
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

ExoPlane: An Operating System for On-Rack
Switch Resource Augmentation

Daehyeok Kim, Microsoft and University of Texas at Austin;
Vyas Sekar and Srinivasan Seshan, Carnegie Mellon University
https://www.usenix.org/conference/nsdi23/presentation/kim-daehyeok

ExoPlane: An Operating System for On-Rack Switch Resource Augmentation

Daehyeok Kim†‡ Vyas Sekar§ Srinivasan Seshan§

†Microsoft ‡University of Texas at Austin §Carnegie Mellon University

Abstract
The promise of in-network computing continues to be unreal-
ized in realistic deployments (e.g., clouds and ISPs) as serving
concurrent stateful applications on a programmable switch is
challenging today due to limited switch’s on-chip resources.
In this paper, we argue that an on-rack switch resource aug-
mentation architecture that augments a programmable switch
with other programmable network hardware, such as smart
NICs, on the same rack can be a pragmatic and incrementally
scalable solution. To realize this vision, we design and im-
plement ExoPlane, an operating system for on-rack switch
resource augmentation to support multiple concurrent applica-
tions. In designing ExoPlane, we propose a practical runtime
operating model and state abstraction to address challenges in
managing application states correctly across multiple devices
with minimal performance and resource overheads. Our eval-
uation with various P4 applications shows that ExoPlane can
provide applications with low latency, scalable throughput,
and fast failover while achieving these with small resource
overheads and no or little modifications on applications.

1 Introduction
While recent efforts have demonstrated the feasibility of using
programmable switches to implement network functions, such
as NATs, firewalls, and load balancers (e.g., [4, 38, 46]) and
to accelerate distributed systems (e.g., [43, 44, 52, 55]), there
is still significant apprehension from practitioners whether
in-network computing is ready for prime time. In many ways,
this apprehension is justified as serving concurrent stateful
applications in production-scale clouds and cellular networks
is not possible today or in the foreseeable future. The fun-
damental issue is that due to limited on-chip resources (e.g.,
10s MB of SRAM), these switches cannot keep up with the
increasing number of stateful applications [33, 39] which op-
erators want to run on a switch and the demand to handle
heavier workloads in terms of traffic volume and flows [8,26].

Instead of arguing for beefing up the switch ASICs or cre-
ating hyper-optimized applications, we explore a pragmatic
alternative and make a case for on-rack switch resource aug-
mentation architecture. We envision a deployment that con-
sists of a programmable switch, other data plane devices (e.g.,
smart NICs [7, 11, 14, 18], and software switches running on
servers [19, 56]) connected to the switch on the same rack.
These external devices offer more resources to offload state-
ful packet processing, albeit with some performance penalty.

Perhaps more significantly, they offer a path to affordably and
incrementally scale the effective capacity of a programmable
network to handle future workload demands.

To effectively realize this vision of on-rack switch resource
augmentation, we argue that we need an operating system
(OS) to manage resources spread across multiple on-rack
devices. To borrow from Anderson and Dahlin [21], we can
draw a first-principles analogy to the three roles that any OS
serves: (1) a “glue” to provide a set of common services that
facilitate the sharing of resources among applications; (2) an
“illusionist” to provide an abstraction of physical hardware to
simplify application design; and (3) a “referee” for managing
resources shared between multiple applications. While there
is some recent work on mapping a single switch application to
heterogeneous devices or to augment memory (e.g., [30,40,42,
54]), these fundamentally do not tackle multiple concurrent
applications or provide these capabilities.

However, realizing such components in our context is
uniquely challenging because of hardware and workload char-
acteristics. More specifically, we observe that managing states
correctly while minimizing the performance and resource
overhead is difficult, especially under high packet processing
speed and dynamically changing workloads. In our setting,
application states can be placed, and workloads (i.e., packets)
can be executed on multiple devices. Thus, state management
becomes critical for application correctness (e.g., accessing
incorrect state), performance (e.g., high packet processing
latency due to inter-device communications), and resource
overhead (e.g., additional switch resources).

In designing ExoPlane,1 an OS for switch resource aug-
mentation, we address these challenges as follows:
• Runtime service (the glue): To avoid frequent inter-device

communications during packet processing, we propose
a packet-pinning operating model that guarantees that a
packet is processed entirely on a single device.

• State abstraction (the illusionist): To enable correct stateful
processing of packets even under dynamically changing
workloads, we design a two-phase state management that
places application states correctly on different devices as
the workload changes. We also design appropriate levels
of consistency for different types of stateful objects that
appear in applications.

1The name denotes an external (exo-) data plane.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1257

Applications States

Per-tenant VPN gateway +
Packet counter

Ext.-to-int. tunnel mapping and processed
packet counter for each tenant.

Per-tenant NAT Per-flow address mapping for each tenant. Per-
flow address mapping for each tenant.

Per-tenant ACL + Filtered
packet counter

Per-flow ACL and dropped packet counter for
each tenant.

Sketch-based monitor UnivMon [45] for remaining traffic classes.

Table 1: P4 applications deployed in a gateway switch of the data
center in our motivating scenario.

• Resource allocation (the referee): To achieve performance
and policy goals specified by developers and operators, we
formulate and solve an optimal resource allocation prob-
lem that accommodates heterogeneity across applications
and data plane device capabilities.
ExoPlane consists of two key components: the planner

and runtime environment. The planner takes multiple P4 [25]
applications written for a switch with no or little modifications
and optimally allocates resources to each application based
on inputs from a network operator and developers. It requires
developers to add application-specific logic using our APIs
only if the program contains an object that can be updated
in the data plane. Then, the ExoPlane runtime environment
executes workloads across the switch and external devices by
correctly managing state, balancing loads across devices, and
handling device failures.

We implement the planner in C++, the data plane of the
runtime environment in P4, and the control plane of the
runtime environment in Python and C++. We evaluate it
using various P4 programs in our testbed consisting of a
Tofino-based programmable switch [9] and servers equipped
with Netronome Agilio CX smart NICs [7]. Our evaluations
show that ExoPlane achieves low latency (e.g., ≈300 ns at
the switch and 5.5 µs at an external device in steady-state)
and scalable throughput with more external devices (e.g., up
to 394 Gbps, the maximum rate in our testbed). In case of
an external device failure, ExoPlane can recover an end-to-
end TCP throughput within 200 ms. ExoPlane achieves these
with small control plane (a few tens MB) and switch ASIC
resource overheads (less 4.5% of ASIC resources).

2 Motivation and related work
In this section, we motivate the need for supporting multiple
concurrent stateful applications in the network, provide a
primer on in-switch stateful applications, and discuss why
prior work falls short.

2.1 Motivating example
We observe two key trends in in-network computing that
increase demands on switch resources. First, the number
of applications that need to run concurrently will likely in-

104 105 106 107

Number of flows

0.1

1.0

10.0

N
or

m
.

S
R

A
M

re
q

.

Infeasible

(a) Four applications with varying
numbers of flows (log-scaled).

1 2 3 4

Number of applications

1

2

N
or

m
.

S
R

A
M

re
q

.

Infeasible

(b) Varying number of applications
with 1 million flows.

Figure 1: SRAM requirements (normalized to the total amount of
SRAM on a switch) with varying workload sizes and numbers of
applications. If the requirement > 1, it is infeasible.

crease [33,39]. Second, the per-app workload size in terms of
traffic volume and the number of flows keeps growing [8, 26].

As a concrete example, suppose a cloud or cellular operator
wants to deploy four applications in Table 1 on the edge router
(e.g., [47, 49]) processing traffic entering/leaving the network.
Each application maintains per-flow states for each tenant to
enable virtual private networks (VPN gateway), route traffic
from tenants’ on-premise networks to VMs running services
(NAT), or control access to services running on tenants’ VMs
(ACL). The sketch-based monitor collects statistics for the
remaining traffic classes using an UnivMon sketch [45]. To
see if/how these applications can coexist, we implement them
in P4 or use source code from the original authors, compose
them into a single P4 program using our merger (described
in §6) and compile the result using the Tofino P4 compiler.

Unfortunately, we find that enabling these applications
concurrently in a switch is infeasible for typical work-
loads, which requires the support of at least 1M concurrent
flows [28, 46, 47], as shown in Fig 1. We consider two scenar-
ios: (a) running all four applications but varying numbers of
concurrent flows per application and (b) fixing the number of
flows to 1M but adding applications incrementally. Here, we
use SRAM requirements from each application, normalized
(due to vendor NDAs) to the total amount of SRAM on a
switch, which is the bottleneck resource in our scenario. In
Fig 1a, we see that as the workload increases, it becomes in-
feasible to run all the applications. Similarly, in Fig 1b, we
see that the switch can support only a single application.2

2.2 Stateful switch applications
Before we discuss why prior work cannot tackle the above
problem, we provide a brief primer on stateful in-switch ap-
plications, where a state on the switch determines how to
process packets. A typical program (p) contains one or more
stateful objects (oi), each of which can be represented as a P4
construct [25] such as a match-action table and a register.3

Each object contains state data in the form of key-value pairs
((Koi ,Voi)) and actions. For example, a register in P4 consists

2In Fig 1b, adding the 4th app does not increase the SRAM usage much
because the sketch’s SRAM usage is independent of the number of flows.

3While our focus of this paper is on P4, other programming languages
for programmable switches such as NPL [15] provide similar constructs.

1258 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Control Plane Program

Key: SrcIP
Val: 4B int.

Pkt Counter (o2)

Key: 5-tuple
Val: Bool

Stateful FW (o1)

Key: dstIP
Val: Port #

Forward (o3)

❶

❸❷

Packet

P4 program (p)

❹

Figure 2: An abstract P4 application and runtime model. An ap-
plication consists of multiple stateful objects (white boxes) and the
control plane logic (blue arrows).

of a data array and actions that access the array. Fig 2 shows
an example stateful P4 program (p) with three objects (o1–o3).
Each object requires some amount of memory (e.g., SRAM)
for state data and compute resources (e.g., stateful ALUs
(SALUs)) for actions. The vendor-provided compiler (e.g.,
Tofino P4 compiler) allocates resources to each object using
proprietary heuristics; if it cannot find a feasible allocation,
the compilation will fail.

Once the program is successfully compiled and loaded to
a pipeline, it can process incoming packets using its stateful
objects; e.g., the firewall application in Fig 2 tracks active
connections and drops unwanted packets from the Internet
that do not belong to active connections. At runtime, the
control plane logic can access the objects in the data plane
(e.g., inserting a new entry to the stateful FW object). Note
that in the current switch architecture, inserting and deleting
entries from a match-action table can be done only via the
control plane. From the data plane, a packet only can look up
an entry from the table. Registers can be read and updated by
both the data and control plane. For example, in Fig 2, when
a packet from an internal network comes in and if a state miss
occurs at the stateful FW (1), it reports the packet to the
control plane program (2) that inserts new entries for the
packet (or flow) (3). Optionally, it sends the packet back
to the data plane (4) so that it can be processed with the
inserted entries.

2.3 Prior work and limitations
At a high level, our work is related to prior efforts in switch
program composition (e.g., [32, 53, 58, 59]), recent efforts to
tackle switch resource constraints (e.g., [30,40,54]), and prior
work in the software stateful NF literature (e.g., [31,36,37,50,
57]). While these efforts are valuable, they do not tackle the
problem our motivating scenario poses—multiple concurrent
switch applications with demanding workloads.

Language and framework for application composition.
Some prior works attempt to support multiple data plane
programs or modules in a single device [32,53,58,59]. For ex-
ample, software-based virtualization approaches such as Hy-
per4 [32] and HyperV [58] allow composing multiple P4 pro-
grams with a constrained programming model. P4Visor [59]
merges different versions of a program resource-efficiently.
However, they fail to work when the amount of resources

required by the composed program exceeds the available re-
sources in the switch.

Leveraging external resources. TEA [40] provides a vir-
tual table abstraction for a single switch application to access
remote DRAM for a large lookup table. While TEA can be
extended for an application with multiple tables, it requires
multiple remote memory accesses, affecting application’s per-
formance. Flightplan [54] takes a single application written
with custom annotations and disaggregates it to multiple de-
vices. Developers need to manually partition the application
so that each device runs only a particular portion of the appli-
cation. Lyra [30] proposes a custom language for writing a sin-
gle application split across multiple heterogeneous switches.
None of these considers multiple applications.

Server-based network functions. In the context of server-
based NFs, previous work augments servers’ resources by
leveraging remote compute and storage resources, especially
to manage NF state [31, 36, 37, 50, 57]. However, they are not
directly applicable in our setting due to the workload charac-
teristics of switch applications and hardware constraints.

3 Overview
In this section, we make a case for on-rack switch resource
augmentation and discuss the challenges in realizing it.

3.1 Case for on-rack augmentation
Given the above trends and limitations of prior work, one can
consider several candidate approaches; e.g., optimizing appli-
cations to reduce resource footprint or adding more resources
to switch ASIC. While these are valid, they have limitations;
e.g., applications, even if optimized, may have high resource
usage, especially with changing workloads, and extending
switch hardware is expensive.

We explore a practical alternative and envision an on-rack
switch resource augmentation architecture consisting of a pro-
grammable switch connected to a few other programmable
external devices on the same rack. For example, we can al-
locate 2U of rack space, where a programmable switch is
located, to install a server equipped with four 100 Gbps NPU,
DPU, or FPGA-based smart NICs [6, 18, 34] connected to the
switch. While these NICs provide a lower packet processing
rate (up to a few 100s Gbps), compared to hardware switches
(a few tens Tbps), they have more resources (e.g., a few GB
of DRAM vs. a few 10s MB of SRAM) to support demanding
workloads. This architecture provides a practical deployment
solution as it takes up limited space and does not require
changes to other parts of the network.

Deployment assumptions. In this context, we assume the
following deployment capabilities: (1) A switch and external
devices located on the same rack are programmable with the
same set of P4-16 [10] constructs (e.g., tables and registers),
and we have blackbox access to vendor P4 compilers; (2)
External devices have enough memory (e.g., a few GB) to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1259

store all states for multiple applications;4 (3) Each application
handles its own non-overlapping subset of traffic, called a traf-
fic class, with no inter-app dependencies (i.e., a given packet
is processed by only a single application). This simplifies our
design for merging programs, but it is also a limitation of our
current design;5 (4) The number of switch pipeline stages is
not a bottleneck resource; and (5) Stateful objects that can be
updated in the data plane, which we call data plane-updatable
objects, only maintain mergeable statistical data (e.g., packet
counter) that do not impact the control flow.

3.2 ExoPlane architecture
While the vision of on-rack switch resource augmentation is
promising, to realize it in practice, we need to effectively share
resources available on multiple devices across multiple appli-
cations. Drawing an analogy from traditional computing [21],
ideally, we need an OS to provide an infinite switch resource
abstraction. That is, application developers and network oper-
ators can express their programs and requirements at a higher
level of abstraction without worrying about the complexities
of managing and multiplexing the resources on heterogeneous
devices. While some early efforts have leveraged resources
on heterogeneous devices for individual in-switch applica-
tions [30, 40, 54], they do not provide the OS-like capabilities
and abstractions for multiple concurrent applications.

A classical OS multiplexes multiple applications on the
limited CPU/memory by choosing when, and what processes,
to swap in/out. Our workload is a set of incoming packets
mapped to various in-switch applications. In this setting, state
management becomes especially critical to system perfor-
mance and resource overheads. To see why, let us consider
two seemingly natural strawman solutions:
• In an app-pinning model, an application is pinned to a

single device by placing the entire application states only
on that device, and thus a packet is entirely processed
on the device without requiring additional logic. In this
model, there is no additional processing latency due to
inter-device rerouting and resource overhead. However,
since the application can only run on that particular device,
its throughput and available resources are limited.

• Alternatively, we can consider a full-disaggregation model
where an application can run on multiple devices, and a
packet also can be processed on multiple devices. Since
application states can be placed on any device, it has more
available resources. However, depending on the availability
of the state, a packet needs to be routed between the switch
and the external device multiple times. Such frequent inter-
device routing increases packet processing latency and

4We acknowledge that not every P4-programmable device supports all the
features used by a switch application. According to our conversations with
vendors, they plan to add such missing features, so this is not a fundamental
limitation. Nonetheless, our design adapts such devices as well by considering
app-to-device compatibility.

5One possible approach for this is to apply offline preprocessing steps to
convert overlapping subsets into an equivalent non-overlapping set [48].

On-rack resource augmentation arch.

ExoPlane planner (§5)

P4 programs
Developer(s)

Network
Operator

•App-specific requirements
•State synchronization logic

•Profiling P4 programs
•Optimal resource allocation
•Merging P4 programs

Prog.
Switch

External
devices

ExoPlane runtime environment (§4)
•Workload placement
• Load balancing and fault handling

•Device information
•Cross-app requirements
•Objective functions Merged P4 program

Long-term
planning

Short-term
management

System input

Figure 3: ExoPlane Overview: Green boxes represent inputs and
yellow and blue boxes indicate key modules.

makes it unpredictable. This approach incurs high resource
overhead due to per-object inter-device processing logic to
route packets to a particular device and resume processing
at that object on the device. Furthermore, this approach
consumes significant link and device bandwidth.
Building on the above insights, we adopt a packet-pinning

model that pins a given packet to one device (i.e., the switch
or an external device) where it is processed entirely while
providing flexibility in placing an application and its flows on
any device. First, it can avoid frequent per-packet inter-device
routing with much lower complexity. Second, our observation
from real network traces shows that only a small fraction of
popular flows serve the majority of traffic for a given applica-
tion (e.g., 6% of flows takes more than ≈80% of an Internet
backbone traffic [20]). By placing these popular flows on
the switch, we can process the majority of the packets at the
switch, while the rest are processed at the external device.

ExoPlane implements the packet-pinning operating model
via two key components (Fig 3):
• The ExoPlane planner takes inputs from developers and

the network operator and allocates resources on the switch
and external devices to each application.

• The ExoPlane runtime environment places workloads
on devices, manages app states, and handles external de-
vice failures. In particular, at runtime, it tracks workload
changes (i.e., new flows arrive or flow popularity changes)
and updates the application’s objects at the switch and
external devices according to the changes.
As illustrated in Fig 3, to run applications on ExoPlane,

developers provide P4 program codes and app-specific re-
quirements (e.g., affinity to the switch). Note that ExoPlane
requires application modifications only if it contains a data
plane-updatable object whose copies can exist on multiple
devices. The operator provides information on devices (e.g.,
resource types), cross-app workload (e.g., traffic distribution),
and an objective function. The ExoPlane planner profiles the

1260 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

applications to determine compatibility with each device and
estimated resource usage, and performance. It then computes
an optimal resource allocation and generates a merged P4 pro-
gram. It compiles the merged program using vendor-provided
P4 compilers (e.g., Tofino compiler) and loads the binaries to
the switch and external devices. At runtime, the ExoPlane run-
time environment executes the workload (i.e., packets) across
the switch and external devices.

3.3 Design challenges
While the packet-pinning model for concurrent applications
seems promising, managing resources and application states
correctly in practical settings present three challenges:
C-1. Correctness under new flow arrivals and popularity
changes. When the traffic workload changes, we need to
update the application’s objects at the switch. We find that
this can lead to incorrect packet processing due to the slow
control plane operations. Also, when there are multiple copies
of a data plane-updatable object across devices, those copies
can be updated simultaneously. Unfortunately, it is infeasible
to adopt shared object synchronization schemes used in server-
based systems [31, 50, 57] due to hardware constraints.
C-2. Handling multiple devices and device failures. While
one can add more external devices to extend resources or
processing capacity, we find that just adding more devices
would not be effective due to possible access load imbalance
across the external devices. Also, when an external device
fails, we need to detect and react to the failure rapidly.
C-3. Meeting objectives across applications. Given multiple
applications, we have to share resources among them properly
while considering per-app and cross-app objectives provided
by an operator and developers.

4 ExoPlane runtime environment
In this section, we discuss the design of the ExoPlane run-
time environment. For clarity, we start with a few simpli-
fying assumptions—a single instance of an external device,
steady state traffic with no workload changes, no data plane-
updatable state, no device failure, and a single application.
We relax these assumptions subsequently.

4.1 Packet-pinning operating model
Recall from §3.2 that the packet-pinning model ensures that
each packet is processed at a single device only (i.e., requires
at most a single round-trip between the switch and an ex-
ternal device). Here, we load an application binary and all
the state entries on an external device with a subset of entries
loaded along with the application on the switch. As mentioned
in §3.1, an external device has a few GB of DRAM, which
is enough to store all the state entries (requiring up to a few
hundred MB for a few million entries). If there is no entry for
an incoming packet at the switch, the packet is routed to an
external device as all the state entries needed to process the
packet will be available.

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Flow 1
Flow 2
Flow 3

Key: 5-tuple
Stateful FW

Key: 5-tuple
Stateful FW

Switch data plane

External device data plane

Check if a flow
is popular

UKey: 5-tuple
Flow manager

Figure 4: Our runtime environment processes most traffic at the
switch and the rest at the external device. The green box is a per-app
flow manager, and UKey indicates the app’s union key.

However, naïvely implementing the packet-pinning model
has two potential problems. First, if we do not carefully
choose which entries to place on the switch, a high volume
of traffic will be routed to the external device, and it becomes
overloaded, limiting the throughput. Second, since an en-
try miss can happen for an arbitrary object, per-object inter-
device processing logic is needed to handle such cases. Such
additional logic incurs switch data plane resource overheads.

To tackle this, we propose a union-key based state manage-
ment to process a majority of traffic for an application at the
switch and the remaining at the external device (Fig 4). We
define a union key type (UK) for an application as the union
of key types of its constituent objects (UK =∪iKoi). A flow is
a set of packets with the same union key value. For example,
in the figure, an IP 5-tuple is the union key type, and packets
with the same IP 5-tuple form a flow.

Having defined the union key, we can use traffic workload
characteristics to enable the switch to serve the majority of
traffic for the application. Specifically, we build on the obser-
vation that the distribution of flow keys (including the union
key) is skewed in typical networks. For example, we measure
the distribution of IP 5-tuple which is the union key of our ex-
ample application, by analyzing packet traces collected from
an Internet backbone [20] and a university data center [22]
(Fig 15 in Appendix C illustrates the distributions). For both
cases, we see that a small fraction of the keys contribute to
the majority of the traffic; ≈6% of keys in the backbone and
≈10% of keys in the data center take more than ≈80% of
traffic. The skew persists across measurement epochs (5 mins
and 1 min for the backbone and data center, respectively). We
also confirm the skew exists for other coarse-grained keys
such as the source IP. This suggests that we can serve most of
the traffic at the switch by placing a few popular union keys
(e.g., 516 entries for 80% in the data center trace).

Based on this, we employ a per-app flow manager (the
green box in Fig 4 and denoted as oFM) at the switch, which
maintains a list of popular union keys for an application and
checks if the key of an incoming packet exists in the list when
it arrives. If the key exists (i.e., the packet is from a popu-
lar flow), the packet is processed at the switch. Otherwise, it
is routed and processed at the external device. This allows
for low overhead by avoiding per-object inter-device process-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1261

Key: SrcIP
Pkt Counter

UKey: 5-tuple
Flow manager

Key: dstIP
forward

Key: 5-tuple
Stateful FW

Switch control plane

Switch data plane

Flow 1

❶ ❷❻

❺

Entry deleted �
Packet dropped!

❹

❸

Figure 5: Incorrect state eviction: application’s state has been re-
moved while there is a packet being processed.

ing. Taken together, our packet-pinning model and data plane
design provide the following correctness property:

Invariant 1 (Packet-pinning model) For each application,
if the flow manager (oFM) has the packet’s union key
(UK(pkt)), the constituent objects (oi) must have entries
(Koi(pkt)) for the packet. Formally,

∀pkt : UK(pkt) ∈ oFM =⇒ ∀i : Koi(pkt) ∈ oi.

4.2 Handling workload changes
So far we assumed a steady state—(1) no new flows and (2) no
changes in flow popularity. Next, we discuss how we handle
new flows and popularity churn.
Handling new flows. When a packet belonging to the new
flow arrives at the switch, and if a miss occurs in the flow
manager, it routes the packet to the external device. There are
two cases for the miss: (1) the first packet of the new flow or
(2) a packet of an existing flow for which the flow state is not
at the switch. Since these two cases are indistinguishable from
the view of the flow manager, it always routes packets with
misses to the external device. When a packet of the new flow
arrives at the external device, it must first be processed by the
application’s control logic for handling new flow arrivals. In
our example, the stateful FW table reports the packet to the
control logic that inserts entries for the flow to three objects.
The control logic also asks the control logic running on the
switch to initialize the flow state at the switch data plane,
which can succeed only when there is a space on every object.
Depending on the application logic, the packet can be sent
back to the data plane and processed with the new entries. If
the flow state has been initialized both at the switch and the
external device, the switch will process subsequent packets in
the flow. Otherwise, the external device will process them.
Promoting popular flows. In practice, the popularity of flows
can change, and we need to promote and demote flow states
as needed. Suppose we know which flow keys become pop-
ular (i.e., their entries are currently not on the switch) and
unpopular (i.e., their entries are currently on the switch). We
discuss how we track this in §6.

When promoting a new popular flow (i.e., installing state
at the switch), there are two possibilities: (1) there is spare
space in the flow manager and application’s other objects
for new entries vs. (2) there is no room in the objects. For
(1), we can simply insert new entries to the objects. For (2),
however, we need to evict some unpopular flow to make room.

Key: SrcIP
Pkt Counter

PKey: 5-tuple
Flow manager

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

Switch control plane

Switch data plane

Flow1

❹ ❺❷

❸❶

❻

Phase 2Phase 1

Figure 6: Correct two-phase state eviction.

Doing so correctly is challenging. Fig 5 illustrates why via a
naïve mechanism can violate Invariant 1. Suppose that flow 2
becomes popular while flow 1 becomes unpopular, and there
is no room for inserting new entries. Thus, the switch control
plane tries to replace the entries for flow 1 with the flow 2’s.
It first evicts entries for flow 1 from application objects (FW,
Counter, and Forward) as well as the flow manager (blue
arrows in Fig 5). However, in the current switch architecture,
a set of eviction operations (blue arrows) cannot be executed
atomically. Thus, there could be cases where state entries have
been removed while packets are being processed in the data
plane (5), violating Invariant 1. Even if eviction is correct,
insertion can be incorrect. That is, during the time the switch
control plane tries to insert entries for a flow, packets for the
flow arrive and are looked up the flow manager. If the entry
exists, the packet must be processed completely at the switch.
However, since entries in other objects may not be available,
the packet cannot be processed and will get dropped.

Two-phase state update. To address the issues, we adopt
a two-phase state update mechanism, inspired by classical
two-phase update or commit protocols [23, 51]. As illustrated
in Fig 6, when evicting entries for flow 1, in the first phase, the
switch control plane evicts an entry from the flow manager.
Since there can be some packets being processed in the switch
data plane, it waits for a certain period (Tf lush) to flush out the
packets. Then, in the second phase, it evicts entries from the
application’s objects. This mechanism ensures that all packets
that arrive at the switch before the entry of the flow manager
has been evicted are correctly processed in the switch. When
it evicts entries from the application’s objects, it ensures that
entries for other non-victim flows will remain. The insertion
works similarly. To insert entries for a flow, in the first phase,
the switch control plane inserts entries to the objects, and then
in the second phase, it inserts an entry to the flow manager.

4.3 Synchronizing shared stateful objects
The previous discussion considers scenarios with no cross-
flow objects that can be updated at runtime, which meant
there was no need for objects on an external device and the
switch to be synchronized. In practice, applications may have
such objects; e.g., per-SrcIP packet counter in our example
is shared across flows. Next, we extend the basic ExoPlane
protocol to handle such objects.

Consistency modes. P4 programs can have two types of
stateful objects: (1) control plane-updatable object can be
updated only from the control plane, such as a match-action

1262 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 9 10 11 12 13 18
Switch
Data plane

External device
data plane

Time

3

0�2

2

1 2 3 4 7 8 9 10 18

Snapshot taken Commi�ed

7+

4+ 10+

13+

13

2�7

5

2

0�3

3

10

3�11

8

External device
control plane

Switch
Control plane

❶ Take a snapshot

❷ Compute

❸ Commit

Figure 7: Our state synchronization protocol synchronizes two
copies of an entry in the packet counter. The switch and external
device’s control plane maintain the history (H) of entry updates.

table and (2) data plane-updatable object can be updated from
the data plane, such as a register. Correspondingly, ExoPlane
provides two levels of consistency. Control plane-updatable
objects are rarely updated (e.g., a stateful firewall table entry
is inserted only for the first packet of each flow generated
from an internal network) and an exact value is critical for
correct behavior (e.g., allowing packets for an established
TCP connection). Thus, for this type, we provide a strong
consistency. In contrast, data plane-updatable objects can
be updated more frequently (e.g., per-SrcIP packet counter is
updated for every packet) in the data plane and typically do not
require strong consistency since they maintain approximate
or statistical information (e.g., packet counters and sketches).
Thus, for data plane-updatable objects, we provide bounded
inconsistency within a configurable time bound Tε (e.g., 1 s in
our prototype). As mentioned in §3.2, we consider bounded
inconsistency only for mergeable statistical stateful objects.

Supporting strong consistency for control plane-updatable
objects is straightforward; when the external device’s control
plane receives a request for updating (or inserting) an entry
to an object with a key (e.g., a SrcIP), it updates (or inserts)
all entries corresponding to the key existing at the external
device and the switch.

Bounded inconsistency for data plane-updatable objects
is more challenging. Consider the per-SrcIP packet counter
implemented using a P4 register array. Suppose that for a
given SrcIP, there are two copies placed on the switch and
the external device that can be updated simultaneously. To
achieve bounded inconsistency, the ExoPlane runtime needs
to periodically merge values of the copies. Traditional tech-
niques for state merging in server-based network functions
(e.g., [31,50,57]) are impractical in our context since they rely
on buffering incoming packets and pausing processing while
synchronizing copies. This is expensive and even infeasible
in the switch because packet rates are much higher, and we
cannot buffer arbitrary packets during synchronization.
Our approach for bounded inconsistency. We devise a state
synchronization protocol that achieves bounded inconsistency
without needing packet buffering. We do so by combining
the capabilities of both the switch and the external device’s

control and data plane. We use the control plane’s memory to
track the history of periodic synchronizations while executing
the merge operation in the data plane.

Let us revisit our packet-counter example from Fig 7. The
control plane of each device maintains per-entry metadata
including the current snapshot (SS) and a history (H) of an
entry value on the other side (i.e., the switch tracks the history
of the external device and vice versa). When there are mul-
tiple objects that need to be synchronized, the control plane
maintains metadata for each object. We discuss the overhead
of maintaining the metadata in §7.5. For every Tε seconds, the
switch control plane initiates synchronization by sending its
SS and the H, and the external device’s control plane replies
it with its snapshot and history; in Fig 7, the switch control
plane takes the snapshot of the packet counter (1) and sends
<SS=3, H=0> to the external device, and the external device
sends <SS=2, H=0> back. Then, each side computes the
changes that have been made on the other side (δ) after the
previous synchronization round by subtracting two history
values from the received snapshot value (2). This prevents a
potential under or double-counting issue. Lastly, the control
plane of both sides injects a special control packet containing
δ to the data plane to merge the changes to the latest state
value (3). Note that our protocol synchronizes the copies
of states correctly even when the external device fails and
recovers. This is because the switch maintains the progress
that the external device had made until the failure happened
(H) and provides this information to the recovered device to
resume the synchronization from the state when it failed.

Generally, our protocol supports mergeable key-value pair
states for most stateful objects implemented using P4 registers.
We provide a developer with an interface to specify object-
specific merge operators consisting of an addition (◦+) that
merges two values and an optional subtraction (◦−) operator
that subtracts one value from the other, which are used by our
protocol to compute δ and commit the update. For example, a
Bloom filter [24] can be expressed as (Key: an integer, Value:
{0, 1}) pairs with the binary OR as ◦+ (no subtraction operator
is needed). We provide a detailed pseudo-code in Appendix B.

4.4 Scaling to multiple devices
Thus far, we have assumed that there is a single external
device. However, in practice, a single device instance may
not provide enough processing capacity or resources. To use
multiple devices, ExoPlane shards entries in objects across the
devices based on the union key. When an entry miss occurs at
the flow manager, it routes a packet based on the union key to
a specific external device that has state for the key. However,
the skewness in the union-key space (§4.1) could result in load
imbalance across the devices (i.e., a subset of devices can be
overloaded). Fortuitously, the small fraction of popular entries
we already have at the switch is helpful for load balancing.
Prior analysis in storage systems shows that caching at least
O(N logN) popular entries where N is the number of backend

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1263

Device ()
Resource types ()

: Compa�bility of on

: Resource footprint of to serve on

: Per-packet processing latency on

App
profiler

P4 app code ()

: Frac�on of traffic assigned to each quantum

Figure 8: Example inputs for an application p.

servers (in our context, external devices), guarantees uniform
load balancing across the servers regardless of the skew [29].
Thus, by placing ≥ O(N logN) popular union keys at the
switch, we can provide the cache effect for load balancing.

4.5 Handling external device failures
Application state loss due to failures can affect the perfor-
mance or correctness of applications [41]. Specifically, we
consider the failure model where an external device (or its
hosting machine) fails or a network link between the switch
and the device fails.6 To deal with state loss due to such fail-
ures, the ExoPlane runtime environment replicates each flow
state to at least one additional external device when initiating
flow entries, and when the primary device fails, it falls back
to a replica. It does so by managing the logical to physical
external device ID mapping at the switch, where the primary
and replicas share the same logical ID. However, even if there
is a replica, if we cannot detect failures and route packets
to the replica quickly, the application performance can be
degraded (e.g., due to packet drops). To enable rapid failure
detection and reaction, we repurpose the packet generation
engine of the switch ASIC (which is typically used for diag-
nosis), similar to previous work [40]. We configure the engine
to generate a packet when ports go down. By processing the
generated packet, the runtime environment updates the exter-
nal device ID table in the data plane. Using the table, it can
route subsequent packets to the replica.

5 ExoPlane planner
Next, we tackle the issue of sharing resources across multiple
applications while meeting the performance objectives given
by developers and operators. The resulting ExoPlane plan-
ner consists of a resource allocator and an application merger.
The resource allocator finds an optimal resource allocation
using inputs from the developers and the network operator.
The application merger generates a merged P4 program based
on the optimal allocation decision. Fig 8 illustrates example
inputs for an ensemble of applications.

Inputs. Developers provide a set of P4 programs (p), each
of which consists of a set of stateful objects. For each object,
developers specify the required size (e.g., the number of en-
tries in a table or register). Optionally, they can also specify

6We do not consider the failure of the switch itself since in that case,
packets cannot be processed in our deployment model (§3.1) where the
switch is the single entry point of the architecture.

a high, medium or low affinity to the switch for each app. If
the affinity of an application is set to high (or low), the appli-
cation will run entirely at the switch (or at external devices).
The network operator provides cross-app and per-app traffic
information, which includes the fraction of all traffic served
by each application out of the entire traffic arriving at the
switch (Wp) and the cumulative traffic distribution (Dp) over
the union key space. While using a fraction of traffic served
by each key provides the most fine-grained information, we
find that it could make the search space for resource allocation
too large. Instead, we use the distribution discretized into a
larger quantum size denoted as Qp. Based on Dp, we compute
the estimated fraction of traffic served by each quantum q
(Fp,q). The operator also provides resource information (r)
for devices (i). This includes SRAM, TCAM, hash units, and
SALUs for a Tofino-based switch and compute units, SRAM,
and DRAM for NPU-based NICs.7

Profiler. Based on the inputs, our profiler generates per-app
profiles consisting of a resource footprint, per-packet process-
ing latency, and compatibility matrix for each device type.
The profiler estimates a resource footprint of r for p serving q
on i denoted as Rp,q,i,r. Since blackbox compilers determine
the resource usage using proprietary heuristics, our prepro-
cessor compiles p to determine Rp,q,i,r. For each q, it updates
the size of each object specified in the application code and
compiles it using vendor-provided compilers. Then it extracts
the resource usage from compiler outputs. If the compilation
fails due to insufficient resources, it sets the resource usage to
infinite. We use constants Capi,r to represent the total amount
of r available on i. The profiler also estimates a per-packet pro-
cessing latency of p on i, Lp,i. Specifically, it instruments the
switch to record two timestamps on a custom packet header
field when a packet enters and leaves the rack. Then it injects
PktSizep-sized packets to the rack and estimates the latency
based on the timestamps in returned packets.

Finally, some vendor-provided P4 compilers for external
devices may not support certain features or P4 constructs8

used by applications. Because of this, if an application uses
a feature that is not supported by an external device, it can-
not run the application. To consider the compatibility of the
application on devices, our profiler generates a compatibility
matrix (Cp,i) that indicates whether p can be run on device
i based on a set of features supported by i and a set of fea-
tures used by p. The first set can be typically obtained from
vendor’s compiler manual. For the second set, the profiler
analyzes the application code to extract used features.

Resource Allocation. Given these inputs, we can formulate
the problem of finding an optimal resource allocation satisfy-
ing per-app and cross-app requirements. In our formulation,
we assume that the resource usage of multiple applications can
be estimated by accumulating the resource usage of each app.

7The operator can easily extend this to other resource types.
8e.g., Packet recirculation and P4 registers.

1264 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We use binary decision variables dp,q,i to indicate whether q
for p is assigned to i. There are four constraints imposed:

∀p,q : ∑
i

dp,q,i = 1 (1)

∀p,q, i : dp,q,i ≤Cp,i (2)
∀i,r : ∑

p
∑
q

dp,q,i ×Rp,q,i,r ≤Capi,r (3)

∀p : latp = ∑
q

∑
i

dp,q,i ×Fp,q ×Lp,i (4)

First, q must be assigned to a unique i (Eq. 1). Second,
q can be assigned to i if and only if p is compatible with i
(Eq. 2). Third, the amount of r consumed by q on i must be
less than or equal to the total amount of r on i (Eq. 3). Last,
the expected latency of p is the sum of per-packet processing
latency of p on i weighted by Fp,q (Eq. 4).

The network operator provides an objective to share re-
sources across multiple application fairly. One possible fair-
ness metric would be minimizing the weighted sum of the
expected processing latency of each application:

Minimize∑
p

Wp × latp (5)

Other commonly used fairness metrics such as maximizing
the minimum expected throughput can be used as well. By
solving the ILP, the ExoPlane resource allocator finds an op-
timal assignment of q to i for p, and the size of each object
and flow manager for p accordingly, which are used as input
for the application merger, as we describe next.

Application Merger. Given a set of P4 programs and the
optimal resource allocation decision, our application merger
combines the programs into a single P4 program, following
our deployment model for multiple applications, described
in §3.2. Our merger supports programs written in P4-16 [10]
(Fig 16 in Appendix C illustrates how the merger works). First,
for each app, the merger renames the main control block [10]
to avoid naming conflicts between applications. Second, it
specifies the size of each object (e.g., number of entries in a
table) based on the decision made by our resource allocator.
Third, it inserts an flow manager. Finally, in the merged P4
code, it instantiates an instance of each application and inserts
execution logic. The merged P4 code is compiled using the
vendor-provided compiler and loaded on the switch and ex-
ternal devices. Sometimes, the compilation process fails due
to its proprietary heuristics for resource allocation. If so, we
repeat the process with a tighter resource constraint.

In summary, ExoPlane planner allocates resources across
applications based on inputs from developers and the operator
and produces a merged P4 program. This process needs to be
re-run when a set of applications or workloads changes, which
we do not expect to happen frequently (e.g., once every hour).
While this module is not on the critical path, performance
results are available in Appendix D.

6 Implementation

Data plane. The data plane components of the runtime en-
vironment implemented in P4-16 consists of: (1) the flow
manager implemented using a match-action table and (2) the
global logical-to-physical external device ID mapping imple-
mented using a register array (on the switch).

Tracking flow popularity. We implement a flow popularity
tracker on external devices using the count-min sketch [27]
that tracks the frequently accessed flow keys. When it detects
a new popular key, it reports the key to the external device’s
control plane that has a list of flow keys and corresponding
entries, and they are reported to the switch control plane. We
enable the aging supported by the switch ASIC for the flow
manager. If a certain key has not been accessed for a timeout
period (Tidle), a callback function registered at the switch
control plane is triggered, and it evicts the entry corresponding
to the idle key. In our prototype, we set Tidle to 2 s.

Control plane. We implement the control plane of the runtime
environment in Python and C++. The main capability is to
initialize new flow entries and promote new popular flows’
entries on the switch. On the switch side, we use Barefoot
Runtime APIs to access the stateful object in the switch data
plane. On the NIC side, we use Netronome Thrift APIs [12] to
interact with the NIC data plane. The switch and the external
device control planes are communicated via an out-of-band
TCP session over the 1 Gbps management network.

Resource allocator. We implement the resource allocator in
C++ based on the Gurobi C++ API [13] to encode and solve
our resource allocation ILP.

Application profiler and merger. We extend the open-source
P4 compiler [17] to analyze input P4 programs. Using its
frontend, we extract information from each program including
the entry size of each object. We implement the application
merger in C++, which takes an IR generated by the compiler
frontend, and produces a merged P4 program.

Supporting other hardware platforms. While our prototype
uses a Tofino-based programmable switch and Netronome
smart NICs, ExoPlane can be extended to other platforms.
For example, ExoPlane can be applied to other types of
programmable switches (e.g., Nvidia Spectrum-2 [16]) and
FPGA or ASIC-based smart NICs (e.g., Xilinx and Intel
FPGA NICs [1, 6] as external devices.

7 Evaluation
We evaluate ExoPlane on a testbed consisting of a pro-
grammable switch and servers equipped with a Netronome
smart NIC using various workloads. Our key findings are:
• In steady-state, ExoPlane provides predictable per-packet

latency (e.g., 273—384 ns at the switch) and scalable
throughput with more external devices while the app-
pinning model achieves a limited throughput (§7.1).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1265

Applications States

Per-VM NAT Per-flow address mapping for each VM.

Per-VM Stateful FW +
Packet counter

Active TCP connection list.

Per-VM SYN proxy Per-flow sequence number translation table.

NetCache [35] Key-value store cache.

Table 2: Switch programs written in P4 used in the evaluation in
addition to ones introduced in Table 1.

• Even under dynamic workloads, ExoPlane can process
packets with the correct state and sustain high throughput
with multiple devices (§7.2).

• In case of an external device failure, ExoPlane can recover
an end-to-end TCP throughput within 200 ms (§7.4).

• ExoPlane provides the above benefits with small control
plane (e.g., a few tens MB) and switch ASIC resource
overheads (e.g., less than 4.5% of ASIC resources) (§7.5).

Testbed setup. We build an on-rack resource augmentation
architecture consisting of Wedge100BF-32X Tofino-based
programmable switches [9] and four servers equipped with
Netronome Agilio 40 Gbps smart NICs [7]. We use four addi-
tional servers with 100 Gbps regular NICs to generate traffic
workloads. All servers are equipped with an Intel Xeon Silver
4110 CPU and 128 GB DRAM, running Ubuntu 18.04. We
repeat each experiment 100 times unless otherwise noted.

Traffic workloads. We use packet traces from a real data
center [2], the Internet backbone [20], and synthetic ones. The
packet sizes vary (64–1500 B) in the real trace. We generate
traces with the flow key distribution in terms of the number
of packets per flow that follows a Zipf distribution with the
skewness parameters (α=0.9, 0.95, 0.99). We use a keyspace
of 1M randomly generated IP 5-tuples when creating packet
traces. We generate packet traces with different packet sizes
and skewness parameters. We replay the traces using DPDK-
pktgen [3] or run iperf [5] for TCP workloads.

Deployment scenarios. We use two scenarios with multiple
P4 applications: (1) at the data center gateway, four appli-
cations in Table 1 and (2) at the leaf of the network, four
applications from Table 2. Given packet traces, we synthe-
size inputs for the ExoPlane planner (e.g., per-app affinity
and a flow key distribution). For example, we set the affinity
level for the UnivMon [45] and NetCache [35] to high so that
workloads for these are always processed at the switch.

7.1 Performance in steady state
First, we evaluate the per-packet processing latency and
throughput of applications running on ExoPlane in steady
state (i.e., no new flows, no changes in flow popularity, and no
device failures). Here, we pre-populate popular flow entries
at the switch and assume that the traffic is equally distributed
across the applications (i.e., Wp = 0.25 for all applications).

2 4 6

Latency (µs)

0.0

0.5

1.0

C
D

F VPN gateway
NAT
ACL
UnivMon

(a) Data center gateway.

0 2 4 6

Latency (µs)

0.0

0.5

1.0

C
D

F NAT
Stateful FW
SYN-Proxy
NetCache

(b) Data center leaf.

Figure 9: Per-packet processing latency distribution of applications
concurrently running on ExoPlane in steady state.

VPN NAT ACL
UnivMon

0

100

T
p

u
t

(G
b

p
s)

(a) Data center gateway.

NAT

Stateful FW

SYN-Proxy

NetCache

0

100

T
p

u
t

(G
b

p
s)

(b) Data center leaf.

Figure 10: Throughput of each application running on ExoPlane in
steady-state with a single external device. Applications are running
concurrently.

Per-packet processing latency. We define per-packet pro-
cessing latency as the time difference between when a packet
first arrives at the switch from a sender and when it is sent
to a receiver after processing. We instrument the P4 program
running on the switch to record two timestamps (48-bits each)
to our custom packet header fields of each packet so that
the receiver can compute the processing latency for a packet.
From the sender, we replay the backbone packet traces, each
of which contains more than 6M flows.

Fig 9 shows the CDF of the per-packet latency distribution
for each application. For the applications that are assigned to
the high affinity (UnivMon and NetCache), every packet is
processed at the switch in 273–384 ns, depending on packet
sizes. For other applications, the distributions vary depending
on packet sizes and how much traffic is processed at the switch
and the external device. The higher the affinity level assigned
to an application, the more traffic is processed at the switch.
For example, in the gateway scenario (Fig 9a), at the switch,
the ACL processes ≈70% of its traffic whereas the NAT pro-
cesses ≈75% of its traffic. When packets are forwarded to the
external device, their processing latency becomes 5.1–6.1 µs,
depending on the application (the top-right corner in Fig 9).
The external device takes 3.2–4.1 µs to process each packet,
while several overheads constitute the overall processing la-
tency, including the switching latency and the propagation and
transmission latency. While there is a latency gap between
two cases (processing at the switch vs. external device), on
each device, per-packet processing latency is predictable.

Application throughput. To measure the throughput, we re-
play the synthetic trace that consists of 1500 B packets at line
rate (98.6 Gbps in our testbed). We use four sender nodes,
each of which generates traffic for each of the four applica-
tions. We start with a single external device to demonstrate the
impact of the number of external devices on the throughput.

1266 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4

Number of external devices

0

200

400

T
p

u
t

(G
b

p
s)

100% 50% 40% 30%

Figure 11: Scalable throughput with multiple devices with varying
fractions of traffic offloaded to external devices.

Ensemble of apps App-pinning ExoPlane

VPN 98.6 Gbps 98.6 Gbps
VPN+NAT 137.1 Gbps 197.2 Gbps
VPN+NAT+ACL 174.6 Gbps 295.6 Gbps
VPN+NAT+ACL+UnivMon 271.3 Gbps 394.1 Gbps

Table 3: Aggregate throughput of four applications running on the
app-pinning model and ExoPlane with four external devices.

Fig 10 shows the throughput of each application. The ap-
plications that run entirely on the switch (UnivMon and Net-
Cache) process traffic at line rate without dropping any pack-
ets. However, we observe that the others cannot process their
traffic at line rate. This is because the aggregate amount of
traffic across the applications, which needs to be processed at
the external device (≈81 Gbps in the gateway case) exceeds
the processing capacity of the single device (≈39 Gbps).
Scaling throughput with multiple devices. By adding more
devices, ExoPlane can support higher throughput. To demon-
strate this, we measure the aggregate throughput of the four
applications in the gateway scenario (max. traffic rate in our
testbed is ≈394 Gbps) while varying the fraction of traffic
offloaded to an external device(s)9 and the number of external
devices. Fig 11 shows the results. In the case of 30, 40, 50%
of the traffic being offloaded to external devices, we see the
throughput effectively increases with more devices. In con-
trast, when 100% of traffic is offloaded, adding more devices
is not effective due to load imbalance. This result shows the
load balancing effect of serving popular flows at the switch,
described in §4.4.
Comparison with the app-pinning model. We evaluate the
benefit of ExoPlane over the app-pinning model (described
in §3.2) while running four applications from Table 1. In this
model, we place an application along with its entire state at
the switch if there is room. Otherwise, we place it on one of
the external devices, which has the largest remaining capacity.
Table 3 compares the aggregate throughput when running
an ensemble of applications. While ExoPlane provides the
maximum throughput for each ensemble, the app-pinning
model achieves up to 69.3% lower throughput. This is because
while ExoPlane allows an application to effectively utilize
available resources across different devices, the app-pinning
model fixes an application to a device.

9In this experiment, we control the fraction of traffic offloaded to external
devices by manually assigning the affinity of each application. UnivMon is
still pinned to the switch.

0 10 20 30 40 50 60

Time (sec)

0

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

VPN gateway

NAT

ACL

UnivMon

(a) With a single external device.

0 10 20 30 40 50 60

Time (sec)

0

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

VPN gateway

NAT

ACL

UnivMon

(b) With 4 external devices.

Figure 12: Throughput changes due to workload changes.

7.2 Performance under dynamic workload

Per-packet processing latency. As mentioned in §4.2, work-
load changes happen due to new flows arriving or changes in
flow popularity. Handling new flows in ExoPlane can increase
processing latency because the first packet of a new flow can
be processed only after initiating the necessary state for both
the flow manager and application objects. In contrast, packets
in the flow that becomes popular can be processed either at
the switch or an external device with the same latency shown
in §7.1. Thus, for each app, we measure the processing latency
of the first packet of each flow. We observe that the median
latency for the first packet of a new flow is 32 ms, which is an
order of magnitude higher than that of an external device in a
steady state. There are two factors here. First, the Netronome
Thrift API takes a few tens of ms to insert new entries to
objects, which is not an ExoPlane-specific overhead. Second,
since ExoPlane replicates entries for new flows to one another
external device, it incurs additional latency when handling
new flows. Note that as described in §4.2, ExoPlane tries to
initiate state for new flows both at the switch (if there is room)
and at the external device, so even for short-lived flows, the
subsequent packets can be processed at the switch with lower
latency. However, some short-lived flows can be entirely pro-
cessed at the external device, which can incur higher latency
if there is no room at the switch during its lifetime.

Application throughput. The changes in flow popularity can
impact the throughput. To measure the throughput changes,
we use the same setup as the previous measurement in steady
state, but for every 10 s, we alter the most popular top 10 flows
for the VPN gateway of the gateway scenario. Fig 12 shows
the throughput changes over time. Again, we first use a single
external device. As shown in Fig 12a, when the popularity
changes, there is a sharp drop in the throughput of the VPN
gateway. Also, the throughput of other applications slightly
decreases as well. This is because until the state entries for
the new set of popular flows are installed at the switch (i.e.,
a transient period), a high volume of traffic for the flows is
routed to the external device, exceeding its processing capac-
ity. On the other hand, as shown in Fig 12b, with four external
devices, there is no such performance drop because there is
enough processing capacity at the external devices to handle
the traffic during the transient period. Although we assume
that the traffic pattern can change at an hour or day-timescale,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1267

0 5 10 15 20 25 30 35 40

Synchronization interval

0

1

2

D
iff

.
in

va
lu

es
(%

)

30% offload 40% offload 50% offload

Figure 13: Difference in shared object values on the switch and
external devices; the trace ends at epoch 32.

0 10 20 30 40 50 60

Time (sec)

0

50

100

T
p

u
t

(G
b

p
s)

Ext. device-1
failed

No failure Failover w/o ExoPlane Failover w/ ExoPlane

Figure 14: TCP throughput during failover and recovery.

if ExoPlane cannot detect such changes, it could suffer from
severe performance degradation due to outdated resource al-
location. Rapidly detecting the changes and reconfiguring the
resource allocation accordingly is our future work.

7.3 Shared stateful object synchronization
Next, we evaluate the effectiveness of our state synchroniza-
tion protocol (§4.3) using the per-SrcIP packet counter in the
stateful FW. The metric of interest is the difference between
the shared counter entries maintained by each device at each
synchronization interval (Tε=1 s). We measure this by record-
ing the values at each device right after executing the merge
operation in the data plane while injecting 1500 B packets for
60 s at 98.6 Gbps. We vary the fraction of traffic offloaded to
external devices. In our setting, there are 1000 entries shared
between the switch and at least one of the external devices,
and we get the median of the differences. Fig 13 shows the
result with three different fractions of offloaded traffic. When
the switch and external devices process the same amount of
traffic (i.e., 50% offload), there is almost no difference. When
there is a gap between the amounts of traffic (i.e., 30% or 40%
offload), there are differences because incoming packets keep
updating the counter at each device during the synchroniza-
tion, affecting the measured values. However, we see that the
variance of the difference is small across the synchronization
intervals regardless of the gap, showing that our mechanism
synchronizes the values. We also confirm that after the packet
transmission is done, copies at each device are synchronized
with the same value as the total number of packets.

7.4 Failover
In Fig 14, we use a NAT as an example and run iperf to
measure TCP throughput changes. There are four TCP con-
nections, and we configure two of them to be processed at
the switch while the remaining is processed at an external de-
vice. There are two external devices enabled, and we compare
changes in TCP throughput when (1) there is no failure and (2)

one of the external devices fails with and without ExoPlane.
We emulate the failure by disabling a port connected to the
external device. At around 20 s, when the external device-1
goes down, our failover mechanism generates a control packet
that modifies the logical to physical device ID mapping in the
switch data plane without involving the control plane. Then,
subsequent packets are routed to the replica device. We see
that the TCP throughput is recovered to its original rate within
a 200 ms whereas, without ExoPlane, it cannot be recovered.

7.5 Runtime resource overheads
Control plane resource overhead. The control plane com-
ponent of ExoPlane runtime environment maintains metadata
for application states, including a mapping between union
keys and devices and a history of each shared object entry
on other devices. Each of them consumes the control plane
memory. In our scenarios, the union keys-to-device mapping
consumes 12.5 MB per application and the history metadata
consumes 1.5 MB per shared object. Our state synchroniza-
tion protocol consumes management network bandwidth as it
periodically exchanges information between devices, which
contains a snapshot and history of each entry. In our setting,
the bandwidth consumption is 24.4 Mbps per shared object,
which increases in proportion to the number of devices, the
sync interval, and the number of entries.
Switch ASIC resource usage. The data plane component of
ExoPlane runtime environment consumes some switch ASIC
resources. Since we implement it using an exact-match table
with the aging feature and a register array, it consumes SRAM,
SALUs, hash bits, MAP RAM, and match crossbar,10 whose
usage increases proportionally to the number of popular flows
maintained (except for SALUs). In our setting where 10240
popular flow entries are managed, it consumes 4.4% of the
SRAM, 2.1% of SALUs, 3.5% of the hash bits, 3.8% of the
MAP RAM, and 3.6% of the match crossbar, leaving ample
resources for application logics.

8 Conclusions
Limited on-chip resources today block the deployment of con-
current stateful apps on programmable switches, limiting the
adoption of in-network computing. In this paper, we argue that
on-rack switch resource augmentation can be a pragmatic and
incrementally expandable solution to this dilemma. To realize
this vision, we present ExoPlane, which provides OS-like ab-
stractions for the new architecture by addressing challenges
in managing application states and resources across multiple
devices. Our evaluation shows that ExoPlane provides low
latency, scalable throughput, and fast failover, and achieves
these with a small resource footprint and few/no modifica-
tions to applications. Thus, ExoPlane can be a practical basis
for enabling in-network computing for future applications,
workloads, and emerging data plane hardware.

10MAP RAMs are used for the aging feature and match crossbars are used
for implementing the ‘matching’ part of match-action tables.

1268 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Michio Honda, for their insightful comments and
constructive feedback. This work was supported in part by
the CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program spon-
sored by DARPA, by the NSF award 1700521, and by Intel
Corporation and by VMWare under the Crossroads 3D FPGA
Research Center.

References
[1] Netcope P4. https://www.intel.com/content/

www/us/en/programmable/solutions/partners/
partner-profile/netcope-technologies--a-s-
/ip/netcope-p4.html.

[2] Data Set for IMC 2010 Data Center Measurement. http:
//pages.cs.wisc.edu/~tbenson/IMC10_Data.html,
2010.

[3] pktgen-dpdk: Traffic generator powered by DPDK.
https://git.dpdk.org/apps/pktgen-dpdk/, 2011.

[4] Advanced network telemetry. https:
//www.barefootnetworks.com/use-cases/ad-
telemetry/, 2018.

[5] iperf3. http://software.es.net/iperf/, 2018.

[6] P4-SDNet User Guide. https://www.xilinx.com/
support/documentation/sw_manuals/
xilinx2017_4/ug1252-p4-sdnet.pdf, 2018.

[7] Agilio CX SmartNICs - Netronome. https://
www.netronome.com/products/agilio-cx/, 2019.

[8] Cisco Visual Networking Index. https://
www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-
vni/white-paper-c11-738429.html, 2019.

[9] EdgeCore Wedge 100BF-32X. https:
//www.edge-core.com/productsInfo.php?cls=
1&cls2=5&cls3=181&id=335, 2019.

[10] P416 Language Specification. https://p4.org/p4-
spec/docs/P4-16-v1.2.0.html, 2019.

[11] Alveo U25 SmartNIC Accelerator Card.
https://www.xilinx.com/products/boards-
and-kits/alveo/u25.html, 2020.

[12] Apache Thrift. https://thrift.apache.org/, 2020.

[13] Gurobi - C++ API Overview. https:
//www.gurobi.com/documentation/9.1/refman/
cpp_api_overview.html, 2020.

[14] Intel FPGA Programmable Acceleration Card
N3000. https://www.intel.com/content/www/us/
en/programmable/products/boards_and_kits/
dev-kits/altera/intel-fpga-pac-n3000/
overview.html, 2020.

[15] NPL Specifications. https://nplang.org/npl/
specifications/, 2020.

[16] Nvidia mellanox spectrum-2. https://
www.mellanox.com/files/doc-2020/pb-spectrum-
2.pdf, 2020.

[17] p4c: a reference P4 compiler. https://github.com/
p4lang/p4c, 2020.

[18] Pensando DSC-25 Distributed Services Card.
https://pensando.io/wp-content/uploads/
2020/03/Pensando-DSC-25-Product-Brief.pdf,
2020.

[19] The Software Switch Pipeline. https:
//doc.dpdk.org/guides/prog_guide/
packet_framework.html#the-software-switch-
swx-pipeline, 2020.

[20] The CAIDA UCSD Anonymized Internet
Traces. https://www.caida.org/data/passive/
passive_dataset.xml, 2021.

[21] Thomas Anderson and Michael Dahlin. Operating Sys-
tems: Principles and Practice, volume 1. Recursive
books, 2014.

[22] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network traffic characteristics of data centers in the wild.
In ACM IMC, 2010.

[23] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[24] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
July 1970.

[25] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[26] Cisco. Cisco Global Cloud Index: Forecast and Method-
ology, 2016–2021 White Paper, 2018.

[27] Graham Cormode and Marios Hadjieleftheriou. Finding
frequent items in data streams. Proceedings of the VLDB
Endowment, 1(2), 2008.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1269

https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://git.dpdk.org/apps/pktgen-dpdk/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
http://software.es.net/iperf/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://thrift.apache.org/
https://www.gurobi.com/documentation/9.1/refman/cpp_api_overview.html
https://www.gurobi.com/documentation/9.1/refman/cpp_api_overview.html
https://www.gurobi.com/documentation/9.1/refman/cpp_api_overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://nplang.org/npl/specifications/
https://nplang.org/npl/specifications/
https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml

[28] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexan-
der Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin
DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis,
Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krish-
nan, Subbaiah Venkata, Yossi Richter, Uday Naik, and
Amin Vahdat. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In
USENIX NSDI, 2018.

[29] Bin Fan, Hyeontaek Lim, David G. Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In ACM SOCC, 2011.

[30] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform language
and compiler for data plane programming on heteroge-
neous asics. In ACM SIGCOMM, 2020.

[31] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. Opennf: Enabling
innovation in network function control. In ACM
SIGCOMM, 2014.

[32] David Hancock and Jacobus Van der Merwe. Hyper4:
Using p4 to virtualize the programmable data plane. In
ACM CoNEXT, 2016.

[33] Frederik Hauser, Marco Häberle, Daniel Merling, Stef-
fen Lindner, Vladimir Gurevich, Florian Zeiger, Rein-
hard Frank, and Michael Menth. A survey on data plane
programming with p4: Fundamentals, advances, and ap-
plied research, 2021.

[34] Stephen Ibanez, Gordon Brebner, Nick McKeown, and
Noa Zilberman. The p4-> netfpga workflow for line-rate
packet processing. In ACM/SIGDA FPGA, 2019.

[35] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In ACM SOSP, 2017.

[36] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless network functions: Breaking the tight
coupling of state and processing. In USENIX NSDI,
2017.

[37] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Re-
becca Steinert, and Gerald Q Maguire Jr. Metron: Nfv
service chains at the true speed of the underlying hard-
ware. In USENIX NSDI, 2018.

[38] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. Hula: Scalable load
balancing using programmable data planes. In ACM
SOSR, 2016.

[39] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb.
An exhaustive survey on p4 programmable data plane
switches: Taxonomy, applications, challenges, and fu-
ture trends. IEEE Access, 9:87094–87155, 2021.

[40] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. Tea: Enabling state-intensive network functions
on programmable switches. In ACM SIGCOMM, 2020.

[41] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas
Sekar, and Srinivasan Seshan. Redplane: Enabling fault-
tolerant stateful in-switch applications. In ACM SIG-
COMM, 2021.

[42] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, and Srinivasan Seshan. Generic external memory
for switch data planes. In ACM HotNets, 2018.

[43] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In ACM SOSP, 2017.

[44] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and
Dan RK Ports. Pegasus: Tolerating skewed workloads
in distributed storage with in-network coherence direc-
tories. In USENIX OSDI, 2020.

[45] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In ACM SIGCOMM, 2016.

[46] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
ACM SIGCOMM, 2017.

[47] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, Enge Song, Jiao Zhang, Tao Huang, and Shunmin
Zhu. Sailfish: Accelerating cloud-scale multi-tenant
multi-service gateways with programmable switches. In
ACM SIGCOMM, 2021.

[48] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-
Myung Kang, Aditya Akella, Sujata Banerjee, Charles
Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. Pga:
Using graphs to express and automatically reconcile
network policies. ACM SIGCOMM Computer Commu-
nication Review, 45(4):29–42, 2015.

1270 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[49] Kun Qian, Sai Ma, Mao Miao, Jianyuan Lu, Tong Zhang,
Peilong Wang, Chenghao Sun, and Fengyuan Ren. Flex-
gate: High-performance heterogeneous gateway in data
centers. In APNET, 2019.

[50] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/merge: System support for
elastic execution in virtual middleboxes. In USENIX
NSDI, 2013.

[51] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for net-
work update. 42(4):323–334, 2012.

[52] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
in-network aggregation. In USENIX NSDI, 2021.

[53] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Do-
enges, and Nate Foster. Composing dataplane programs
with µp4. In ACM SIGCOMM, 2020.

[54] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pe-
disich, Zhaoyang Han, Nishanth Shyamkumar, Shivani
Burad, André DeHon, and Boon Thau Loo. Flight-
plan: Dataplane disaggregation and placement for p4
programs. In USENIX NSDI, 2021.

[55] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and
Minlan Yu. Cheetah: Accelerating database queries
with switch pruning. In ACM SIGMOD, 2020.

[56] William Tu, Fabian Ruffy, and Mihai Budiu. Linux
network programming with p4. In Linux Plumb. Conf.

[57] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,
Sylvia Ratnasamy, and Scott Shenker. Elastic scaling of
stateful network functions. In USENIX NSDI, 2018.

[58] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and
Jianping Wu. Hyperv: A high performance hypervisor
for virtualization of the programmable data plane. In
IEEE ICCCN, 2017.

[59] Peng Zheng, Theophilus Benson, and Chengchen Hu.
P4visor: Lightweight virtualization and composition
primitives for building and testing modular programs.
In ACM CoNEXT, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1271

A Skewness of traffic traces

0 20 40 60 80 100

Fraction of IP 5-tuples (%)

0

50

100

S
er

ve
d

tr
a

ffi
c

(%
)

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Epoch 5

Epoch 6

(a) Internet backbone.

0 20 40 60 80 100

Fraction of IP 5-tuples (%)

0

50

100

S
er

ve
d

tr
a

ffi
c

(%
)

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Epoch 5

Epoch 6

(b) University data center.

Figure 15: Skewness in flow key (IP 5-tuple): For both Internet
backbone and data center case, a few popular keys serve the most of
the traffic. This is consistent across measurement epochs.

We measure the distribution of IP 5-tuple as the union
key by analyzing packet traces collected from an Internet
backbone [20] and a university data center [22]. Fig 15 shows
the union key distributions of the two data sets.

B State synchronization algorithm
Algorithm 1: State synchronization – Switch

1 Sswitch : The current state of the value on the switch
2 Ext: a set of external device IDs
3 SSswitch : The latest snapshot of the value on the switch
4 Hext [1 . . .N] : The latest information received from each external

device
5 Upon the snapshot timer expires:
6 foreach exti ∈ Ext do

/* Send an initiate message to exti */
7 send (Snapswitch, Iswitch[exti]);

/* Receive a response from exti */
8 (Snapexti , Iexti) = recv ();
9 foreach exti ∈ Ext do

/* Adjust snapshot values and merge them */
10 δ = Snapexti ◦− (Iswitch[exti]◦+ Iexti);

/* Update the information for exti */
11 Iswitch[exti] = Snapexti ◦− Iexti

/* Merge (◦+) the adjusted value with the current
state in the data plane */

12 Sswitch = Sswitch ◦+ δ

Algorithm 2: State synchronization – External device
1 SSext : The latest snapshot of the value on the external device
2 Sext : The current state of the value on the external device
3 Iext : The latest information received from the switch
4 Upon receiving a message from the switch (Snapswitch, Iswitch):
/* Send a response to the switch */

5 send (Snapext , Iext);
/* Adjust snapshot values and merge them */

6 δ = Snapswitch ◦− (Iext ◦+ Iswitch);
/* Update the history for the switch */

7 Iext = Snapswitch ◦− Iswitch;
/* Merge the adjusted value with the current state */

8 Sext = Sext ◦+ δ

In §4.3, we describe our state synchronization protocol
to synchronize entries in a data-plane updatable object. Al-
gorithm 1 and Algorithm 2 describe the detailed algorithm
running on the switch and external devices, respectively.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

control App1_Ingress(...)
{

// objects
table A {

keys = {...}
actions = {...}
size = 1024;

...
// ExoPlane flow manager
table FlowManager {

keys = {// Union key}
actions = {...}
size = 10240;

}
// App1's control flow
apply {

...
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// individual app sources
#include <App1.p4>

...

control Merged_Ingress(...)
{

// instantiate apps
App1_Ingress() app1_ig;
...
apply {

// execute App1’s logic
app1_ig.apply();
...

}
}

Step 1: Renaming the main control block (line 1)
Step 2: Alloca�ng the size of each object (line 6)
Step 3: Inser�ng the ExoPlane flow manager (line 9)

Step 4: Ini�a�ng app instances (line 2, 7)
Step 5: Inser�ng app execu�on logic (line 11)

{App1,…AppN}.p4

Merged.p4

Merging

Figure 16: Merging multiple P4 programs into a single program.

1 2 3 4 5 6 7 8 9 10

Number of applications

0

250

500

750

E
la

p
se

d
ti

m
e

(m
s)

(a) Different number of apps.

103 104 105 106 107

Number of flow entries

101

102

103

E
la

p
se

d
ti

m
e

(m
s)

(b) Different number of flow entries.

Figure 17: Elapsed time for the resource allocator.

C Details of Application Merger
Fig 16 illustrates how our application merger works for a set
of P4 applications as described in §5.

D Performance of ExoPlane Planner
We evaluate the performance of the ExoPlane planner. In this
experiment, we measure the elapsed time for finding optimal
resource allocations and generating a merged P4 program on a
server in our testbed. For the two sets of apps and the hardware
configuration used in our evaluations, our resource allocation
takes 54.5 ms and merging the program takes 642 ms, which
is reasonable since the orchestrator needs to run this process
on the hours or days timescale. To further understand the
impact of different parameter values including the number
of apps and traffic workload sizes, we synthesize inputs for
the resource allocator and measure the elapsed time. First,
we fix the number of external devices to 16 (to support a
large number of apps) and the number of union key-based
flow entries to 1M for each app. Then, we vary the number of
flow entries while fixing the number of apps to four and the
number of devices same as the above. As illustrated in Fig 17a,
the resource allocation time grows linearly up to 712 ms as
the number of app increases. Also, as shown in Fig 17b, as
the number of flow entries increases, the elapsed time also
increases up to 4.1 second when each app needs to handle
10M flow entries. This experiment illustrates the ExoPlane
orchestrator takes a longer time as we add more apps and
increases the workload size, which can be up to a few seconds,
it is still within the reasonable timescale under our deployment
model (§3.1).

1272 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivation and related work
	Motivating example
	Stateful switch applications
	Prior work and limitations

	Overview
	Case for on-rack augmentation
	ExoPlane architecture
	Design challenges

	ExoPlane runtime environment
	Packet-pinning operating model
	Handling workload changes
	Synchronizing shared stateful objects
	Scaling to multiple devices
	Handling external device failures

	ExoPlane planner
	Implementation
	Evaluation
	Performance in steady state
	Performance under dynamic workload
	Shared stateful object synchronization
	Failover
	Runtime resource overheads

	Conclusions
	Skewness of traffic traces
	State synchronization algorithm
	Details of Application Merger
	Performance of ExoPlane Planner

