAN-TE uses 10
times fewer tunnels than RSVP-TE. When ONEWAN-TE opti-
mizes, it simply reserves more bandwidth in existing tunnels,
or creates new and destroys unused tunnels. On the other hand,
RSVP-TE signals new tunnels with incremental bandwidth
reservation, which it combines less frequently. Second, RSVP-
TE requires a full mesh of label switched paths between nodes,
but ONEWAN-TE only creates tunnels for nodes within a ge-
ography, and inter-geography flows reuse the intra-geography
tunnels.

Steering routes scale with number of endpoints, and traffic
engineering routes scale with number of backbone nodes.
Both forwarding information bases of routes (FIB) have small
sizes even for a large network. Time to update the FIB is

affected by the round-trip distance between the controller and
router, and the number of routes in the FIB (see Figure 10).

Class based forwarding. An objective of ONEWAN-TE is
to use underutilized links on longer paths for replication or
backup traffic which are marked as scavenger traffic class but
use diverse shortest paths for best-effort and higher traffic
classes. ONEWAN agent installs the egress site label route
with an intermediate policy lookup that is indexed by traffic
class to change from default class WCMP to a class specific
WCMP. Figure 11 shows that ONEWAN-TE assigns 55% of
scavenger traffic to longer paths. Differentiated paths decrease
scavenger drops due to microbursts in higher traffic classes.
When best-effort and scavenger queues use weighted round-
robin queue scheduling, differentiated paths also decrease
best-effort transient drops due to scavenger microbursts. Fig-
ure 12 shows the successful transmission rate SLO for best-
effort and scavenger traffic classes for a 3-month period in
2022.

0 500 1000 1500 2000 2500

Time in milliseconds

0.0

0.5

1.0
C

D
F

Time to update a device FIB

TE

Steering

Figure 10: Per-device FIB update times for steering and TE routes.
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Figure 12: Successful transmission rate SLO for best-effort and
scavenger traffic classes for a 3-month period in 2022.
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5 Traffic Engineering Optimization

The ONEWAN TE optimizer has two inputs – predicted traf-
fic matrix (TM) (described in § 6) and dynamic topology. A
traffic trunk is an aggregate traffic flow from a source back-
bone router to a destination site for a specific traffic class, and
the traffic matrix is a collection of predicted bandwidths for
traffic trunks. The dynamic topology consists of sites, nodes
and links. Nodes and links have tens of different attributes, in-
cluding interface addresses, device role, link operational band-
width, bandwidth reserved for RSVP-TE, link metric, whether
a link or node should be avoided due to maintenance activity,
and link reliability information. Each node is associated with
a site, and all nodes in a site are equivalent destinations for a
traffic trunk destined to the site. The TE optimizer operates in
two phases: path computation phase and optimization phase.

In the path computation phase, we perform online compu-
tation of paths on the dynamic topology for all traffic trunks
using efficient path finders (§ 5.1). We compute enough paths
to enable the optimization phase to have adequate choices
when allocating traffic.

In the optimization phase, the priority fairness optimization
solver (§ 5.2) allocates traffic trunks to paths using the path
formulation of multi-commodity flow problem. The TM is
divided based on the traffic class of trunks and each traffic
class is optimized differently. The priority fairness solver
allocates demands of high priority trunks (best-effort and
higher traffic classes) with the objective of minimizing the
cost-bandwidth product. In contrast, it allocates low priority
scavenger traffic trunks with the goal of minimizing maximum
link utilization. The rationale to minimize maximum link
utilization objective for low priority traffic is to decrease
congestion drops in the scavenger class from microbursts
in higher traffic classes, and to allow bandwidth broker [14]
to serve more requested bandwidth using under-utilized links.
High priority users expect the best latency the network can
offer.

The priority fairness solver chains four solvers, max-min
fairness, minimize cost, minimize maximum utilization, and
diverse path, in different combinations based on traffic classes.
The inputs to all solvers are paths computed in the first phase,
TM, and upstream solver constraints.

5.1 Path computation

Path finders in ONEWAN implement techniques for exploring
paths in the network topology. Over the years, we have de-
veloped many path finders. Today, we accumulate paths from
two paths finders in ONEWAN— penalizing and maximum
flow path finders. The union of paths from the two finders has
a mix of diverse shortest and maximum flow paths.

The penalizing path finder returns risk diverse paths with
policies to never reuse a risk group for paths between the same
source–sink pair or reuse only if necessary. Risk group is an

identifier for shared optical infrastructure used by two or more
links. A link can have zero or more risk groups. The finder
uses Dijkstra’s algorithm by setting link weights to penalties
for risk groups used in previous shortest paths. Penalties are
either infinity or a large value like the sum of all edge weights.
The first path returned by the solver is the shortest path. Each
subsequent path is the shortest path in the graph with modified
weights. The finder operates on a graph where the risks groups
have been expanded into virtual links (see Figure 13 (a)).

The maximum flow path finder uses maximum flow algo-
rithms [11] and converts the augmenting paths into network
paths. Link bandwidth is set to the reservable bandwidth for
ONEWAN-TE. Link distance is not used in this finder.

Recall from § 3 that traffic engineered routes are not to indi-
vidual routers, but to a group of routers in the destination site.
Therefore, ONEWAN path finders compute paths from source
nodes to destination sites using the technique of sink aggrega-
tion. In sink aggregation, we add a super sink node (ss) to the
graph and connect sink nodes to it using directed edges of zero
weight and infinite bandwidth (see Figure 13 (b)). Sink aggre-
gation reduces the number of paths that ONEWAN-TE needs
to allocate traffic on. Work is further reduced by computing
paths only for source-sink pairs in the traffic matrix, instead
of all pairs of nodes. This is called TM-aware source sinks.
Figure 14 shows that these techniques reduce the path counts
by a factor of 30. The resulting speed-ups extend into the op-
timization phase because fewer paths mean fewer columns in
the linear programming constraint matrix. The average time
to compute paths in ONEWAN is only 5 seconds.

s t{a,b,c}

s t{a} {b} {c}
ss

0/∞

5
5

(a) Risk group virtual links (b) Sink aggregation

(c) ONEWAN intra-
site cross links

Figure 13: Path computation: (a) penalizing path finder expands risk
groups to virtual links, (b) sink aggregation finds paths to all nodes
in a site in the same exploration using a super sink, (c) cross-links
within a site complicate k-shortest path exploration.

Why does ONEWAN not use k-shortest paths? Path com-
putation using maximum flow algorithms works better than
k-shortest path algorithms on the ONEWAN topology. This
is because ONEWAN sites have a Clos or cross-link structure
that requires k to increase exponentially with the number of
inter-site hops (see Figures 3 and 13 (c)). There is dissimilar
link bandwidth and cost for nodes in a site that make optimiza-
tions difficult. Switching from k-shortest paths to maximum
flow algorithms gave a significant boost in path choice and
speed.
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Figure 14: Path count reduction when paths are computed for traffic
matrix aware source sinks and aggregated by sink nodes in a site.

5.2 Priority fairness solver

The priority fairness solver assigns priorities to traffic trunks
based on their traffic class. Best-effort and higher traffic
classes map to priority 0 (highest) and scavenger traffic class
trunks are priority 1. Cloud network operators set a committed
data rate for each priority. Committed data rate is the mini-
mum percentage of link bandwidths guaranteed to a priority.
If excess network bandwidth is available for use, traffic trunks
receive more than the guaranteed allocation in priority or-
der. By pre-committing link bandwidths based on priority, we
ensure that lower priority trunks do not starve in the network.

The priority fairness solver runs in two stages. In the first
stage, starting with the highest priority, it sets link bandwidths
in proportion to the committed rate of the priority. This ex-
cludes the bandwidth committed to lower priorities, guarantee-
ing that lower priority demands are not starved for bandwidth.
The fairness solver then allocates bandwidth for demands in
this priority. It repeats this process for each lower priority
demand set and accumulates all the downstream solver results
into a single priority-aware solver result.

During the second stage, the solver walks through each
set of demands in a priority and identifies fully satisfied de-
mands. These demands are marked as frozen. For unsatisfied
demands, it adds the credit allocated in the first stage back
to the available link bandwidth. Adding the credits back to
the links enables these demands to be run again as if none
were allocated. In the first stage the demands were limited to
available bandwidth after excluding committed rates of lower
priorities. In this stage, unused committed rates are available
and can be used for unsatisfied or partially allocated demands.

Solver chaining. ONEWAN-TE has multiple objectives. It
allocates priority 0 traffic to achieve max-min fairness and
minimum cost using a diverse set of network paths. It allocates
priority 1 traffic to achieve max-min fairness and minimize
the maximum link utilization. The priority fairness solver
achieves these TE objectives by chaining multiple solvers to
compute traffic allocations. Traffic allocations from upstream
solvers in the chain constrain the solution space of subsequent
solvers, achieving one TE objective per link of the solver
chain. Solver chaining breaks ONEWAN’s TE problem into
reconfigurable linear programming (LP) steps. The priority
fairness solver (see Figure 15) uses four solvers. For brevity,

Priority fairness

Max-min fairness

Max ∑i xi s.t.

l≤
[

D
L

]
x≤ u

Multiple iterations

Max-min fairness

Min-cost

Min ∑i cixi
Update lD,uD

Diverse path

Min ∑i cixi
Add ε≤ xi, i ∈ P∪Q
(from Algorithm 1)

Min-max-util

Min xz s.t.
Update lD,uD

Add ∀ℓ ∈ {links}
bℓxz− ∑

i uses ℓ
xi ≥ aℓ

pri 0 pri 1

x̂

x̂

x̂

Figure 15: The priority fairness solver reserves bandwidth for traffic
classes based on their priorities. It then invokes the chain of max-min
fairness, min-cost and diverse path solvers for high priority traffic.
High priority traffic does not consume bandwidth reserved for low
priority traffic. After allocating high priority traffic, it invokes the
max-min and min-max util solvers for lower priority traffic. Unused
bandwidth after both high and low priority chains is made available
for unmet demands in the second round of priority fairness solver.

we omit a detailed discussion of the optimization problems
in the solvers, previously described in [3, 14, 19, 27]. x has an
element for each path and its solution x̂ is the allocation of
bandwidths requested by trunks to paths. The solvers share a
common core of demand and link constraints (D,L).
Chain of solvers. The Max-min fairness solver optimizes
throughput using approximate max-min fairness. It uses mul-
tiple iterations of maximizing throughput with adjustments to
demand constraint bounds. Min-cost solver uses the solution
of max-min fairness to minimize the dot product of cost and
allocations. For ONEWAN-TE, cost ci is path metric, which is
the sum of link metrics. It uses the solution of the max-min
fairness to adjust the bounds in demand constraints. Diverse
path solver solves the same objective but with diverse path
constraints described in § 5.3. Priority 1 trunks are optimized
with max-min fairness using the residual link capacity after
deducting the allocations of priority 0. Min-max-utilization
solver uses the upstream solution to adjust the bounds in de-
mand constraints. To minimize maximum utilization with
a linear objective, it adds a new variable xz that represents
maximum utilization, and utilization constraints where aℓ is
previously allocated link bandwidth and bℓ is link capacity.
LP solvers. ONEWAN integrates two LP solvers, CLP [5]
and GLOP [12]. They provide a 5× speedup over the original
solver used in SWAN. We achieve additional speedup by reduc-
ing the constraints sent to the solvers: the use of destination
sites reduces the number of paths, and therefore columns in
the constraint matrix are reduced 7-fold (§ 5.1). The biggest
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gain in constraint reduction was achieved by pruning small
traffic trunks that are under 500 Mbps. This decreased the
constraint matrix rows and columns by factors of 5 and 7
respectively. The small trunks represent only 2.5% of net-
work traffic (described in § 6.2) and get optimized within five
minutes of growing large. Practicality of using LP solvers
also depends on settings: dual simplex is superior to primal
simplex for our LP models. Furthermore, pure cycling is pos-
sible as the max-min fairness models have high degeneracy —
many columns are the same because the non-zero elements
in the constraint matrix and the cost vector coefficients are 1.
Cost perturbation is used to jiggle the values out of cycles.

5.3 Diverse path solver

A collection of paths is risk diverse if the intersection of risk
groups of all paths in the collection is an empty set. ONEWAN
applies diverse path protection to best-effort and higher traffic
classes. In the ONEWAN-TE solver chain, the diverse path
solver computes diverse paths using the primary paths from
the min-cost solver. The goal of the diverse path solver is to
decrease transient congestion in the interval between local
and global repairs. ONEWAN agents perform local repair at
the ingress router and ONEWAN controllers perform global
repair based on the new topology. Spreading traffic on mul-
tiple paths without considering risk diversity can result in
transient packet loss due to route blackholes or congestion
since local repair is forced to use IS-IS routes.

The diverse path solver uses a greedy weighted set cover
to find the minimum weight set of diverse paths that protects
the shared risks in primary paths. Algorithm 1 outlines di-
verse path constraint generation. The WEIGHT function is
configurable. Diverse paths can be configured to not exceed
the primary path latency by a configurable jitter threshold,
or diverse paths with more residual bandwidth can be pre-
ferred. We define jitter as a normalized ratio of path latencies,
(max−min)/

√
min. Since high priority users expect the best

latency in non-failure conditions, diverse paths with excess
jitter are excluded. The diverse path solver re-solves the mini-
mum cost objective with diversity constraints (see Figure 15).
Diverse paths usually get the smallest possible weight since
using them pulls the solution away from the minimum cost
solution.

Figure 16 shows the percentage of total traffic on risk
diverse paths. Without diverse path solver, any diversity is
purely accidental, and was measured at 10%. When the agent
only supported primary tunnels, jitter threshold of 5 was used
to not adversely impact the latency of flows using the diverse
paths. This constrained the choice of diverse paths and risk
diverse traffic percentage was 75%. Once the agent imple-
mented primary-backup tunnels, the jitter threshold was not
required, and the protected traffic increased to 99%. The re-
maining 1% is due physical constraints on diversity of optical
circuits.

Algorithm 1 Adds diverse path constraints

1: procedure DIVERSITYCONSTRAINTS(P,U)
P is the set of primary paths.
U is the set of computed paths.

2: risks← SHAREDRISKS(P)
3: ss← SOURCESINKS(P)
4: candidates← PATHS(U,ss)\P
5: for all q in candidates do
6: protect[q]← risks\SHAREDRISKS(q)
7: residual← residual bandwidth of q
8: jitter← latencies of q and P
9: w[q]← WEIGHT(residual, jitter)

10: end for
11: Q←WEIGHTEDSETCOVER(protect,w)
12: for all i in P∪Q do
13: ADDCONSTRAINT(ε≤ xi)
14: end for
15: end procedure
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Figure 16: Percentage of total traffic on risk diverse paths in a typical
day. 10% of the traffic is protected without diverse path solver, 75%
with jitter threshold, and 99% without jitter threshold.

6 Measuring WAN Traffic Matrices

The traffic matrix (TM) is a key input to the traffic engineering
optimizer. A traffic trunk is an aggregate traffic flow from a
source backbone router to a destination site for a specific traf-
fic class. There are four primary traffic classes in ONEWAN:
voice, interactive, best-effort, and scavenger. The WAN TM is
a collection of traffic trunks and bandwidths for each trunk. A
trunk’s bandwidth can be a requested value for discretionary
traffic, a measured value for Internet or non-discretionary traf-
fic, or a prediction based on measured values. Bandwidth bro-
ker is a service that measures discretionary traffic at sending
hosts and aggregates it into trunk-level requested bandwidth.
The input to the traffic engineering optimizer is the complete
traffic matrix that is a combination of the requested TM and
predictions based on the measured TM.

Measured TMs are computed by sampling packets as they
enter the WAN. SWAN sampled traffic using sFlow [30] at
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backbone routers. On the other hand, ONEWAN sampled
traffic using IPFIX [33] at aggregation routers. The sampling
point and technique were dictated by which router exported
the fields required for identifying traffic trunks. Flow record
attributes such as sampling router address, input and output
interfaces, BGP next hop, traffic class, and packet 5-tuple are
used to identify the traffic trunk. ONEWAN required a high
throughput data pipeline to process flow records from a larger
number of devices at a faster sampling rate compared to
SWAN. Since ONEWAN-TE re-optimizes traffic allocations
every 5 minutes, TMs are measured at short, minute-level
timescales.

aggregation
router

backbone entering
interface

IPFIX
collectors

IPFIX records

Primary
data stream

Secondary
data stream

Flow
collectors

Demand
predictor

ingest gRPC traffic
matrix

Figure 17: ONEWAN’s high throughput data pipeline for TM mea-
surement. Aggregation routers export flow information to IPFIX

collectors which process and store them in redundant data streams.
Flow collectors query the data stream to compute bandwidths of
traffic trunks. The demand predictor predicts the complete TM.

Challenges in measuring anycast traffic volumes. A large
fraction of the traffic in CORE is anycast — traffic towards
destination prefixes advertised by multiple sites in the WAN.
Anycast traffic is routed to the router nearest to the source
router using standard BGP path selection rules. Correctly iden-
tifying the destination of an anycast traffic trunk requires
knowledge of the BGP route lookup result, which is different
for each source. One way of solving this in software is to
acquire copies of the routing tables of all aggregation routers
and replay the route lookup. To avoid the overhead of copy-
ing tables and replaying routes, ONEWAN leverages IPFIX
sampling where routers store the route lookup result in the
BGP next hop attribute of IPFIX flow records.
IPFIX data pipeline to measure traffic matrices. In Fig-
ure 17, aggregation routers sample one in 4,096 IP packets,
and export flow records using anycast to the nearest IPFIX
collector cluster. The IPFIX collectors write the statistics to
redundant data streams. Flow collectors query the data stream
for flow records from aggregation routers to the connected
backbone routers and build a traffic matrix. They also iden-
tify and tag discretionary traffic in the measured TM to help
in combining with the requested TM. The demand predictor
aggregates traffic matrices from all collectors and uses lin-
ear regression and autoregressive moving average models on

measured TMs to make predictions.

6.1 Error correction in measured TMs
We calculate the accuracy of traffic matrices measured us-
ing aggregations of IPFIX data against packet counters like
interface counters, output queue counters, and RSVP-TE used
bandwidth counters. Early versions of the IPFIX data pipeline
had issues like invalid or missing attributes in flow records
e.g., missing BGP next hop attribute for IPv6 flows, or incor-
rect egress interface in certain flows. We detected and fixed
such issues over time.

Flow record exporters use UDP, even though it is unreliable,
because it needs less router resources. Hence, it is important
that the data pipeline does not lose flow records due to traffic
surges, unequal load distribution, or systemic or fault induced
capacity crunch. The first generation of the data pipeline
was lossy. The second generation of the pipeline used gRPC
streaming from the data stream to the flow collectors (see
Figure 17) and was not lossy. While operating with the first
generation, we developed an error correction that gave simi-
lar results as the second generation. Since there is potential
of failures in any pipeline, we outline the error correction
technique used to improve reliability of our TM estimation.

We define the interface error rate as the ratio of input in-
terface bit rate on the backbone entering interface measured
by SNMP and calculated by IPFIX. Values greater than one
indicate underestimation, and less than one indicate overesti-
mation by IPFIX. The flow collector continuously calculates
interface error rate, and scales the IPFIX measured bandwidths
of individual traffic trunks in proportion to the interface error
rate. The flow collector scales the bandwidth of each trunk
separately based on its input interface error.

6.2 Traffic matrix characteristics
Figure 18 (a) shows typical diurnal and weekly traffic patterns
seen in service provider networks. Interestingly, the number
of traffic trunks in ONEWAN is 8× the trunks in SWAN due
to the doubling of source backbone routers, and increase in
destination sites in ONEWAN.

In Figure 18 (b), 82% of trunks are under 100 Mbps and
represent 1.3% of total traffic in WAN. The small trunks are
uniformly distributed across the network, consist of many flow
types, and do not pathologically contend for specific links.
We take advantage of this distribution to speed up traffic
engineering optimization by letting the smallest trunks go
unengineered.

In Figure 18 (c), trunk distance is calculated based on fiber
distance of the shortest path from source to destination. The
largest traffic trunks have source and destination close to each
other. 25th-percentile by distance is 95% of total traffic. We
use this to define ONEWAN geographies such that 75% of
the WAN traffic is intra-geography.
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Figure 18: Traffic matrix characteristics for a typical week: (a) count of trunks by time of day, (b) distribution of trunks by bandwidth, (c)
distribution of trunks by normalized fiber distance from source to destination.

7 Operational Experience

In this section we share lessons learned from the unification
of SWAN and CORE networks into ONEWAN.

Traffic migration. We migrated traffic from RSVP-TE to
ONEWAN-TE in the production network. So, it was important
to perform this migration in a hitless manner. We used steering
routes to migrate traffic from a specific set of source routers to
another specific set of endpoints. We began by migrating traf-
fic that was sourced and destined within the same geography
because the configuration changes required for this are local
to that geography. We used RSVP-TE maximum reservable
bandwidth configuration on routers to control the percentage
of link bandwidth made available to ONEWAN-TE. Initially,
ONEWAN-TE had a small fraction of link bandwidth, sufficient
to initiate traffic migration. We gradually increased ONEWAN-
TE traffic and reduced the RSVP-TE maximum reservable
bandwidth until RSVP-TE configuration could be entirely re-
moved from the router.

Merging IS-IS routing domains. Merging the SWAN and
CORE IS-IS domains posed a high risk for SWAN routers,
whose IS-IS would observe a 7-fold increase in link state
advertisements after the merge. IS-IS uses backoff timers to
pace the shortest path first (SPF) execution. The purpose of
backoff timers is to react quickly to the first few events but
under constant churn, slow down to prevent the router from
collapsing. The interactions of TE extensions still using IS-IS
with interoperability issues caused IS-IS SPF to be persistently
in backoff state slowing convergence. This prompted the de-
sign change to make ONEWAN-TE tunnel probing completely
independent of IS-IS by using controller routes to return from
the tunnel destination to the tunnel source (§ 4).

Cost savings with ONEWAN. ONEWAN brings the benefits
of SDN TE to Internet traffic which was previously managed
by RSVP-TE in the CORE network. SDN TE is known to make
efficient use of network capacity, thereby reducing the need
for capacity augmentation in the network. In Figure 19, we
compare projected capacity augments needed with ONEWAN
vs. SWAN + CORE to meet the organic traffic growth. We ex-
pect to reduce capacity augments by 10% of current installed

capacity in the next few years, which is of significant value
for the size of our network. This does not include savings on
inorganic growth like building new regions.
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Figure 19: Reduction in capacity augments with ONEWAN com-
pared to SWAN + CORE as a percentage of current installed capacity.

8 Related Work

We are the first to apply SDN techniques to replace RSVP-TE
in an Internet backbone. SDN based traffic engineering was
first used in inter-datacenter networks [9,14,15,17,20,24,25].
An inter-datacenter network has fewer points of presence,
simpler scaling requirements, and easily built from scratch.
We show that the challenges of scalability, reliability, feature
parity, and migration can be overcome and replace RSVP-TE
in an Internet backbone. This leads to unification of the cloud
network with a single SDN controlled backbone.

SDN controllers for Internet peering have been discussed
in [4, 7, 13, 34, 35, 37]. They tackle an important adjacent
problem of Internet traffic engineering at the peering edge.
These controllers enable performance-aware egress peer se-
lection and inbound traffic engineering between autonomous
systems. Our work focuses on the dynamic path selection
and load balancing of this traffic between the peering edge
and the end host in a datacenter, as it transits the backbone
within the autonomous system. Microsoft peering edge uses a
similar SDN controller that is outside the scope of this paper.
ONEWAN controllers measure peering traffic and adapt the
backbone to the needs of the peering edge traffic.

Traffic matrix estimation through models and link data
have been studied in [8, 26, 32, 38]. In our experience, direct
measurement of traffic matrices is, unfortunately, necessary
for online TE in operational networks. We extend prior work
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with an evaluation of our IPFIX sampling based measurement
system, and present data on real world traffic matrices.

Prior work [14, 18, 23] states that programming end-to-end
paths in WANs takes minutes, and the size of tables to store
traffic engineering rules is a constraint. Our work shows that
network updates take seconds, even in very large networks. A
key reason for this difference is that prior work used TCAM-
based policy engines that are flexible but limited resources,
and our work uses IP and MPLS lookup tables, which are op-
timized and large even in commodity switches, and program-
ming in parallel using make-before-break semantics. Path
selection is usually done offline [6] and load balancing over
selected paths is online. In ONEWAN-TE, both are done online
using the dynamic topology and traffic matrix. Traffic engi-
neering is studied as the optimization of one objective like
minimizing link utilization [36]. ONEWAN-TE optimizes each
traffic class with different objectives, and uses class based for-
warding to achieve the intent in the data plane. [1, 25] study
the TE problem with faults. ONEWAN-TE formulation is tuned
for a larger network. It protects faults at the granularity of
optical risk groups and balances the opposing requirements
of proactive fault protection without increasing latency in
non-failure conditions.

9 Conclusion

Our journey with using SDN for traffic engineering has com-
pleted a full circle. SDN-TE technology matured in our net-
work while managing inter-datacenter traffic, and has now
replaced legacy TE in the Internet backbone. ONEWAN repre-
sents a 1000× increase in traffic volume and a 100× increase
in network size compared to SWAN a decade ago. Some key
elements of SWAN have withstood the test of time. For exam-
ple, traffic engineering optimization retains the same structure
and formulation. We still use router agents on WAN routers
which run on multiple firmware operating systems, but have
modified them to deal with greater scale and functionality.
ONEWAN brings the benefits of smaller fault-domains from
BLASTSHIELD to the Internet backbone, making it more reli-
able. We hope ONEWAN expands the scope of future work in
wide-area TE, standardization of the controller-agent program-
ming abstraction, and analysis of traffic matrix characteristics
of cloud WANs. ONEWAN marks the progression of SDN
into an Internet backbone. It is driven by scaling our backbone
to serve today’s users. We continue to expand the roles and
functionality of ONEWAN as new opportunities emerge with
the growth of network demands.
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