
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Boomerang: Metadata-Private Messaging
under Hardware Trust

Peipei Jiang, Wuhan University and City University of Hong Kong; Qian Wang and
Jianhao Cheng, Wuhan University; Cong Wang, City University of Hong Kong; Lei Xu,
Nanjing University of Science and Technology; Xinyu Wang, Tencent Inc.; Yihao Wu

and Xiaoyuan Li, Wuhan University; Kui Ren, Zhejiang University
https://www.usenix.org/conference/nsdi23/presentation/jiang

Boomerang: Metadata-Private Messaging under Hardware Trust

Peipei Jiang1,2 Qian Wang1,∗ Jianhao Cheng1 Cong Wang2 Lei Xu3

Xinyu Wang4 Yihao Wu1 Xiaoyuan Li1 Kui Ren5

1 School of Cyber Science and Engineering, Wuhan University 2 City University of Hong Kong
3 Nanjing University of Science and Technology 4 Tencent Inc. 5 Zhejiang University

Abstract
In end-to-end encrypted (E2EE) messaging systems, pro-

tecting communication metadata, such as who is communi-
cating with whom, at what time, etc., remains a challenging
problem. Existing designs mostly fall into the balancing act
among security, performance, and trust assumptions: 1) de-
signs with cryptographic security often use hefty operations,
incurring performance roadblocks and expensive operational
costs for large-scale deployment; 2) more performant sys-
tems often follow a weaker security guarantee, like differ-
ential privacy, and generally demand more trust from the in-
volved servers. So far, there has been no dominant solution.
In this paper, we take a different technical route from prior
art, and propose Boomerang, an alternative metadata-private
messaging system leveraging the readily available trust as-
sumption on secure enclaves (as those emerging in the cloud).
Through a number of carefully tailored oblivious techniques
on message shuffling, workload distribution, and proactive
patching of the communication pattern, Boomerang brings
together low latency, horizontal scalability, and cryptographic
security, without prohibitive extra cost. With 32 machines,
Boomerang achieves 99th percentile latency of 7.76 seconds
for 220 clients. We hope Boomerang offers attractive alter-
native options to the current landscape of metadata-private
messaging designs.

1 Introduction

In E2EE messaging systems [59], the exposure of privacy-
revealing communication metadata, including the identities
of the communicating parties, and the timing and volume of
the traffic, remains a big concern [26,39,61]. Communication
metadata can not only be used to target whistleblowers and
journalists [37, 70], but also serve as a surveillance means
to reveal intimate details of a person’s life [38]. Designing a
metadata-private messaging system is a challenging problem,
given the powerful attackers that can monitor and actively

∗Qian Wang is the corresponding author.

interfere with the network traffic [31,39]. The popular system
in practice today that hides communication metadata, namely
Tor [34], is not resilient against even passive traffic analysis
attacks (e.g., through timing, volume patterns, etc.) [39]. Be-
cause of this, academic research systems have been developed
recently with well-defined security guarantees for improved
metadata privacy [3–6, 8, 11, 15, 16, 27–29, 36, 37, 52, 54, 56–
58, 70, 72, 88, 91]. Ideally, such a system must ensure that
any pair of connected clients might be communicating from
the view of powerful attackers. This implies two necessary
requirements: 1) unlinking senders and receivers during any
message exchange; and 2) maintaining the same communica-
tion pattern across all connected clients, to resist traffic anal-
ysis. Roughly speaking, most prior art on metadata-private
messaging falls into the balancing act among security, perfor-
mance, and trust assumptions, while trying to meet these two
requirements (more discussions in §7).

Among the diverse landscape of metadata-private messag-
ing designs, there are two commonalities of state-of-the-art
systems: 1) leveraging an intermediate “virtual address” to
facilitate obfuscated message “drop” and “fetch” between the
communicating pairs; and 2) operating in rounds. Designs
with cryptographic security follow technical routes of sophis-
ticated cryptographic operations that either obliviously “write
to (drop)” [5, 27, 37, 52, 54, 70] or obliviously “read from
(fetch)” the virtual address [4, 8]. The hefty operations, how-
ever, often present performance roadblocks and unfavorable
operational dollar costs, hindering large-scale voluntary adop-
tions in practice. More performant systems [11, 56, 87, 88]
choose to relax the security guarantee and use random noise
to disguise the observable “drop” / “fetch” at the virtual ad-
dress in the framework of differential privacy. Generally, these
systems need to trust a fraction of servers for the claimed se-
curity, where the latency would be increased if trusting fewer
servers. So far there has yet to be any dominant solution.
Motivations. In this paper we propose Boomerang, an alter-
native metadata-private messaging system leveraging secure
enclaves. Boomerang takes a different technical route from
prior art, and is partially motivated by the readily available

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 877

trust assumption on hardware enclaves. As emerging in the
cloud [78, 81], secure enclaves provide a convenient and na-
tive implementation choice to build secure yet sophisticated
systems in practical settings.

Like much prior art [24, 32, 35, 42, 49, 50, 74], Boomerang
leverages hardware enclaves for both performance and se-
curity. Performance is arguably one of the key reasons for
Tor’s wide adoption in practice [39]. Yet, this is what most
prior art on metadata-private messaging is still lacking. We
believe that using hardware enclaves to improve performance
could be the key missing ingredient for wider adoption of
metadata-private messaging systems in practice. Under hard-
ware trust, Boomerang hides users’ online communication
behaviors with a strong guarantee of metadata privacy and
resilience against powerful attackers, while retaining good
enough performance.

Besides, we envision that there could be broader options of
technical routes for metadata-private messaging, with differ-
ent trust assumptions, performance, and security guarantees.
For whistleblowers [37, 70], their most reasonable choice is
to go for designs with a cryptographic guarantee and zero
trust in the servers [8,39], where performance might be much
less concerning. For the mass general users who want more
than E2EE messaging (e.g., due to concerns about metadata
tracking [38, 47]), we hope Boomerang could offer a better
option with lowered operational cost and improved perfor-
mance. These benefits can potentially attract a large user base,
which is crucial in private communication systems [33].
Challenges. While trusting the enclaves brings easy-to-see
benefits, such as using fewer servers for traffic mixing than
prior art for reduced latency, it does not entirely solve the
problems in building a scalable metadata-private messaging
system. This is because: 1) secure enclaves exhibit their own
threat models and attack surfaces, especially the leakage of
memory access patterns [32, 90], which demand tailored sys-
tem structure and oblivious algorithm designs; 2) as acknowl-
edged by prior art [39, 54, 57, 88], even with just one trusted
server, dealing with the thorny problems of active attackers
that may selectively interfere with traffic, e.g., disconnecting
selected clients to gain advantages in identifying targeted com-
municating pairs, remains hard to address; and 3) as privacy
loves company [33], the need to support more clients suggests
the necessity of pushing for horizontal scaling designs, which
is also a hot topic in recent years [11, 52, 54, 56, 57, 87]. No-
tably, scalability is not only a usability requirement but also a
security demand [33, 39, 54, 56, 87].
Technical overview. For metadata-private messaging,
Boomerang draws many insights from the prior art, and is de-
signed to be a performant system with cryptographic security
under hardware trust. It operates in rounds for bi-directional
conversations, and centers around the paradigm of adopting a
private “virtual address” to facilitate obfuscated message ex-
change that unlinks the sender and receiver. As we overview
below, its technical instantiation involves tailored oblivious

algorithms for message shuffling, proactive resistance against
active attacks, and horizontal scaling. For ease of presenta-
tion, we present a basic single-server Boomerang (§3) and a
scalable multi-server Boomerang+ (§4).

1) Basic single-server Boomerang. From a high level, the
system operates as follows: Upon proper setup, in each round,
each connected client sends a message, tagged with a “private
label”, which is randomly derived from a pairwise shared se-
cret with his communicating buddy, to the Boomerang server.
The Boomerang server obliviously checks all the messages
and swaps any pair of messages sharing the same labels for
the relevant communicating pair. In this regular case, each
label shows up twice each round. But active attackers might
block selected clients or control a subset of clients to disrupt
this regular pattern, causing each label to show up once or
more than twice each round. The problem is quite subtle, be-
cause we need to fix these irregular patterns, without giving
attackers any advantage in linking the remaining clients.

Boomerang’s key insight is to preserve the same observable
receiving pattern for each connected client, no matter how the
sending pattern changes. We build oblivious algorithms for
enclaves to detect messages with irregular label patterns and
proactively patch them (§3.3.2) by returning those messages
back to the corresponding senders, like a “boomerang”. In
this way, we can contain the influence attempts within the
problematic clients themselves, isolated from the remaining
clients. Based on a library of basic general-purpose oblivious
primitives [2, 71], we design specialized oblivious algorithms
(§3.3.2, §3.3.3, §4.2) for all enclave operations in Boomerang,
including proactive resistance designs against active attacks
and horizontal scaling in Boomerang+.

2) Scalable multi-server Boomerang+. For horizontal scala-
bility, directly replicating the basic single-server Boomerang
and letting each server process a subset of communicating
pairs would not work, because pairwise clients connecting
to one server have a higher possibility to communicate than
those across different servers. Introducing a load balancer,
known as an entry node in Boomerang+, to obliviously dis-
tribute batches of messages to a group of Boomerang nodes
for message exchange would fulfill the need for “global
mixing”, where any pair of connected clients at the entry
node might be communicating. But as pointed out by re-
cent art [32, 89], two requirements remain: 1) a centralized
proxy [82] can be error-prone and a scalability bottleneck of
the underlying system; and 2) any batch structure from a load
balancer must be generated using public information, so as to
ensure that no sensitive information can be observable from
the load balancing.

Note that these requirements are generic for any security-
aware scalable system design. Answering them can be quite
design specific, especially on setting the bound on batch size
without triggering an overflow. Inspired by the balls-into-bins
analysis [32], we model the problem of setting the maxi-

878 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mum batch size in Boomerang+ as a weighted balls-into-bins
game, where we partition the messages by their private labels
and each message’s weight is determined by its label pattern
(showing once, twice, or more than twice). We prove an up-
per bound on the maximum batch size and show its marginal
overhead on our horizontal scaling design. Following the
oblivious load balancer design [32], we derive tailored obliv-
ious algorithms to generate sub-batches whose distribution
across rounds is indistinguishable (§4.2).

2 Threat Model and Security Goals

2.1 Threat Model and Assumptions
We consider the following threats. Attackers can: 1) observe
the global network states (including the timing, volume, and
link states); 2) actively tamper with the network, such as selec-
tively dropping messages, blocking selected connections, and
controlling a subset of clients; and 3) access the server-side
components beyond hardware enclaves, such as the memory,
files, and networks, as well as the operating system.

Boomerang is built on servers equipped with secure en-
claves, where memory access patterns can be observed [32,
49, 62, 66]. Boomerang is designed to work with generic en-
claves [18, 30], and we adopt Intel SGX for our implemen-
tation. Our oblivious algorithms can deal with side-channel
attacks against SGX leveraging memory access patterns to ex-
tract secrets, such as the cache attacks [19,41,67] and paging-
based attacks [20]. We assume a public key infrastructure
(PKI) to help manage the public keys of clients. Communi-
cations among clients and enclaves are securely established
via TLS integrated with remote attestation [1, 46, 51]. In Ap-
pendix A, we elaborate in more detail on how a client can
establish the trust on a multi-enclave system like Boomerang
through remote attestation, following common practices sug-
gested from the prior art [9, 23, 35, 74, 79].
Communication model. Like many previous metadata-
private messaging systems [4,8,54,56,57,87,88], Boomerang
operates in rounds to ensure the uniformity of communication
pattern among clients, and focuses on pairwise messaging
among online clients who have coordinated their conversa-
tions. Processing message exchanges on round boundaries
implies that clients of Boomerang send encrypted messages
with a fixed rate and size, independent of their true commu-
nication activities, which allows the dealing against traffic
analysis attacks. This can be done at Boomerang clients by
generating “blank” messages if a user types nothing or too
slow, and queuing/splitting messages if a user types too fast
or sends a message of large size [88].

Under this communication model, Boomerang does not
hide the fact that clients are using the system. Boomerang
offers online anonymity by supporting a large scale of clients.
The anonymity set includes both active clients in real conver-
sations with their buddies and online idle clients who do not

have a conversation buddy but can voluntarily send “blank”
messages to themselves as cover traffic to further enlarge this
anonymity set [56, 88]. We suggest the clients always keep
online to disguise the real communication actions [33, 39].
Because all clients connected in the system behave the same
at each communication round, we can hide the communica-
tion metadata with cryptographic security against powerful
attackers. We formalize this security notion in Definition 2.1.
Bootstrapping Boomerang. Besides operating in rounds,
Boomerang adopts the existing practices of a bootstrapping
phase for clients to start conversations [11, 37, 52, 58]. Par-
ticularly, clients should run an “add-friend” protocol (where
clients can verify each other’s identity and share their se-
crets) and a “dialing” protocol (where pairwise clients coordi-
nate the time to have the conversation and exchange session
keys) [7]. To add a friend, the common practice is to: 1) ex-
change secrets in person (e.g., by showing a QR code at a
coffee shop [7, 37]); or 2) use an online metadata-private add-
friend protocol [58]. To dial a friend, the common practice
is to adopt an out-of-band metadata-private dialing system,
e.g., Alpenhorn [58]. Dialing brings additional costs to clients,
which will be amortized over multiple conversation rounds.
Note that similar bootstrapping phases have been adopted
by prior art [54, 56, 57, 87]. Thus, throughout the paper, we
keep our focus on the conversation protocol design, which is
where much prior art is differentiated [7], and make simplified
assumptions that the bootstrapping phase is properly done.
Specifically, upon proper bootstrapping, we will narrow down
the problem of metadata-private messaging to how to design
an obfuscated message exchange (aka conversation) protocol
among pairwise clients under hardware trust.
Attacks out of scope. Similar to other enclave-based sys-
tems [32, 35, 49, 75], we don’t consider denial-of-service at-
tacks. The enclave code is assumed to be correct and faithfully
fulfilling our oblivious algorithms. Orthogonal countermea-
sures to recent noteworthy leakage attacks through power con-
sumption channels [25, 68] and transient executions [48, 77]
are also beyond the scope of this work. One generic limitation
to all metadata-private messaging systems is the long-term
intersection threat [14]. Recall that we do not hide whether
clients are using the systems or not. Thus, an attacker, who
observes the anonymity set of online clients changing across
rounds, might infer the linkage of communicating pairs. For
example, two clients that simultaneously get online or offline
are more likely to be communicating. The common practice
to mitigate this concern is to let the clients always stay on-
line [56, 88] or keep the same communication pattern [11]
and send enough cover traffic. We also suggest adopting or-
thogonal mitigation techniques [60, 92] and using more cover
traffic, as also noted by Clarion [36].

2.2 Security Goals
Like much prior art, our security goal follows the unobserv-
ability concept in anonymous communication [43]. Specifi-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 879

cally, for any two online clients, Alice and Bob, we want to
ensure that an attacker cannot distinguish whether they are
real buddies in a conversation or not. We want to guarantee
this is true even in a malicious setting, where an attacker can
control up to m−2 clients for m as the total number of clients
connected to the system. We formalize this property below as
communication pattern indistinguishability.

Definition 2.1 Let λ be the security parameter and m be the
number of connected clients in the system. Define an experi-
ment EXP with an attacker A who controls m−2 clients:

• The attacker creates a pair of clients in a conversation as
P0 = (c0,c1), and a pair of clients not in a conversation
as P1 = (c′0,c

′
1) (e.g., being idle or missing buddies).

• The challenger randomly chooses b ∈ {0,1} and plays
the role of the pair of clients Pb to simulate interactions
between them and the server. During this procedure, the
challenger needs to simulate the payload (aka contents
that can be represented by a random string) for the cho-
sen pair of clients.

• The attacker observes their transcriptions and outputs a
bit b′ ∈ {0,1} to guess the challenger’s choice.

We define the attacker A’s advantage with respect to EXP as

AdvEXP,A =
∣∣Pr[b = b′]−Pr[b ̸= b′]

∣∣ .
We say that a system is communication pattern indistinguish-
able if the advantage AdvEXP,A is negligible in λ for all prob-
abilistic polynomial time (PPT) attackers.

This definition implies that seemingly any pair of connected
clients might be communicating with equal chance. We will
show this is indeed the case in Boomerang and Boomerang+.

3 Boomerang: Basic Instantiation

3.1 Overview
Boomerang runs in rounds with a single enclave-based server.
Following the same practice in previous round-based de-
signs [54, 56, 57, 87, 88], Boomerang requires a coordinator
to announce round numbers across the server and clients. In
each round, each client sends and receives one message re-
spectively to and from the Boomerang server. To facilitate
oblivious message swapping, every message is tagged with
a “private label”, which is a pseudorandom string generated
from a pairwise session secret between a communicating pair.
(See §2 for our system setup assumptions.) Any pair of mes-
sages sharing the same private label will be swapped, which
indicates a regular case when each private label shows up ex-
actly twice each round. Messages with irregular private label
patterns will be detected and looped back (§3.3.2).

Figure 1 shows an overview of our Boomerang design. The
Boomerang server first (➊) sorts the packets and detects the

0x2A6F4592
From A NULL

0x0D24E832
From B NULL

0x2A6F4592
From C NULL

0x20FF3976
From D NULL

0x2A6F4592
From A NULL

0x0D24E832
From B NULL

0x2A6F4592
From C NULL

0x20FF3976
From D NULL

 OSort by
private labels

0x2A6F4592
From A To C

0x0D24E832
From B To B

0x2A6F4592
From C To A

0x20FF3976
From D To D

0x20FF3976

From E NULL

 OSort by
 receiver IDs

0x2A6F4592
From C To A

0x0D24E832
From B To B

0x2A6F4592
From A To C

0x20FF3976
From D To D

Boomerang ServerClients Clients

A

B

C

D

E

A

B

C

D

E

1 Swapping and
proactive patching

2 3

Figure 1: Overview of Boomerang. In this example, A and C
are talking. B is idle. D and E are talking, but E is blocked as
described at the end of §3.3.2. Boomerang proactively patches
the pattern for D and B (Step ➋).

irregular pattern of the private labels. Then, (➋) it proactively
fixes the irregular pattern via the proactive pattern patching al-
gorithm (§3.3.2). Finally, (➌) it sorts the messages by receiver
IDs and sends them to the clients (§3.3.3).

3.2 Client
Figure 2 shows the pseudocode for client operations. We con-
sider two modes of clients: active clients in conversations with
their buddies and idle clients sending dummy cover traffic (as
discussed in §2.1). Regardless of being active or idle, each
connected client needs to send one message to the Boomerang
server in each round.
Packet preparation. A packet Pkt includes the follow-
ing fields: 1) private label with l bits, priv_label; 2) re-
ceiver’s identifier, R; 3) sender’s identifier, S; 4) round num-
ber, round_num; and 5) content encrypted by the session key
shared with the buddy (Lines 4-6). When preparing the packet,
the client fills in all fields except for the receiver’s identifier
(e.g., set to NULL by default). If the active client has nothing
to deliver to her buddy, she should fill the content anyway,
e.g., with a message saying “this is a blank message”. The
client then encrypts the packet using the session key shared
with the secure enclaves (Line 7). Finally, the client sends the
encrypted message to the Boomerang server.
Idle clients. To hide real communication actions, clients need
to keep sending messages even if they are not in an active
conversation [56, 88]. We let idle clients randomly generate a
private label (not shared with others). By design, the server
will loop all unpaired messages back to senders.
Exception alert. Normally, after sending the prepared packet
to the Boomerang server, the client is expected to receive one
packet carrying the message from the buddy/herself every
round. Otherwise, the system will raise exceptions for abnor-
mal cases. If there is no message returned by the decryption
procedure, it means that the packet to/from the server has
been lost. In this case, both active and idle clients should be

880 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 def active_client(round_num, priv_label, my_id,\
2 content, ses_key_encl, ses_key_buddy):
3 # Prepare the packet
4 Pkt pkt; pkt.round_num = round_num
5 pkt.priv_label = priv_label; pkt.S = my_id
6 pkt.enc_content = Encrypt(content, ses_key_buddy) 1
7 enc_pkt = Encrypt(pkt, ses_key_encl)
8 # Send the packet to the Boomerang server \
9 # running boomerang_server()

10 send_msg = (my_id, enc_pkt)
11 # Receive the packet from the Boomerang server
12 recv_msg = rpc.request(send_msg)
13 pkt = Decrypt(recv_msg, ses_key_encl)
14 # Exception alert
15 # If there is message loss
16 if pkt == None: raise("Message loss")
17 # If the original message is looped back
18 if pkt.R == my_id: raise("Buddy blocked")
19

20 return Decrypt(pkt.enc_content, ses_key_buddy)
21

22 def idle_client(round_num, my_id, ses_key_encl):
23 # Prepare the packet
24 Pkt pkt; pkt.round_num = round_num
25 pkt.priv_label = random(); pkt.S = my_id
26 pkt.enc_content = ciphertext.random()
27

28 send_msg = (my_id, Encrypt(pkt, ses_key_encl))
29 recv_msg = rpc.request(send_msg)
30

31 if Decrypt(recv_msg, ses_key_encl) == None:
32 raise("Message loss")
33

34 return True

1

Figure 2: Pseudocode for client operations.

alerted about their unreliable network conditions (Lines 13-16
and Lines 31-32). For those successfully decrypted packets,
active clients then check whether their messages are from
their buddies (Line 18). Note that in Boomerang design, if the
receiver ID is the same as the sender ID (indicating that the
message is sent back like a “boomerang”), the client should be
alerted that his/her buddy has been blocked and can choose to
resend the message in the next round or stop the conversation
immediately (by changing to idle mode).

3.3 Server

Figure 3 shows the pseudocode for oblivious server opera-
tions, including two main functions: 1) oblivious irregular
pattern detection and 2) oblivious proactive pattern patching.
Below we introduce the background of oblivious primitives
and then describe the main ideas of our designs.

3.3.1 Background of Oblivious Primitives

We build Boomerang’s oblivious algorithms over an existing
library of general-purpose oblivious primitives developed by
XGBoost contributors [2,55], which is also based on libraries
provided in previous noteworthy enclave-based data analytic
systems [71, 73]. The library offers basic oblivious functions,
including comparisons, assignments, sorting, etc. These obliv-
ious functions are fundamentally built on register-to-register

operators, which are private to the processor and immune to
memory access pattern leakages [55, 71, 73].
Oblivious comparisons/assignments. This set of primitives
can conditionally assign or compare values on the register
level without revealing the results of the comparison or assign-
ment. In this paper, we use O_Equal(a,b), O_Less(a,b), and
O_Choose(cond,a,b) [2] for comparison and conditional as-
signment. O_Equal(a,b) outputs True if a = b (otherwise
outputs False). O_Less(a,b) outputs True if a ≤ b (oth-
erwise outputs False). O_Choose(cond,a,b) chooses from
two values given a boolean condition without leaking which
value is chosen. If cond= True, it outputs value a (otherwise
outputs value b).
Oblivious sort (O_Sort(key,array)). An oblivious sort al-
gorithm outputs ordered data without revealing any infor-
mation (e.g., the original order) about the input data [10].
In our instantiation, we choose bitonic sort [12], which is
highly parallelizable with O(n log2 n) computational complex-
ity. Bitonic sort compares and swaps the items in a fixed and
data-independent order, and thus is oblivious by design.

3.3.2 Oblivious Proactive Pattern Patching

Detecting irregular pattern. When receiving a batch, the
server first needs to identify all the regular and irregular mes-
sages for subsequent processing. The server first obliviously
sorts the batch by priv_label (Step 2 in Figure 3, Line 12).
This step is to map the messages of the same label (which
implies a communicating pair) together for further pattern
detection. Before introducing the detection algorithm, we first
show the possible label patterns after sorting. Since the private
label is a l-bit pseudorandom string shared between the pair,
the possibility that attackers can guess it and forge messages
is negligible if l is sufficiently large (e.g., 256 bits). Therefore,
a communicating pattern indicates a double-accessed label,
which we regard as a regular pattern. Otherwise, the pattern is
regarded as irregular. There are three possible label patterns
after O_Sort, as shown below

• double: messages from communicating pairs;
• single: messages from idle clients or incomplete pairs

(caused by client churn or malicious blocking);
• more-than-two: multiple messages with repeating labels

controlled by an attacker.
To detect irregular patterns, the server linearly scans the

ordered packets using oblivious comparison primitives to
identify the above three patterns. Basically, we can achieve
this by scanning the messages with a sliding window of three
each time, as shown in Step 3.1 in Figure 3. For each message,
we compare its private label with its previous, next, and next
next messages, respectively (Lines 17-22). This will give us
the relationship of the packets in the sliding window.

We first clarify how to determine more-than-two cases. If
the label of a message is the same as its two subsequent mes-
sages (is_next2_same= True), this implies that this private

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 881

1 def boomerang_server(round_num, recv_msgs, session_keys):
2 pkts = [], R_list = [] # Receiver IDs
3 recv_msgs = Dedup(recv_msgs)
4 # Step 1: decrypt the messages
5 for (S, enc_pkt) in recv_msgs:
6 pkt = Decrypt(enc_pkt,session_keys[S])
7 # Filter out messages not in this round
8 if pkt.round_num != round_num:
9 continue

10 pkts.append(pkt)
11 # Step 2: Pair the private labels
12 pkts.O_Sort(key=pkt.priv_label)
13 # Step 3: Oblivious proactive pattern patching
14 is_mtt = False # mtt: more_than_two
15 for pkt in pkts:
16 # Step 3.1: Detect irregular pattern
17 is_prev_same = O_Equal(pkt.priv_label,\
18 Prev(pkt).priv_label)
19 is_next_same = O_Equal(pkt.priv_label, \
20 Next(pkt).priv_label)
21 is_next2_same = O_Equal(pkt.priv_label, \
22 Next(Next(pkt)).priv_label)
23 # Detect more-than-two (mtt) pattern
24 is_mtt = is_mtt and is_prev_same or is_next2_same
25 # Detect and patch single patterns in Lines 27-28
26 # Step 3.2: Swapping and patching
27 pkt.R = O_Choose(is_next_same, Next(pkt).S, pkt.S)
28 pkt.R = O_Choose(is_prev_same, Prev(pkt).S, pkt.R)
29 pkt.R = O_Choose(is_mtt, pkt.S, pkt.R)
30 # Step 4: Re-order messages by receiver IDs
31 pkts.O_Sort(key=pkt.R)
32 # Step 5: Encrypt and send the messages
33 send_msgs = {}
34 for pkt in pkts:
35 enc_pkt = Encrypt(pkt, session_keys[pkt.R])
36 send_msgs[pkt.R] = enc_pkt
37 R_list.append(R)
38 rpc.response(R_list, send_msgs)
39

40

41

42

43

44

45

46 R_list.append(R)

1

Figure 3: Pseudocode for server operations.

label must occur at least three times. Then, we can identify
this message as a more-than-two case (by setting the flag
is_mtt= True). Another observation is that, if a message’s
label repeats as a detected more-than-two case, this message
must belong to the same case. We identify this by checking
whether a message’s previous neighbor belongs to a more-
than-two case (based on the flag is_mtt as set in the previous
iteration), and whether the message’s label repeats that of its
previous neighbor (based on the flag is_prev_same).

To determine single cases, we check both the message’s
previous and next neighbors. If inequality holds for both
neighbors (is_prev_same = False and is_next_same =
False), this message belongs to the single case. To save
operational costs, we integrate this logic with the swapping
process in Step 3.2 (Lines 27-28). This finishes the identifi-
cation part. In this step, the server has obtained information
about the relationship of the private labels in an ordered se-
quence and determined whether the label pattern falls into
an irregular case. Next, the Boomerang server will swap the
regular messages and patch the irregular ones.
Swapping and patching. For regular patterns, the server
swaps the sender IDs of the two messages and assigns their
values to the receiver ID fields (Lines 27-28). Specifically,
if the current label is the same as that of the previous (next)

packet, we assign its receiver ID field to have the value of the
sender ID of its previous (next) packet. The oblivious choose
function helps us conditionally assign the sender ID values
to the right packets. It ensures that the server will not learn
which part is actually copied to the receiver ID field.

For irregular patterns, Boomerang proactively patches them
by looping back such “single” and “more-than-two” messages
to its sender (like a boomerang), i.e., setting pkt.R= pkt.S,
where R and S denote the identifiers of the receiver and
sender, respectively. For single cases, the server obliviously
assigns pkt.R to have the value of pkt.S, if the conditions of
is_next_same and is_prev_same are both False (Lines
27-28). Finally, for more-than-two cases, where is_mtt =
True, the server also loops back the packet (Line 29). Note
that the original messages do not explicitly carry the infor-
mation of the receivers. This makes sure that only expected
“collisions” on private labels can push forward message deliv-
ery. In other words, the server will not obtain the receiver IDs
from messages with irregular label patterns.

This step patches the receiving pattern of idle clients, ac-
tive clients with blocked buddies, and clients controlled by an
attacker. With Boomerang, messages with irregular label pat-
terns will not influence their receiver’s receiving pattern. For
the example in Figure 1, the message from E to D is blocked,
in which case D would not receive any message if there were
no pattern patching. The Boomerang server loops back D’s
message by setting D as the receiver (as shown in Step ➋),
defeating active attacks.

3.3.3 Oblivious Re-order

After the proactive patching, Boomerang needs to re-order
the label-ordered sequence. This step is necessary, because
adjacent messages in the label-ordered sequence will imply
a high possibility that they share the same private label, in-
dicating that the receivers are talking to each other. Hence,
we choose to use osort with the order of receiver identifiers
(IDs) to obliviously re-order the sequence.

Sorting the outgoing messages by receiver IDs would re-
veal the set of receiver IDs (along with their order), which
are essential fields to be reported to the server for message
transmission anyway. Recall that in the proactive patching
step, the server carefully assigns the values of sender IDs to
receiver IDs via swapping and patching. This ensures that
the receiver set is exactly the same as the sender set (publicly
observable to attackers), and each receiver will receive exactly
one message. Therefore, sorting the messages by receiver IDs,
which reveals the ordered receiver ID list, would not reveal
additional information about the conversation metadata.
Remark. This completes our round-based oblivious message
exchange in Boomerang design. Note that at the beginning
of each round, we can further employ a textbook deduplica-
tion procedure in enclaves to filter repeated packets, just in
case a malicious host might try to cause an exchange failure

882 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(DoS attack) by injecting replicated packets from the network
stack to let the packets’ private labels appear more than twice.
Similar treatment has also been done in prior art [32, 56, 57].

4 Boomerang+: Horizontal Scalability

4.1 Overview
As noted in §1, for horizontal scalability, directly replicat-
ing the single-server Boomerang, with each server processing
a subset of clients, would not work because it immediately
implies that clients connecting to different servers are not
able to talk to each other. To address the problem, one direct
idea is to employ an entry node as a load balancer to obliv-
iously distribute batches of messages from all clients to a
group of Boomerang nodes for message exchange. Here, the
oblivious design is supposed to hide the mapping between the
messages and the Boomerang nodes from an attacker. While
this opens up a possible pathway to scale Boomerang, subtle
issues remain: how to set up the batch structure?

Recent studies on distributed oblivious data stores [32, 89]
have pushed forward the understanding on security-aware
scaling designs. Particularly, an oblivious load balancer must
set up the batch structure only using public information, in-
dependent of the input distribution. In this way, an attacker
would not observe any sensitive information from the load
balancing. We note that these requirements for setting up an
oblivious load balancer are generic to any security-aware scal-
able system designs. Yet, answering them can be quite design
specific. Indeed, a batch structure of data requests generated
by an oblivious balancer for a distributed data store, where
data partitions are fixed at each server across all rounds [32],
would be ill-suited for obliviously distributing batches of mes-
sages in Boomerang+, where messages might be mapped to
different Boomerang nodes each round.
Setting a batch size for Boomerang+. This has motivated us
to search for solutions specific to our Boomerang+ design. In
our context, the public information at an entry node is the m
messages from m connected clients, and n Boomerang nodes
(the back-end nodes for message exchange). Functionality-
wise, we need to partition the messages by their private labels,
which are random (§4.1), to facilitate the exchange of mes-
sages sharing the same labels at the same servers. For security,
we need to ensure that the batch structures reveal nothing
about the input distribution. For performance, we must set the
batch size B as small as possible, but without triggering the
overflow (otherwise, there will be dropped messages).

Inspired by the balls-into-bins analysis [32], our problem
of finding the bound on batch size B in distributing m mes-
sages by their random labels (balls) to n servers (bins) can
be translated to: what is the maximum load of balls into any
bin? In §3.3.2, we have shown each message’s label pattern
as single, double, or more-than-two. This suggests that each
message carries a different weight in the distribution, and

...... ...
...

Entry nodes B-nodesClients

sub-batches

......

A

Private label

...

...

...

...

...

C

0x21

0x2C
0x2C

0x4F

Figure 4: Overview of the scalable Boomerang+ instantiation.

thus we need to answer the question in a weighted balls-into-
bins game. In Appendix B, we show the complete analysis
and proofs to derive the maximum batch size in Boomerang+
(results listed below for easy reference), by applying clas-
sic results [13, 76] from the balls-into-bins literature to our
problem context.

Theorem 4.1 For any set of m messages, n Boomerang nodes,
and a security parameter λ, satisfying m ≫ n(lnn)3 and
λ/ log2 n > 1, let B(m,n) be a function that outputs the max-
imum batch size B for each node in Boomerang+. Then the
probability of overflow is negligible in λ if we choose

B =

⌈
m
n
+4

√
m lnn

3n

(
1− 1

λ

ln lnn
2ln2

)⌉
.

Based on the formula, the maximum batch size will be domi-
nated by m/n, with the extra padding size per batch varying
with different choices of messages m and Boomerang nodes n.
Note that λ/ log2 n > 1 can always hold in practice because n
is always smaller than 2λ for any reasonable security parame-
ter λ. As shown in Appendix B, Figure 13, with λ = 128 and
m = 216, when we scale the number of Boomerang nodes n
from 4 to 28, the ratio of extra paddings over real messages
ranges from 2% to 8%. With the maximum batch size settled,
we will describe our oblivious “load balancers” (entry nodes)
and the architecture of Boomerang+ next.
Architecture. Figure 4 shows Boomerang+. We leverage
the classic two-layer architecture, consisting of entry nodes
and Boomerang nodes (B-node for short) to share traffic and
computation workload. The message transmission flow is
summarized as follows. (➊) Each client connects to one entry
node. (➋) Entry nodes generate oblivious sub-batches for B-
nodes (§4.2). (➌) Each B-node merges the sub-batches from
entry nodes and processes messages like a single Boomerang
server (e.g., proactive irregular pattern detection and patching,
§3), except for one additional step to swap the entry node
identifiers of the pairs (§4.3). (➍) Upon done with the pro-
cessing, B-node sends the swapped messages back to entry
nodes. (➎) Finally, entry nodes merge the sub-batches, pad
for possible lost messages, and send them back to receivers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 883

0x1C

0x1C

0x1CC

A

B E1

0x1F

0x2D

0x0E

(a) Case 1

0x1C

0x1C

0x1C

A

B

E1

E2

E3

B1

...

...

...

...

0x1C

A

B

C C

(b) Case 2

Figure 5: An illustration of more-than-two label patterns on
(a) entry nodes and (b) B-nodes. The red dotted arrows in (b)
imply that the messages to “0x1C” will be looped back to the
malicious clients ultimately.

4.2 Entry Nodes

4.2.1 Irregular Pattern Patching

Similar to the basic single-server Boomerang, when receiving
a batch, the entry nodes first decrypt and obliviously sort the
batch by priv_label, and then detect and patch irregular
label patterns. But different from the proactive pattern patch-
ing algorithm at the basic Boomerang (§3.3.2), here the entry
nodes only need to handle the more-than-two cases and leave
the single ones to B-nodes.

Patching the more-than-two cases on entry nodes, in case
of multiple clients controlled by an attacker sending mul-
tiple messages carrying the same private label, is essential.
Because such a threat will cause workload skew [32] and po-
tentially influence the non-overflow guarantee of our weighted
balls-into-bins algorithm. To eliminate the skew, we let the
entry node replace the redundant private labels with new ran-
dom labels. To detect the more-than-two label patterns, entry
nodes adopt the detection algorithm in Boomerang (Step 3.1
in Figure 3, Lines 17-25). Next, instead of looping the irreg-
ular messages back, the entry node reassigns new random
private labels to them, as shown in Figure 5(a). To set it
obliviously, we assign pkt.priv_label to have the value of
O_Choose(is_mtt, random(), pkt.priv_label).

Since the fresh private label is randomly chosen with neg-
ligible possibility of collision, the irregular messages will
be regarded as a single pattern to be looped back in subse-
quent processes on the Boomerang node. In this way, we can
eliminate workload skew without revealing the number of
malicious messages or changing the communication pattern.

4.2.2 One-time Message Assignment

The message assignment function has two main goals:
• (function goal) assigning the messages with the same private
labels to the same B-node, no matter which entry nodes the
clients are connecting to, and
• (security goal) ensuring the assignment is (pseudo)random,
and the distribution of the sub-batches across rounds will not
leak the communication pattern.

For the function goal, the intuition is to derive B-node ID

B-
no

de
 1

B-
no

de
 0

0x2A6F4592
1 REAL

0x2A6F4592
1 REAL

0x0D24E832
0 REAL

0x20FF3976
1 REAL

Derive
fresh br_id

*
0 DUMMY

*
0 DUMMY

*
1 DUMMY

*
1 DUMMY

Append
dummy
packets

0x2A6F4592
1 REAL

0x2A6F4592
1 REAL

0x0D24E832
0 REAL

0x20FF3976
1 REAL

0x2A6F4592
1 REAL

0x20FF3976
1 REAL

*
1 DUMMY

*
1 DUMMY

OSort by
br_id || tag

0x0D24E832
0 REAL

*
0 DUMMY

*
0 DUMMY

0x2A6F4592
1 REAL

0x2A6F4592
1 REAL

0x20FF3976
1 REAL

Oblivious
Compact

0x0D24E832
0 REAL

*
0 DUMMY

0x2A6F4592
1 REAL

*
1 DUMMY

*
1 DUMMY

*
0 DUMMY

H

H

H

H

*
1 DUMMY

*
0 DUMMY

*
0 DUMMY

*
1 DUMMY

*
1 DUMMY

*
0 DUMMY

1 2 3 4

Message
format

...
priv_label

br_id tag
...

Figure 6: An example of entry node operations. “H” in Step
1 refers to the mapping function (Eq. (1)). B is set to 3. The
blue box with rounded corners refers to read operations, and
the red box with dotted lines refers to write operations.

(denoted as br_id) from the private label using the same
deterministic function across all entry nodes. For example,
we can simply compute the identifier from the private label
modulo the number of B-nodes: br_id = priv_label%n,
where n refers to the number of B-nodes. For the security
goal, we make the mapping function change across rounds.

Specifically, we use a keyed hash function Hk(·) to derive a
fresh string from the private label, round number, and a secret
key k shared among the enclaves of all entry nodes. We apply
the modulo function to the fresh string and the number of
B-nodes. The assigned B-node is:

br_id= Hk(priv_label||round_num)%n. (1)

The keyed hash function provides a fresh mapping from the
private label to the B-node every round, so attackers cannot
predict any future assignments in new rounds.

4.2.3 Oblivious Sub-batch Padding

Although the distribution is fresh across rounds, the true size
of each sub-batch is revealed, which brings security concerns
in long-term communications [32, 52, 87]. Based on our de-
rived maximum batch size in §4.1, we opt to pad the sub-
batches to equal size B, which is calculated from public in-
formation, namely m messages and n B-nodes, and will not
carry any private information about the content.

The remaining step is to obliviously pad the sub-batches
without leaking the original sizes. We here follow the oblivi-
ous padding algorithm in Snoopy [32]. The padding steps are

884 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

shown in Figure 6 and described as follows. Firstly (➋), the
entry node appends B dummy messages (with tag= DUMMY)
for each sub-batch to the message sequence. The private la-
bels in dummy messages are randomly generated. Secondly
(➌), it obliviously sorts the message sequence by br_id||tag.
After the sorting, we can get a group of sub-batches, each
of which is formed of real messages followed by B dummy
messages. Finally (➍), it squeezes extra dummy messages
using oblivious compaction. An oblivious compaction algo-
rithm [40] (O_Compact(flag,array)) can remove the items
in an array with certain flags without leaking which items are
removed. The complexity is O(n logn).

To decide which messages to send or remove obliviously
(that is, to set the flag for each message), the entry node lin-
early scans the sorted batch and keeps a counter (c) to record
the relative position of the message in a sub-batch. If the mes-
sage is among the first B messages in its sub-batch (c≤ B),
the message should be sent (flag = True). Otherwise, the
flag should be set to False. We next introduce how to obliv-
iously iterate c and assign flag. The counter is initially set
to 1. When iterating through the batch, the node accumulates
the counter (c+1) if the current br_id repeats its previous
one. Otherwise, set the counter to 1, meaning that the node
has finished processing the current sub-batch and encounters
the first message for a new sub-batch. With the right counter
c, the node can obliviously assign flag accordingly. The
pseudocode for the above step is as follows.

is_br_same= O_Equal(pkt.br_id,Prev(pkt).br_id)
c= O_Choose(is_br_same,c+1,1)

flag= O_Less(c,B)

B is the upper bound calculated from our weighted balls-
into-bins algorithm, which guarantees that real messages as-
signed to the same B-node will not exceed size B (except
with negligible probability). Therefore, all real messages will
be marked with flag = True and not be dropped. Finally,
the node uses oblivious compaction to remove extra dummy
messages (those marked with flag= False).

With the steps above, the size of the sub-batch for each
group is exactly B, and the attacker cannot differentiate the
dummy messages from the real ones. The entry nodes then
send sub-batches to B-nodes for further processing.

4.3 Boomerang Node
Like the basic Boomerang, B-nodes also need to: 1) detect
irregular access patterns and patch them (i.e., the patching
algorithm in §3.3.2); and 2) swap the messages carrying the
same private label. Figure 7 shows operations on B-nodes,
among which most operations are the same as Boomerang.

Similarly, there are two types of irregular label patterns
on B-nodes: 1) single pattern and 2) more-than-two pattern.
Besides idle clients and incomplete pairs as discussed before,
single patterns may also come from the irregular messages

Detect,
patch, and

swap

0x2A6F4595
1 REAL

NULL A

0x20FF3976
1 REAL

NULL D

0x0D24E832
2 REAL

NULL B

*
3 DUMMY
* *

0x0D24E832
2 REAL

NULL B

0x20FF3976
1 REAL

NULL D

0x2A6F4595
1 REAL

NULL A

0x2A6F4595
4 REAL

NULL C

0x0D24E832
2 REAL
B B

0x20FF3976
1 REAL
D D

0x2A6F4595
4 REAL
C A

0x2A6F4595
1 REAL
A C

0x0D24E832
2 REAL
B B

0x2A6F4595
1 REAL
A C

0x20FF3976
1 REAL
D D

E1

E2

E3

E4

 OSort by
priv_label

 OSort by
 entry_id

*
3 DUMMY
* *

*
3 DUMMY
* *

*
3 DUMMY
* *

0x2A6F4595
4 REAL
C A

1 2 3
Message format

priv_label
entry_id tag

R S

E1

E2

E3

E4
0x2A6F4595

4 REAL
NULL C

Figure 7: An example of B-node operations. In this example,
A and C are talking to each other, B talks to herself (idle
client), and the message from someone to D is blocked.

with private labels reassigned by entry nodes. Interestingly,
although entry nodes have eliminated workload skew, more-
than-two patterns might still appear on B-nodes. As shown
in Figure 5(b), malicious clients could send messages with
the same private label through multiple entry nodes, with
only one message to each entry node, evading the irregular
pattern detection. Ultimately, these messages will end at some
B-node and appear as more-than-two patterns. To detect such
irregular patterns, B-nodes follow the same detection and
patching algorithm as Boomerang (Steps 2 and 3 in Figure 3).

Different from Boomerang, B-nodes cannot directly send
the processed messages to clients, because this reveals the
identities of clients connecting to the same B-node, indicating
they are more likely to be talking. Instead, we let B-nodes
send each message back to the entry node first, and then let the
entry node send the message back to the receiver connecting
to it. The entry node ID of the receiver can be obtained from
the paired message (if any) with which it was swapped. Hence,
(➋) the B-node can swap entry node IDs (entry_id) of the
paired messages during the linear scan. Similar to the receiver
ID swapping step in Boomerang, the B-node swaps (or loops
back) both the entry node IDs and receiver IDs using oblivious
choose. Finally (➌), the B-node obliviously sorts the sequence
by entry node IDs (to group the batch for each entry node
together) and sends the messages back to the corresponding
entry nodes.

In Boomerang, the last step is to re-order messages. We
accordingly move this step to entry nodes. When receiving the
sub-batches from B-nodes, entry nodes merge the sub-batches,
sort the batch by receiver IDs, pad for possible missing mes-
sages (as we will discuss in §4.4), remove extra dummy mes-
sages, and send the messages to receivers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 885

4.4 Server Churn
So far, we have introduced our mechanisms (e.g., one-time
message assignment and oblivious sub-batch padding) to
make the communication pattern among servers oblivious
to attackers. However, such mechanisms only consider the
“accidents” from clients. For completeness, here we discuss
some possible accidents that may happen to servers and intro-
duce Boomerang+’s enhancing strategies.
B-node churn. B-nodes can be blocked (e.g., under DoS
attacks) or accidentally go offline without sending back the
messages, leading to missing patterns on the clients whose
messages are processed on the corresponding B-node. This
gives an attacker a chance to link the clients with certain B-
nodes. Towards this threat, we let the entry node proactively
patch the dropping pattern due to the lost connection with
some B-nodes. The patching algorithm is very similar to
the oblivious sub-batch padding algorithm in §4.2.3. Firstly,
the entry node appends one dummy message for each client
connecting to itself. This is feasible because the node can
record the list of connecting clients when it processes the
incoming messages in the very beginning. Secondly, the entry
node obliviously sorts the batch by receiver identifiers. Finally,
it linearly scans the sequence, marks which messages to send,
and obliviously compacts the batch. After the patching, we
can ensure that all clients connecting to the entry node will
receive one message in each round, no matter whether there
is any B-node churn or not. For efficiency, we only trigger
this patching algorithm when a connection loss occurs. Once
a B-node goes offline, entry nodes will ignore this node and
not assign messages to it in the next round (according to the
instructions from the coordinator). In this way, we make sure
that B-node churn will not cause severe service denial.
Entry node churn. This case is similar to the case where the
clients are blocked, but on a larger scale. The direct impact is
that the buddies of clients connected to this entry node will
fail to form a paired private label, and thus their messages will
be looped back (by other entry nodes). In this case, attackers
observe nothing but a predictable situation where a set of
clients cannot link to the churned entry node.

5 Analysis

We now show Boomerang and Boomerang+ achieve com-
munication pattern indistinguishability as we claimed in §2.
Thanks to the oblivious designs, we ensure that all connected
clients behave the same in every round, either exchanging
messages with a buddy or sending messages to themselves.
Theorem 5.1 Given oblivious comparison/assignment oper-
ations, an oblivious sort algorithm, and an oblivious patching
and swapping algorithm, Boomerang achieves communica-
tion pattern indistinguishability presented in Definition 2.1.

Proof sketch. We focus on the setting defined in Definition 2.1,
where m− 2 clients are compromised by the attacker. As

Boomerang operates in rounds, in view of the attacker, the
only way to distinguish the communication pattern of two
given clients is from the observation of memory access pat-
terns during the “obfuscated” message exchange procedure.
Thus, the security of Boomerang hinges on the oblivious al-
gorithms designed for proactive pattern patching and re-order
(in §3.3.2 and §3.3.3). As the re-order algorithm is essentially
the oblivious sorting [10], we mainly pay attention to proving
the obliviousness of proactive pattern patching, captured by
Lemma C.1 in Appendix C.1. When all involved algorithms
are oblivious, it is easy to derive that the attacker cannot iden-
tify whether two clients are communicating or not within each
round, except with negligible probability. For the fixed system
configuration, it follows that the attacker’s view will remain
the same across rounds. The full proof of the Theorem 5.1
can be seen in Appendix C.1.

We next show that Boomerang+ achieves the same com-
munication pattern indistinguishability as Boomerang, even
though multiple servers are introduced.

Theorem 5.2 Given a cryptographic hash function, obliv-
ious comparison/assignment operations, an oblivious sort
algorithm, an oblivious patching and swapping algorithm,
an oblivious sub-batch padding algorithm, and an oblivious
compaction algorithm, Boomerang+ achieves communication
pattern indistinguishability presented in Definition 2.1.

Proof sketch. Following the proof sketch in Theorem 5.1,
here we also focus on the settings where m− 2 clients are
controlled by the attacker. With multiple entry nodes and B-
nodes deployed, we will first show that Boomerang+ assigns
a message to each B-node uniformly due to the deployment of
the cryptographic hash function and our security-aware load-
balancing design. Then, we show that for the two targeted
clients, whether they are communicating or not, the probabili-
ties that their messages are assigned to one single B-node are
always equal. Thus, combined with Theorem 5.1, we have
that an attacker cannot identify whether two clients are com-
municating or not in Boomerang+. The detailed analysis can
be seen in Appendix C.2.

It is intuitive to see that Boomerang+ is horizontally scal-
able. See Appendix B for the scalability analysis.

6 Implementation and Evaluation

We implement Boomerang and Boomerang+ in about 4000
lines of C++ code. We build secure enclaves using the
framework of Intel SGX v2.16 on Intel SGX DCAP Driver
v1.14 and use Intel’s AVX-512 SIMD instructions for ba-
sic oblivious primitives. We build our oblivious algorithms
using the oblivious library from XGBoost [2]. Clients and
Boomerang(+) servers communicate using gRPC v1.35 on
asynchronous RPC mode over TLS. The Boomerang(+) pro-
totype is available online at https://github.com/CongGro
up/boomerang.

886 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/CongGroup/boomerang
https://github.com/CongGroup/boomerang

6.1 Evaluation Overview
We experimentally answer the following questions: 1) How
fast are Boomerang and Boomerang+? 2) Can Boomerang+
scale by adding servers? We highlight some results below:

• Boomerang achieves 99th percentile latency of 1.41 sec-
ond for 216 clients on one 16-core server. For space, we
present the results in Appendix D.

• Boomerang+ achieves 99th percentile latency of 615 ms
for 216 on 16 servers and 7.76 second latency for 220

clients on 32 servers, respectively.

Experiment setup. We evaluate Boomerang(+) on Tencent
Cloud M6ce VMs [83], with Intel Xeon Ice Lake processors
with Intel SGX support [45]. For Boomerang, we use one
M6ce.4XLARGE128 instance (16 vCPU, 128 GB of memory,
and 13 Gbps of network bandwidth). For Boomerang+, we
assign 12 M6ce.4XLARGE128 instances as entry nodes and 4
M6ce.4XLARGE128 instances as B-nodes by default. For com-
pleteness, we also evaluate three metadata-private communi-
cation systems: Pung (XPIR) [8], XRD [54] and Addra [4].
According to Azure pricing [65], instances with TEEs are
roughly twice as expensive as those without TEEs at the same
level of computing power. Therefore, to compensate for the
machine cost of the trusted hardware Boomerang uses, we
allocate twice the number of machines (or total CPU cores)
for these systems. For XRD, we use 32 M6.4XLARGE128 in-
stances (16 vCPU, 128 GB of memory, and 13 Gbps of net-
work bandwidth) to construct the chain-based architecture.
For Pung, we use one M6.4XLARGE128 instance and run 1/32
total traffic over it, following the setting in XRD [54]. Since
Pung is directly parallelizable, letting one server share 1/N of
the total traffic is the best performance it can possibly achieve.
For Addra, we use one S4.8XLARGE128 instance (32 vCPU,
128 GB of memory, and 11 Gbps of network bandwidth) as
the master and 30 M6.4XLARGE128 instances as the workers.
For clients in the four systems, we use one C5.26XLARGE368
instance (104 vCPU, 368 GB of memory, 36 Gbps of network
bandwidth) to run simulated clients, each sending/receiving
one RPC request at a time. We run instances in the same data
center to save bandwidth and simulate client-server round trip
latency of 100 ms by using Linux tc command. Results are
averaged 20 times for each experiment.
Parameters. We set the message size to 256 Bytes and the
private label to 256 bits. We set the conversation round to
12 seconds, according to the latency results from our exper-
iment on Boomerang+ dealing with 220 messages. We set
the batch size B according to Theorem 4.1, with the security
parameter λ = 128. For XRD, we construct 32 chains, each
of which consists of 30 machines. The length ensures that the
probability of the existence of a group of malicious servers
is less than 2−64 if 20% of the servers are malicious. We let
each client send 8 messages to 8 chains, following XRD’s
recommendations. For Pung, we use recursion with a depth
of 2 and set the bucket size to 64.

2^10 2^12 2^14 2^16 2^18 2^20
Number of Clients

10−1

100

101

102

99
th

 P
er

ce
nt

lie
 L

at
en

cy
 (s

)

0.12 0.14 0.15
0.18

0.24

0.39
0.62

1.27

2.61

5.48

10.09

0.75

1.25

2.24

3.98

7.33

14.19

27.76
55.52

101.25

212.99

415.74

0.55

1.17

2.78

7.4

22.53

72.32

281.86

0.55

0.93

2.41

6.02

20.04

56.52

174.55

743.24

0.11 0.11 0.12 0.13
0.17

0.25

0.45

0.83

1.56

3.12

5.88

0.12 0.14
0.18 0.26

0.4

0.78

1.41

2.83

6.45

13.03

26.8

Boomerang+
Boomerang
Pung (XPIR)
XRD
Addra
Non-private baseline

Figure 8: 99th percentile latency of Boomerang, Boomerang+,
and other baselines with a varying number of clients.

6.2 Boomerang+ Performance
Latency and throughput. Figure 8 depicts the latency of
Boomerang, Boomerang+, Pung (XPIR) [8], XRD [54], Ad-
dra [4], and a non-private baseline. Pung, XRD, and Addra
are the latest work achieving pairwise metadata-private com-
munication under cryptographic security, but with different
trust assumptions. XRD operates on fractional trusted servers,
and Addra and Pung operate on fully untrusted servers. We
notice that the latency results of Addra and XRD are higher
than those reported in their papers. This is perhaps because
we used fewer and less powerful machines. Besides, we only
ran Addra over up to 218 clients, as our testbed (one 32-core
master and 30 16-core workers) could not afford a workload
for clients more than 218.

Boomerang+ achieves 615 ms latency for 216 clients and
10.09 second latency for 220 clients. The throughput of
Boomerang+ reaches 85.4K messages per second under 16
machines. Compared to the prior systems based on crypto-
graphic primitives, Boomerang+ is significantly more efficient
thanks to leveraging the trusted hardware. For example, for
216 clients, Boomerang+ is 36× faster than Addra and 45×
faster than XRD. We also evaluate a non-private version of
Boomerang+ to show the cost of non-oblivious operations
(most of which is from the network operation cost). In this
baseline, we keep the same round-based design and traffic
transmission flow (i.e., the same two-layer network architec-
ture) but remove all security-enhancing operations in enclaves
(e.g., oblivious sort, padding, patching, etc.). Results (the grey
dotted line in Figure 8) indicate that the computational over-
head of the oblivious operations for metadata hiding over that
of other basic operations is small. Interestingly, compared to
Boomerang (the basic instantiation), Boomerang+ does not
have an overwhelming advantage when the clients are less
than 215. This is because Boomerang+ involves more obliv-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 887

2^16 2^17 2^18 2^19 2^20
Number of Clients

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ca

l P
ro

ce
ss

in
g

Ti
m

e
(s

)

Entry node (response preparation)
B-node (message processing)
Entry node (batch assignment)

Figure 9: Breakdown of Boomerang+ op-
eration costs.

2 6 10 14
Number of Entry Nodes

0

5

10

15

20

25

30

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (s

)

12.53
10.12 10.76 10.77 13.29

15.61

29.11

0.72 0.6 0.64 0.63 0.66 0.89 1.55

2^20 clients
2^16 clients

Figure 10: Latency with varying numbers
of entry and B-nodes (sum fixed to 16).

2 6 10 14
Number of Entry Nodes

30K

40K

50K

60K

70K

80K

90K

Th
ro

ug
hp

ut
 (m

sg
s/

s)

65.4K

75.9K

68.2K
69.7K

59.1K

51.5K

29.8K

74.1K

85.4K
79.7K 82.2K

81.4K

56.4K

34.0K

2^20 clients
2^16 clients

Figure 11: Throughput with varying num-
bers of entry nodes and B-nodes.

ious operations (e.g., the padding, oblivious sort, and com-
paction on the entry nodes) to take care of potential threats
due to the scalable design. When the clients scale to 220, the
benefits of horizontal scaling gradually show up: Boomerang+
runs 2.66× faster than Boomerang. In §6.3, we will further
show the horizontal scalability of Boomerang+; that is, it can
achieve lower latency by adding more servers.
Bandwidth cost. Boomerang+ requires one message per
round for both active and idle clients. On the server side,
Boomerang+ involves dummy paddings, and the overhead
is relatively small. According to our calculation, for a work-
load of 215 messages on one entry node to four B-nodes,
dummy messages account for less than 4% of all messages
(details about the padding overhead in Figures 13 and 14 in
Appendix B). Luckily, on Azure Cloud and many other clouds,
data transfer within one VPNet is free [63].

6.3 Microbenchmarks

Breakdown of Boomerang+ operational cost. To evaluate
the computational cost on entry nodes and B-nodes, we break
down Boomerang+ latency into three parts: 1) entry node
batch assignment, 2) B-node message processing, and 3) en-
try node response preparation. Figure 9 shows the processing
time for 8 entry nodes plus 8 B-nodes, each of which handles
(almost) an equivalent volume of messages. Besides, we only
record the local processing time on each node and eliminate
the network cost (e.g., RPC request and response with clients)
here. In this way, we can clearly see the computational over-
head at each stage. Note that the total operation latency is
smaller than the end-to-end latency presented in Figure 8.
This is because processing RPC requests is time-consuming
in our implementation, especially under a large number of
requests. Generally, facing the same volume, the entry nodes
(both the first and third stages) operate longer than B-nodes.
We conjecture that assigning a few more machines as entry
nodes than B-nodes with a fixed total number of machines
may save latency, as shown below.
Resource allocation on entry nodes and B-nodes. As
discussed before, resource allocation can be important for
Boomerang+’s overall performance. We have tested the la-

8 16 24 32
Number of 8-Core Servers

0

2

4

6

8

10

12

14

16

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (s

) 15.5

10.4

8.1 7.8

1.6
2.5

3.3
4.1

0.8 1.3 1.7 2.1

2^20 clients (fixed)
16K clients/server
8K clients/server

Figure 12: Latency with a varying number of servers.

tency and throughput under different allocations on entry
nodes and B-nodes using 16 machines in total, as shown in
Figures 10 and 11, respectively. We find that Boomerang+
performs the best over 12 entry nodes and 4 B-nodes. This
is because the operational cost is higher on entry nodes, and
assigning more entry nodes reduces the average workload on
each entry node. This observation is consistent with the break-
down results, where processing on entry nodes takes longer
than that on B-nodes. We also report the performance of dif-
ferent allocations given different total numbers of servers in
Appendix E.
Scaling by adding servers. With horizontal scalability,
Boomerang+ should, ideally, achieve the same level of latency
by adding more servers when handling more clients. In this
experiment, we adopt 32 8-core M6ce.2XLARGE64 instances
to test the scalability of Boomerang+ over more servers.

We first set a fixed total number of clients to 220 and gradu-
ally increase the number of servers from 8 to 32 to see how the
latency can be reduced by adding servers. We then evaluate
the scalability by proportionally adding servers and clients,
by keeping a fixed number of clients on one server group.
Specifically, we let every 8 servers handle 217 and 216 clients
(amortized to about 16K and 8K clients per server, respec-
tively). For different numbers of servers, we choose the best
ratio of entry nodes to B-nodes according to the supplemen-
tary resource allocation experiment (Appendix E). The ratio is
5:3 for 8 servers and 3:1 for 16, 24, and 32 servers. As reported
in Figure 12, the latency reduces from 15.5 seconds to 7.8 sec-
onds when Boomerang+ scales from 8 to 32 servers. Adding
more servers to decrease the amortized workload helps re-

888 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

duce latency when client size scales, but this also increases
the system dollar cost (as discussed in Appendix F). This is a
trade-off between performance and cost. For example, with
the same total number of clients, supporting an average of 8K
clients per server doubles the machine cost of supporting 16K
clients per server, while gaining a 2× speed-up. Fortunately,
the host cost for a 16-core SGX instance on Azure cloud is
only 1121 USD/month, which we believe is affordable when
amortized to 8K clients (0.14 USD/month per client).

7 Related Work

Mix-nets and follow-up enhancements. There has been
significant progress in metadata-private communication de-
signs recently. One category of results follows the concept
of mix networks (mix-nets) [21]. Based on that, recent re-
sults [15,16,52–54,56–58,72,87,88] have proposed a number
of noteworthy security and privacy enhancement strategies to
deal with powerful attackers, including: 1) batch processing of
messages from all clients in synchronous rounds to mitigate
traffic analysis threats [31, 39]; 2) carefully structuring pro-
tocols to reveal less observable variables (and thus exposing
reduced useful information) to attackers, with representative
examples of adopting private virtual addresses for obfuscated
message exchanges [54, 56, 87, 88]; 3) generating cover traf-
fic with calibrated parameters to obscure the communication
patterns among users (as well as users) [56, 87, 88]; 4) adding
verifiability to the message shuffling to defeat misbehaving
servers among the mix-nets [54, 56, 87]; and 5) designing
proactive self-recovering schemes (usually relying on the as-
sumption of honest servers) in the face of inadvertent user dis-
connections or even active network disruptions [54, 57]. One
latest effort has tried to shift the online burden of clients [11]
through oblivious delegation to untrusted proxy servers.

Boomerang’s design draws insights from these strategies
but differs from them on instantiations with hardware en-
claves. Trusting the enclaves enables Boomerang to use fewer
servers for traffic mixing with reduced latency. But the unique
enclave security context demands Boomerang to bring to-
gether tailored oblivious designs for message shuffling, hori-
zontal scaling, and proactive patching against active attacks.
Metadata-private messaging via cryptographic designs.
There have been cryptographic designs to facilitate metadata-
private communications. One category of results follows
the dining cryptographers network (DC-net) [22], which de-
mands broadcasting data linear to the size of the participating
clients in the anonymous communication at a high level [28].
Later systems [3, 29, 91] propose scalability improvement
and resilience designs against unreliable clients and untrusted
servers. Another category of cryptographic designs utilizes
private information retrieval [4,6,8], MPC [5] and distributed
point function techniques [3, 27, 37, 70] to facilitate oblivious
read / write to a database with private mailboxes, based on
which metadata-private messaging (and broadcast) system can

be constructed. Recently, Clarion [36] gives an MPC-based
shuffling design for anonymous communication.

Despite providing cryptographic security (sometimes even
under fully untrusted server [4, 8]), these systems do not eas-
ily scale to more than hundreds of thousands of users while
maintaining low latency and high throughput. The inherent
cryptographic operations also present unfavorable operational
dollar cost, which might yet be attractive for voluntary adop-
tions in practice.
Security-aware scaling of oblivious data stores. Recent
results have studied how to scale the oblivious data ac-
cess systems without leaking information about the data re-
quests [32, 89]. The key is an oblivious load balancer design
that distributes access batches independent of the input dis-
tribution (with security-aware paddings) and sets the batch
size using only public information. The entry-node design
in Boomerang+ is inspired by these generic observations.
Yet, with context-specific modeling and analysis, we have
derived the bound of the maximum batch size that best suits
our metadata-private messaging system, through a weighted
balls-into-bins game.
Enclave-based network systems. While enclave-based net-
work applications are many, e.g., SGX-Tor [49, 50], SGX-
middleboxes [35, 42, 74], to our best knowledge, usage of
enclaves is rarely attempted for metadata-private communi-
cations, except for one recent work DAEnet [80]. The focus
of DAEnet is different from Boomerang, as it tends to hide
the conversation route through a peer-to-peer infrastructure,
where each peer as a personal computer is assumed to be
equipped with an enclave. Unfortunately, this assumption
seems no longer in line with the industry movement [44].

8 Conclusion
We have presented Boomerang, a metadata-private messaging
system that leverages the readily available trust assumption on
hardware enclaves. Boomerang draws many insights from the
prior art and achieves efficient pairwise communication with
cryptographic security. Its technical instantiation involves tai-
lored oblivious algorithms for message shuffling, horizontal
scaling, and proactive resistance against active attacks. We
hope Boomerang’s comparably high efficiency and low oper-
ational cost could make metadata-private messaging systems
one step closer to mass adoption in practice.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Dr. Jay
Lorch, for their helpful and valuable feedback, and Tencent
Yunding lab for providing the Intel SGX cluster and gener-
ous technical support. This work was partially supported by
the NSFC under Grants U20B2049, U21B2018, 62202228,
and 62032021, the HK RGC under Grants N_CityU139/21,
RFS2122-1S04, C2004-21GF, R1012-21, and R6021-20F, and
the Natural Science Foundation of Jiangsu Province under
Grant BK20210330.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 889

References

[1] Confidential Computing Zoo repository. https://gith
ub.com/intel/confidential-computing-zoo. Ac-
cessed Sept. 2022.

[2] XGBoost repository. https://github.com/mc2-pro
ject/secure-xgboost. Accessed Sept. 2022.

[3] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blin-
der - scalable, robust anonymous committed broadcast.
In Proc. of ACM CCS, pages 1233–1252, 2020.

[4] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted infras-
tructure. In Proc. of USENIX OSDI, 2021.

[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste,
and Thomas Zacharias. MCMix: Anonymous messag-
ing via secure multiparty computation. In Proc. of
USENIX Security, pages 1217–1234, 2017.

[6] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. PIR with compressed queries and amortized query
processing. In Proc. of IEEE S&P, pages 962–979,
2018.

[7] Sebastian Angel, Sampath Kannan, and Zachary B.
Ratliff. Private resource allocators and their applica-
tions. In Proc. of IEEE S&P, pages 372–391, 2020.

[8] Sebastian Angel and Srinath T. V. Setty. Unobservable
communication over fully untrusted infrastructure. In
Proc. of USENIX OSDI, pages 551–569, 2016.

[9] Apache. Mutual Attestation: Why and How.
https://teaclave.apache.org/docs/mutual-at
testation/. Accessed Jan. 2023.

[10] Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael
Pass, Ling Ren, and Elaine Shi. Bucket oblivious sort:
An extremely simple oblivious sort. In Proc. of SOSA,
pages 8–14, 2020.

[11] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad,
and Nickolai Zeldovich. Groove: Flexible metadata-
private messaging. In Proc. of USENIX OSDI, pages
735–750, 2022.

[12] Kenneth E. Batcher. Sorting networks and their appli-
cations. In Proc. of AFIPS, volume 32, pages 307–314,
1968.

[13] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and
Russell A. Martin. On weighted balls-into-bins games.
Theor. Comput. Sci., 409(3):511–520, 2008.

[14] Oliver Berthold and Heinrich Langos. Dummy traffic
against long term intersection attacks. In Proc. of PETS,
pages 110–128, 2002.

[15] Stevens Le Blond, David R. Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scalable,
traffic analysis resistant anonymity network for VoIP
systems. In Proc. of ACM SIGCOMM, 2015.

[16] Stevens Le Blond, David R. Choffnes, Wenxuan Zhou,
Peter Druschel, Hitesh Ballani, and Paul Francis. To-
wards efficient traffic-analysis resistant anonymity net-
works. In Proc. of ACM SIGCOMM, 2013.

[17] Alexandra Boldyreva, David Cash, Marc Fischlin, and
Bogdan Warinschi. Foundations of non-malleable hash
and one-way functions. In Proc. of ASIACRYPT, volume
5912 of Lecture Notes in Computer Science, pages 524–
541, 2009.

[18] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright,
Sizhuo Zhang, Arvind, and Srinivas Devadas. MI6: se-
cure enclaves in a speculative out-of-order processor. In
Proc. of MICRO, pages 42–56, 2019.

[19] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In Proc. of WOOT, 2017.

[20] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In Proc. of USENIX Security, pages
1041–1056, 2017.

[21] David Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24(2):84–88, 1981.

[22] David Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability. J.
Cryptol., 1(1):65–75, 1988.

[23] Guoxing Chen and Yinqian Zhang. Mage: Mutual at-
testation for a group of enclaves without trusted third
parties. In Proc. of USENIX Security, pages 4095–4110,
2022.

[24] Weikeng Chen and Raluca Ada Popa. Metal: A
metadata-hiding file-sharing system. In Proc. of NDSS,
2020.

[25] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward
Dean, David Oswald, and Flavio D. Garcia. Voltpillager:
Hardware-based fault injection attacks against intel SGX
enclaves using the SVID voltage scaling interface. In
Proc. of USENIX Security, pages 699–716, 2021.

890 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/intel/confidential-computing-zoo
https://github.com/intel/confidential-computing-zoo
https://github.com/mc2-project/secure-xgboost
https://github.com/mc2-project/secure-xgboost
https://teaclave.apache.org/docs/mutual-attestation/
https://teaclave.apache.org/docs/mutual-attestation/

[26] David Core. We kill people based on metadata. The
New York Review, 2014.

[27] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling
millions of users. In Proc. of IEEE S&P, pages 321–
338, 2015.

[28] Henry Corrigan-Gibbs and Bryan Ford. Dissent: ac-
countable anonymous group messaging. In Proc. of
ACM CCS, pages 340–350, 2010.

[29] Henry Corrigan-Gibbs, David Isaac Wolinsky, and
Bryan Ford. Proactively accountable anonymous mes-
saging in verdict. In Proc. of USENIX Security, pages
147–162, 2013.

[30] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. In Proc. of USENIX Security, pages
857–874, 2016.

[31] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latency -
choose two. In Proc. of IEEE S&P, pages 108–126,
2018.

[32] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpassing
the scalability bottleneck of oblivious storage. In Proc.
of ACM SOSP, pages 655–671, 2021.

[33] Roger Dingledine and Nick Mathewson. Anonymity
loves company: Usability and the network effect. In
Proc. of WEIS, 2006.

[34] Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. Tor: The second-generation onion router. In Proc.
of USENIX Security, pages 303–320, 2004.

[35] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou,
Qian Wang, and Kui Ren. LightBox: Full-stack pro-
tected stateful middlebox at lightning speed. In Proc. of
ACM CCS, pages 2351–2367, 2019.

[36] Saba Eskandarian and Dan Boneh. Clarion: Anonymous
communication from multiparty shuffling protocols. In
Proc. of NDSS, 2022.

[37] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Za-
haria, and Dan Boneh. Express: Lowering the cost of
metadata-hiding communication with cryptographic pri-
vacy. In Proc. of USENIX Security, pages 1775–1792,
2021.

[38] Electronic Frontier Foundation. Why metadata mat-
ters. https://ssd.eff.org/module/why-metadat
a-matters. Accessed Jan. 2023.

[39] Yossi Gilad. Metadata-private communication for the
99%. Commun. ACM, 62(9):86–93, 2019.

[40] Michael T. Goodrich. Data-oblivious external-memory
algorithms for the compaction, selection, and sorting
of outsourced data. In Proc. of SPAA, pages 379–388,
2011.

[41] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In Proc. of USENIX ATC, pages 299–312,
2017.

[42] Juhyeng Han, Seong Min Kim, Jaehyeong Ha, and
Dongsu Han. SGX-Box: Enabling visibility on en-
crypted traffic using a secure middlebox module. In
Proc. of APNet, 2017.

[43] Alejandro Hevia and Daniele Micciancio. An
indistinguishability-based characterization of anony-
mous channels. In Proc. of PETS, volume 5134, pages
24–43, 2008.

[44] Intel. Intel SDP for desktop based on Alder
Lake S - 12th Generation Intel Core Processors.
https://edc.intel.com/content/www/us/en/de
sign/ipla/software-development-platforms/c
lient/platforms/alder-lake-desktop/12th-ge
neration-intel-core-processors-datasheet-v
olume-1-of-2/009/. Accessed Feb. 2023.

[45] Intel. Intel Xeon scalable platform built for most
sensitive workloads. https://www.intel.com/co
ntent/www/us/en/newsroom/news/xeon-scalabl
e-platform-built-sensitive-workloads.html.
Accessed Feb. 2023.

[46] Intel. SGX remote attenstation services.
https://api.trustedservices.intel.com/do
cuments/sgx-attestation-api-spec.pdf. Ac-
cessed Sept. 2022.

[47] Bastien Inzaurralde. The cybersecurity 202: Leak
charges against treasury official show encrypted apps
only as secure as you make them. The Washington Post,
2018.

[48] Van Bulck Jo, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yuval
Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking transient execution through microarchi-
tectural load value injection. In Proc. of IEEE S&P,
pages 54–72, 2020.

[49] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo
Kim, and Dongsu Han. Enhancing security and privacy
of Tor’s ecosystem by using trusted execution environ-
ments. In Proc. of USENIX NSDI, pages 145–161, 2017.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 891

https://ssd.eff.org/module/why-metadata-matters
https://ssd.eff.org/module/why-metadata-matters
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

[50] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo
Kim, and Dongsu Han. SGX-Tor: A secure and practical
Tor anonymity network with SGX enclaves. IEEE/ACM
Transactions on Networking, 26(5):2174–2187, 2018.

[51] Thomas Knauth, Michael Steiner, Somnath Chakrabarti,
Li Lei, Cedric Xing, and Mona Vij. Integrating remote
attestation with transport layer security. CoRR, 2018.

[52] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proc. of ACM SOSP, pages 406–422,
2017.

[53] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An efficient communication system with
strong anonymity. In Proc. of PETS, pages 115–134,
2016.

[54] Albert Kwon, David Lu, and Srinivas Devadas. XRD:
Scalable messaging system with cryptographic privacy.
In Proc. of USENIX NSDI, pages 759–776, 2020.

[55] Andrew Law, Chester Leung, Rishabh Poddar,
Raluca Ada Popa, Chenyu Shi, Octavian Sima, Chaofan
Yu, Xingmeng Zhang, and Wenting Zheng. Secure
collaborative training and inference for XGBoost. In
Proc. of PPMLP, pages 21–26, 2020.

[56] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In Proc. of USENIX OSDI, pages
711–725, 2018.

[57] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: Strong metadata security for voice calls. In Proc. of
ACM SOSP, pages 211–224, 2019.

[58] David Lazar and Nickolai Zeldovich. Alpenhorn: Boot-
strapping secure communication without leaking meta-
data. In Proc. of USENIX OSDI, pages 571–586, 2016.

[59] Alleyne Llanor. Enterprise end-to-end encryption is on
the rise. IT Business Edge, 2021.

[60] Nick Mathewson and Roger Dingledine. Practical traffic
analysis: Extending and resisting statistical disclosure.
In Proc. of PETS, pages 17–34, 2004.

[61] Jonathan R. Mayer, Patrick Mutchler, and John C.
Mitchell. Evaluating the privacy properties of telephone
metadata. Proc. Natl. Acad. Sci. USA, 113(20):5536–
5541, 2016.

[62] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In Proc. of HASP,
page 10, 2013.

[63] Microsoft. Azure bandwidth pricing. https:
//azure.microsoft.com/en-us/pricing/detail
s/bandwidth/. Accessed Sept. 2022.

[64] Microsoft. Azure cloud messaging services.
https://azure.microsoft.com/en-us/solu
tions/messaging-services/#overview. Accessed
Sept. 2022.

[65] Microsoft. Azure virtual machine pricing.
https://azure.microsoft.com/en-us/pricin
g/details/virtual-machines/linux/#pricing.
Accessed Sept. 2022.

[66] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In Proc. of IEEE S&P, pages
279–296, 2018.

[67] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In Proc. of CHES, pages 69–90, 2017.

[68] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van
Bulck, Daniel Gruss, and Frank Piessens. Plundervolt:
Software-based fault injection attacks against Intel SGX.
In Proc. of IEEE S&P, pages 1466–1482, 2020.

[69] Netsfere. Netsfere pricing. https://www.netsfere
.com/Product/Free-Pro-Custom-Enterprise-Me
ssaging-Pricing. Accessed Sept. 2022.

[70] Zachary Newman, Sacha Servan-Schreiber, and Srini-
vas Devadas. Spectrum: High-bandwidth anonymous
broadcast. In Proc. of USENIX NSDI, pages 229–248,
2022.

[71] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on
trusted processors. In Proc. of USENIX Security, pages
619–636, 2016.

[72] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebas-
tian Meiser, and George Danezis. The Loopix anonymity
system. In Proc. of USENIX Security, pages 1199–1216,
2017.

[73] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath
Setty, Stavros Volos, and Raluca Ada Popa. Visor:
Privacy-preserving video analytics as a cloud service.
In Proc. of USENIX Security, pages 1039–1056, 2020.

[74] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. SafeBricks: Shielding network func-
tions in the cloud. In Proc. of USENIX NSDI, pages
201–216, 2018.

892 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/solutions/messaging-services/#overview
https://azure.microsoft.com/en-us/solutions/messaging-services/#overview
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing
https://www.netsfere.com/Product/Free-Pro-Custom-Enterprise-Messaging-Pricing
https://www.netsfere.com/Product/Free-Pro-Custom-Enterprise-Messaging-Pricing
https://www.netsfere.com/Product/Free-Pro-Custom-Enterprise-Messaging-Pricing

[75] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
claveDB: A secure database using SGX. In Proc. of
IEEE S&P, pages 264–278, 2018.

[76] Martin Raab and Angelika Steger. “balls into bins” -
A simple and tight analysis. In Proc. of International
Workshop on Randomization and Approximation Tech-
niques in Computer Science, volume 1518, pages 159–
170, 1998.

[77] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. Crosstalk: Speculative
data leaks across cores are real. In Proc. of IEEE S&P,
pages 1852–1867, 2021.

[78] Mark Russinovich, Manuel Costa, Cédric Fournet,
David Chisnall, Antoine Delignat-Lavaud, Sylvan Cleb-
sch, Kapil Vaswani, and Vikas Bhatia. Toward confi-
dential cloud computing. Commun. ACM, 64(6):54–61,
2021.

[79] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy data analytics
in the cloud using SGX. In Proc. of IEEE S&P, pages
38–54, 2015.

[80] Tianxiang Shen, Jianyu Jiang, Yunpeng Jiang, Xusheng
Chen, Ji Qi, Shixiong Zhao, Fengwei Zhang, Xiapu
Luo, and Heming Cui. DAENet: Making strong
anonymity scale in a fully decentralized network. IEEE
Transactions on Dependable and Secure Computing,
19(4):2286–2303, 2021.

[81] Jatinder Singh, Jennifer Cobbe, Do Le Quoc, and Zahra
Tarkhani. Enclaves in the clouds. Commun. ACM,
64(5):42–51, 2021.

[82] Emil Stefanov and Elaine Shi. ObliviStore: High perfor-
mance oblivious cloud storage. In Proc. of IEEE S&P,
pages 253–267, 2013.

[83] Tencent. Tencent Cloud instance type documenta-
tion. https://intl.cloud.tencent.com/documen
t/product/213/11518. Accessed Sept. 2022.

[84] Tencent. Tencent cloud instant messaging pricing. http
s://intl.cloud.tencent.com/products/im. Ac-
cessed Sept. 2022.

[85] Tencent. Tencent Cloud virtual machine pric-
ing. https://intl.cloud.tencent.com/pricing
/cvm/overview. Accessed Sept. 2022.

[86] Trillian. Trillian instant messaging pricing. https:
//trillian.im/pricing/. Accessed Sept. 2022.

[87] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proc. of ACM
SOSP, pages 423–440, 2017.

[88] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private messag-
ing resistant to traffic analysis. In Proc. of ACM SOSP,
pages 137–152, 2015.

[89] Midhul Vuppalapati, Kushal Babel, Anurag Khandelwal,
and Rachit Agarwal. SHORTSTACK: Distributed, fault-
tolerant, oblivious data access. In Proc. of USENIX
OSDI, pages 719–734, 2022.

[90] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
SGX. In Proc. of ACM CCS, pages 2421–2434, 2017.

[91] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In Proc. of USENIX OSDI,
pages 179–182, 2012.

[92] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. Hang
with your buddies to resist intersection attacks. In Proc.
of ACM CCS, pages 1153–1166, 2013.

A Discussion and Limitations

Establishing trust on Boomerang. Boomerang relies on the
trust assumption on secure enclaves, which provide confi-
dentiality and integrity for data and codes. While trusting
a single enclave node can be done through the standard re-
mote attestation, like the one from Intel SGX [46], trusting
multiple-enclave applications would additionally involve mu-
tual attestation, which is necessary among interacting enclaves
to establish a trust relationship [23,79]. One common practice
is to rely on a trusted third party (TTP) to facilitate mutual
attestation [9]. The TTP can perform remote attestation with
each enclave individually and serve as a trusted anchor to
bootstrap the mutual trust among those enclaves. In the case
of Boomerang, we suggest following the above common prac-
tice for any client connecting to the system to establish trust
on Boomerang. The TTP that all clients need to rely on can
be the trusted developer of Boomerang or his/her delegated
server in a trusted domain [9, 23]. A very recent work has
proposed a new way for mutual attestation among enclaves
without relying on a TTP [23], which can be beneficial to the
trust establishment in the Boomerang system. In the future,
to mitigate the concern on the centralized trust of a single en-
clave vendor (e.g., Intel), we can further consider employing a
mix of enclaves from different vendors, e.g., Intel SGX, ARM

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 893

https://intl.cloud.tencent.com/document/product/213/11518
https://intl.cloud.tencent.com/document/product/213/11518
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/pricing/cvm/overview
https://intl.cloud.tencent.com/pricing/cvm/overview
https://trillian.im/pricing/
https://trillian.im/pricing/

TrustZone, AMD SEV, etc., to distribute the trust, which is
also a trendy subject in recent literature [23].
Reduce client online burden. Metadata-private messaging
systems usually assume clients should always keep online
and send messages at regular rates to hide the real communi-
cation behavior [4,33,39,54,57,87,88]. To simplify the prob-
lem statement, Boomerang’s security analysis also follows
this assumption. Although Boomerang achieves acceptable
bandwidth cost, we acknowledge that this “always-online” re-
quirement may be a barrier to the practical use of Boomerang.
The latest work Groove [11] studied this issue and proposed
an oblivious delegation mechanism to reduce client online
burden, by introducing proxies between clients and mixnets.
To improve Boomerang’s client flexibility, a feasible way is to
integrate the oblivious delegation mechanism and the proxy
design with Boomerang, considering that Boomerang can be
an alternative to mixnets for message shuffling. We believe
our Boomerang can serve as a performant and secure backend
for metadata-private message shuffling.

B Balls into Bins

To analyze the overflow probability in Boomerang+, we intro-
duce the balls-into-bins game to estimate the probability that
a message may be dropped during batch distributions.

Balls-into-bins studies the allocation problem that throws
m balls into n bins by placing each ball into a bin chosen
independently and uniformly at random [76]. One natural
question in this area is to ask for the maximum number of
balls in any bin. According to prior art [13, 76], an interesting
result about the maximum number of balls in any bin prob-
lem is introduced below, which will be used to estimate the
maximum load bound of Boomerang+.

Lemma B.1 (Maximum load [76]) Let ℓ be the random
variable that counts the maximum number of balls in any
bin, if we throw m balls independently and uniformly at ran-
dom into n bins and m ≫ n(lnn)3. Then we have

Pr[ℓ >
m
n
+

√
2m lnn

n

(
1− 1

α

ln lnn
2lnn

)
] = 1− 1

nα
,

where α is a positive constant larger than 1.

Here α serves a role to ensure the tightness of the bound of the
maximum load [13, 76]. Next, we prove Theorem 4.1 below.

Theorem 4.1 For any set of m messages, n Boomerang nodes,
and a security parameter λ, satisfying m ≫ n(lnn)3 and
λ/ log2 n > 1, let B(m,n) be a function that outputs the max-
imum batch size B for each node in Boomerang+. Then the
probability of overflow is negligible in λ if we choose

B =

⌈
m
n
+4

√
m lnn

3n

(
1− 1

λ

ln lnn
2ln2

)⌉
.

Proof. Like most existing works, allocating a set of m mes-
sages to a given number of servers can be formalized as a
balls-into-bins game. But a bit different from their works, the
balls are weighted in Boomerang+ because messages with
the same private labels will be allocated to the same servers.
Suppose m1 is the number of messages with single-pattern
private labels (see §3.3.2 for possible causes), and m2 is the
number of messages with double-pattern private labels (i.e.,
regular messages from communicating pairs). Since assign-
ing messages with single-pattern private labels and assigning
messages with regular private labels are independent, the task
of allocating m messages can be separated as two subtasks: 1)
allocating m1 messages with single-pattern private labels; and
2) allocating m2 messages with double-pattern private labels.
It’s clear that m1 +m2 = m.

For the task of allocating m1 messages to n B-nodes, it can
be formalized as the game throwing m1 balls into n bins. For
the task of allocating m2 messages, a pair of messages with
the same regular private labels will be allocated to the same
B-node. Thus, we can tie m2 balls together in pairs (by their
double-pattern labels), and throw m2/2 times. Namely, it is a
m2/2-balls-into-n-bins problem. Let ℓ1 and ℓ2 be two random
variables that count the maximum messages assigned in any
B-node in the above two tasks, respectively. Let

Bm1 =
m1

n
+

√
2m1 lnn

n
(1− 1

α

ln lnn
2lnn

)

and

Bm2 =
m2

n
+2

√
m2 lnn

n
(1− 1

α

ln lnn
2lnn

).

According to Lemma B.1, we have

Pr[ℓ1 > Bm1] = 1− 1
nα

and Pr[ℓ2 > Bm2] = 1− 1
nα

.

To prevent overflow, the probability of a message being
dropped should be confined to a negligible function in the
security parameter λ. Thus we have

1− 1
nα

= 1− 1
2λ

⇒ α =
λ

log2 n
.

Let B′ = Bm1 +Bm2 , then

B′ =
m
n
+
(√

m1 +
√

2m2

)√2lnn
n

(
1− 1

λ

ln lnn
2ln2

)
. (2)

With the arithmetic-geometric mean inequality, we have that(√
m1 +

√
2m2

)
≤
√

2(
√

m1)2 +2(
√

2m2)2),

which attains its equality if and only if
√

m1 =
√

2m2.

894 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 8 12 16 20 24 28
 Number of B-nodes

100

102

104

106

108

110

112

114

M
es

sa
ge

 O
ve

rh
ea

d
(ra

tio
, %

)

100 100 100 100 100 100 100

103

105

106
108

109
111

112

102
103

104
106

106
107

108

Without padding
With padding, m=2^15
With padding, m=2^16

Figure 13: Message overhead (ra-
tio), which describes the ratio of
overall padded messages to real
messages, i.e., nB/m.

4 8 12 16 20 24 28
Number of B-nodes

1K

2K

3K

4K

5K

6K

7K

8K

9K

M
es

sa
ge

 O
ve

rh
ea

d
(n

um
be

r) 8.4K

4.3K

2.9K
2.2K

1.8K1.5K1.3K

Real
Padded

Figure 14: Message
overhead (number) un-
der 215 real messages
concretely.

Combined with the condition m1 +m2 = m, we can solve
for m1 = 2m/3 and m2 = m/3. Then

(
√

m1 +2
√

m2)≤

√√√√√2

(√2m
3

)2

+

(√
2m
3

)2
≤ 2

√
2m
3
.

(3)
Applying Eq. (3) to Eq. (2), it is easy to get

B′ ≤ m
n
+4

√
m lnn

3n

(
1− 1

λ

ln lnn
2ln2

)
≤ B.

Finally, we compute the probability that a message is dropped
on a server. It equals the probability that the maximum number
of messages allocated to a node is larger than the maximum
load. As mentioned, the above two subtasks are independent,
and thus we have

Pr[ℓ > B]≤ Pr[ℓ > B′] = Pr[ℓ > Bm1 +Bm2]

≤ 1−Pr[ℓ≤ Bm1 +Bm2]

≤ 1−Pr[ℓ1 ≤ Bm1 ∧ ℓ2 ≤ Bm2]

≤ 1− (1−Pr[ℓ1 > Bm1])(1−Pr[ℓ2 > Bm2])

≤ 2
nα

− 1
n2α

=
2
2λ

− 1
22λ

.

That is to say, the probability that a message is dropped (aka
overflow) is negligible in λ. This completes the proof.

In practice, we usually round the above bound up to an
integer that is greater but nearest to it. Figures 13 and 14
have demonstrated that our maximum batch size only incurs
marginal overhead (with extra paddings) on our horizontal
scaling design.
Scalability Analysis. We borrow the idea from XRD [54] to
define the scalability of the designed system. Specifically, we
say that a system is scalable if the number of requests that
one server needs to handle trends to zero when the number of
deployed servers increases to infinite. Without loss of gener-
ality, we start with one entry node that obliviously distributes

the incoming messages to a set of B-nodes in Boomerang+.
Let m and n denote the number of messages and deployed
B-nodes, respectively. According to Theorem 4.1, we know
that the upper bound of the number of messages sent to a

B-node server is m
n +4

√
m lnn

3n (1− 1
λ

ln lnn
2ln2). It is clear that

lim
n→∞

m
n
+4

√
m lnn

3n
(1− 1

λ

ln lnn
2ln2

) = 0.

Now let us consider having more entry nodes in the system.
It is intuitive to see that in Boomerang+ each entry node can
run independently and in parallel, which effectively eliminates
a potential bottleneck at a single entry node. Similar to the
observations in Snoopy [32], in Boomerang+, adding more
entry-nodes is not entirely free, because it would increase the
total amount of messages sent to each B-node server. Suppose
we have ν entry-nodes, n B-nodes, and each entry-node has
m incoming messages (out of the total ν×m messages) for
oblivious distribution. The upper bound of the total amount
of messages from ν entry-nodes sent to a B-node server is

ν× (m
n +4

√
m lnn

3n (1− 1
λ

ln lnn
2ln2)), which would still approach 0

when n → ∞. Thus, Boomerang+ can scale with more clients
and messages by adding more entry nodes and more B-nodes.

Our analysis mainly focuses on the heavy load cases, where
m ≫ n(lnn)3 generally holds. For example, for those deploy-
ments in practice with good anonymity, m at each entry node
can easily reach at least in the order of 105, while the over-
all workload can largely be handled with no more than n
= 100 B-nodes. If in the extreme cases where m becomes
small, we have some fallback options: 1) setting the maxi-
mum load B=m; or 2) adaptively falling back to single-server
Boomerang mode. We leave this adaptive switching design
as our future work.

Note that our scalability analysis does not give specific
configuration guidelines on how to add entry-nodes and B-
nodes, because this would be highly dependent on specific
requirements on performance, e.g., latency, throughput, etc.,
and cost, e.g., expenses of adding respective nodes, band-
width, etc. We would resort to the abstract configuration plan-
ner in Snoopy [32] as a good starting point when we push
Boomerang+ to a more practical realm in the future.

C Security Analysis

C.1 Proof of Theorem 5.1
As mentioned, due to the deployment of secure enclaves and
a round-based communication model in Boomerang, the only
thing left is to prove that memory access patterns in the obfus-
cated message exchange are oblivious. From the description
in §3, Boomerang is designed by combining several oblivious
algorithms. Here we prove the indistinguishability of mem-
ory access patterns in Boomerang in a modular way. First,
we demonstrate that our proactive pattern patching (denoted

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 895

RealPPP(pkts) : // pkts: the real input packets prepared by clients
Parse pkts as (pkt_1,. . . ,pkt_m), where m is the number of packets
is_mtt= False

for pkt in pkts do
is_prev_same = O_Equal(pkt.priv_label,Prev(pkt).priv_label) ▷ Step 3.1: Detect irregular pattern
is_next_same = O_Equal(pkt.priv_label,Next(pkt).priv_label)
is_next2_same = O_Equal(pkt.priv_label,Next(Next(pkt)).priv_label)
is_mtt= is_mtt and is_prev_same or is_next2_same ▷ Detect more-than-two pattern
pkt.R = O_Choose(is_next_same,Next(pkt).S,pkt.S) ▷ Step 3.2: Swapping and patching
pkt.R = O_Choose(is_prev_same,Prev(pkt).S,pkt.R)
pkt.R = O_Choose(is_mtt, pkt.S,pkt.R)

end for
IdealPPP(pkts

′) : //pkts′: the dummy input generated using public information on the number of packets and the packet size

Parse pkts′ as (pkt_1,. . . ,pkt_m), where m is the number of packets
is_mtt= False

for pkt in pkts′ do
is_prev_same = Sim_O_Equal(pkt.priv_label, Prev(pkt).priv_label) ▷ Step 3.1: Detect irregular pattern
is_next_same = Sim_O_Equal(pkt.priv_label, Next(pkt).priv_label)
is_next2_same = Sim_O_Equal(pkt.priv_label, Next(Next(pkt)).priv_label)
is_mtt = is_mtt and is_prev_same or is_next2_same ▷ Detect more-than-two pattern
pkt.R = Sim_O_Choose(Next(pkt).S,pkt.S) ▷ Step 3.2: Swapping and patching
pkt.R = Sim_O_Choose(Prev(pkt).S,pkt.R)
pkt.R = Sim_O_Choose(pkt.S,pkt.R)

end for

Figure 15: Real and ideal experiments for an oblivious proactive pattern patching algorithm

as PPP) algorithm built on existing oblivious algorithms is
oblivious according to Definition C.1 below. Then we prove
that our Boomerang system protects metadata privacy when
built on the oblivious PPP. We first give the definition of a
secure PPP algorithm.

Definition C.1 The proactive pattern patching algorithm
PPP is secure if for any PPT attacker, there exists a PPT
simulator such that

|Pr [RealPPP(λ) = 1]−Pr [IdealPPP(λ) = 1]| ≤ negl(λ), (4)

where λ is the security parameter, RealPPP and IdealPPP are
experiments defined in Figure 15.

Below we show that our PPP algorithm satisfies the above
definition by proving the RealPPP and IdealPPP experiments
are indistinguishable.

Lemma C.1 Given the oblivious primitives for comparison
and assignments O_Choose and O_Equal, the proactive pat-
tern patching protocol described in §3 and formally defined
in Figure 15 is also an oblivious algorithm.

Proof. To simplify the proof and our description of the simu-
lator, we assume that the packets (aka encrypted messages)
received by the server are indistinguishable by size and traffic
patterns, which the attacker cannot exploit to distinguish the

memory access patterns. Then we need to demonstrate that
the memory accesses of the simulated experiment IdealPPP
that takes public information as input are indistinguishable
from those of the real experiment RealPPP. As shown in Fig-
ure 15, we leverage the following oblivious building blocks
in the RealPPP experiment.

• O_Choose(cond,a,b): If cond= True, it outputs value
a. Otherwise, it outputs value b.

• O_Equal(a,b): Obliviously assigns True to the output
if a equals b. Otherwise, it outputs False.

The simulated experiment IdealPPP is built on top of simula-
tions of the above oblivious building blocks.

• Sim_O_Choose(a,b): Simulates choosing from (a,b) as
the output, given a hidden bit.

• Sim_O_Equal(a,b): Simulates testing whether a equals
b and outputs True if they are equal.

With these building blocks, we show that the memory ac-
cess patterns in the real and ideal experiments defined in Fig-
ure 15 are indistinguishable. Specifically, if an attacker can
distinguish the IdealPPP and RealPPP, then the distinguisha-
bility must occur in at least one of the steps. But this hap-
pens only with negligible probability because: 1) the simula-
tor uses the public information to simulate indistinguishable

896 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dummy input from real input (i.e., the number of packets
m and the packet size), and accordingly follows the same
for loop structure as the RealPPP; 2) for each iteration in-
side the for loop structure, the security of oblivious building
blocks O_Choose and O_Equal ensures that the correspond-
ing simulations Sim_O_Choose and Sim_O_Equal produce
indistinguishable memory access patterns; and 3) the oper-
ations on direct assignment to is_mtt in both IdealPPP and
RealPPP are also indistinguishable. This completes the proof
of Lemma C.1.
Proof of Theorem 5.1. Based on the fact that the proactive
pattern patching (PPP) algorithm is oblivious, we continue to
prove Theorem 5.1 under the security notion defined in Defi-
nition 2.1. Let b and b′ be the choices of the challenger and
the attacker A , respectively, in the experiment EXP defined
in Definition 2.1.

From the attacker’s view, as all messages are encrypted,
the only way to distinguish the communication patterns of
two given clients is by observing memory access patterns
during the “obfuscated” message exchange procedure. We
assume all involved oblivious algorithms are computationally
indistinguishable, except with negligible probability in λ (aka
negl(λ)). As seen, Boomerang leverages an oblivious proac-
tive pattern patching algorithm (as shown in Lemma C.1)
and an oblivious sorting algorithm [10]. Let “M fails” denote
the event that the memory access patterns of at least one of
the algorithms mentioned above fail to achieve obliviousness,
which happens only with negligible probability in λ. Thus,
we have

AdvEXP,A =
∣∣Pr[b = b′]−Pr[b ̸= b′]

∣∣
≤ max{Pr[b = b′,M fails],Pr[b ̸= b′,M fails]}
= max{Pr[b = b′|M fails],Pr[b ̸= b′|M fails]} ·Pr[M fails]
≤ Pr[M fails] = negl(λ).

The above shows that the attacker cannot identify whether
two clients are communicating or not within each round, ex-
cept with negligible probability. For the fixed system configu-
ration across rounds, it is easy to see that the attacker’s view
will remain the same across rounds. This completes the proof
of Theorem 5.1.

C.2 Proof of Theorem 5.2
The proof of Theorem 5.2 is analogous to that of Theorem 5.1.
The only difference between Boomerang and Boomerang+ is
that Boomerang+ employs entry nodes as load balancers to
distribute batches of messages from all clients to a group of
B-nodes for message exchange. Thus, the key is to show that
this distribution procedure is oblivious.

We assume that the system configuration is fixed across
rounds, including the number of entry nodes, B-nodes, and
connected clients to each entry node. First, we show that
Boomerang+ assigns a message to each B-node uniformly.

Note that Boomerang+ assigns a message to each B-node
by computing br_id = Hk(priv_label||round_num)%n,
where H is a keyed cryptographic hash function, and n
refers to the number of B-nodes. According to the classical
simulation-based security definition of a keyed hash func-
tion [17], the result of a hash function and a random value is
computationally indistinguishable. It implies that the distribu-
tion of br_id is uniform, and further confirms that allocating
messages to different B-nodes can indeed be formulated as
a random balls-to-bins assignment. Therefore, we can apply
the batch size derived from Theorem 4.1 to set up the batch
structure without overflow. Moreover, the batch size is deter-
mined by the public information (as shown in §4.2.3) only,
independent of the input.

Based on the above initial result, it follows that the proba-
bility that a message is assigned to any individual B-node is
always equal. Without loss of generality, we assume that the
number of deployed entry nodes is ν. Let c be an encrypted
message sent by a client and e be its refreshed copy by the
entry node. The probability for the message assigned to the
t-th B-node is

Pr[c → Bt] =
ν

∑
j=1

Pr[c → E j] ·Pr[e → Bt] =
1
n
,

where Bt denotes the t-th B-node, E j denotes the j-th entry
node, and c → Bt denotes that message c is assigned to Bt
finally. This result holds as long as no empty B-node exists
during one communication round, which is guaranteed by
our uniform message assignment and oblivious sub-batch
padding algorithms. Our oblivious sub-batch padding algo-
rithm is largely based on existing building blocks, including
the oblivious padding algorithm in Snoopy [32]. Thus, we
omit the proofs for its obliviousness here. With the above
results, we can obtain that messages from any two clients i
and j, whether they are communicating or not, are assigned
to the same B-node t with the same probability 1/n2. In other
words, whether the two clients are communicating or not, their
message assignment from entry node(s) to a single B-node is
indistinguishable from the attacker.

Now let’s focus on messages assigned to each individual
B-node. According to Theorem 5.1, an attacker cannot iden-
tify whether any pair of clients are communicating or not at
a single-server Boomerang. Thus, it follows that at each in-
dividual B-node in Boomerang+, an attacker cannot identify
whether any pair of messages are from two communicating
clients or not. It holds in any single round. As the assignment
mapping (through the keyed hash function H) is refreshed
for every round, it is easy to see that the attacker’s view will
remain the same across rounds, with a fixed system configura-
tion. It ensures the indistinguishability of whether two clients
communicate or not in Boomerang+.

Finally, we need to prove that the memory access patterns in
Boomerang+ are oblivious. To achieve such obliviousness, we
build Boomerang+ on top of a group of oblivious primitives

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 897

Table 1: Latency with varying numbers of entry nodes (#E) and B-nodes (#B). The best ratios with the lowest latency are marked
in bold.

#E #B Latency #E #B Latency #E #B Latency #E #B Latency

8 Servers 7 1 20.10 6 2 16.08 5 3 15.54 4 4 16.19
3 5 20.57 2 6 28.71 1 7 58.47

16 Servers 14 2 12.19 12 4 10.37 10 6 10.45 8 8 10.71
6 10 11.65 4 12 17.16 2 14 27.54

24 Servers
22 2 12.62 20 4 10.18 18 6 8.09 16 8 9.59
14 10 8.41 12 12 9.11 10 14 9.46 8 16 10.71
6 18 12.12 4 20 14.95 2 22 27.81

32 Servers

30 2 11.77 28 4 9.35 26 6 8.45 24 8 7.76
22 10 8.26 20 12 8.41 18 14 8.78 16 16 8.23
14 18 8.75 12 20 8.99 10 22 9.27 8 24 9.83
6 26 12.47 4 28 16.49 2 30 28.46

2^10 2^12 2^14 2^16 2^18 2^20
Number of Clients

10−1

100

101

99
th

 P
er

ce
nt

lie
 L

at
en

cy
 (s

)

0.12 0.14
0.18

0.26
0.4

0.78

1.41

2.83

6.45

13.03

26.8

Figure 16: 99th percentile latency of Boomerang.

including oblivious comparisons, assignments, compaction,
and sorting functions. Based on these oblivious primitives,
we develop the oblivious batch generation and distribution
procedures, and those based on the oblivious PPP algorithm
with slight modifications in Boomerang+, just like the way
we develop Boomerang. Thus, we do not spend more space
repeating that their algorithms are oblivious. By the above two
derivations, we show that Boomerang+ is secure according to
Definition 2.1. This completes the proof.

D Boomerang Performance

Latency. We evaluate Boomerang on one 16-core server and
test the latency over up to 220 clients. Figure 16 shows the
99th percentile latency of Boomerang with a varying number
of clients. For 215 clients, the latency is 778 ms, which is
also enough for VoIP communication. Notably, Boomerang
achieves 1.41 second latency for 216 clients using only one
server. We can observe that the latency increases (almost) lin-
early with the number of clients (messages). There are mainly
two factors: 1) with the increasing of clients, the server needs
to handle more RPC requests; and 2) the most expensive
computation in enclaves is oblivious sort (twice), which is of

O(n(logn)2) complexity. When the client number increases
to 220, the latency reaches 26.8 seconds, which is no longer
suitable for latency-sensitive applications. The increased la-
tency also shows the need for horizontal scalability.
Bandwidth cost. Boomerang requires each client to send
a message of 256 Bytes every round. It occupies 512 Bps
bandwidth for each client if we set a 500 ms round. If the client
keeps online on Boomerang for one month, the bandwidth
cost is 2.47 GB (including sending and receiving data), which
we believe is affordable for ordinary users.

E Supplementary Experiments for Resource
Allocation

Recall that in §6.3 we show the best resource allocation for
entry nodes and B-nodes with 16 servers that can achieve the
lowest latency. This section further reports the best allocation
with 8, 16, 24, and 32 servers. We have exhaustively tried
different combinations of entry nodes and B-nodes for each
set of servers and let them handle 220 messages. The results
are reported in Table 1. The best allocation for entry nodes
and B-nodes for 8, 16, 24, and 32 servers are 5:3, 12:4, 18:6,
and 24:8, respectively. Note that this is a brute-force way to
get the best ratio. A possibly more efficient way to configure
the system is to design a configuration planner [32], which
we will leave as our future work.

F System Dollar Cost

We here report the estimated cost in US dollars of running
Boomerang+ servers. Leaving human-operation costs aside,
we calculate the total cost for hosting Boomerang+ servers
and data egress costs and show how much each user would
(at least) pay for joining Boomerang+ for one month.

898 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Server cost. Since the Tencent Cloud machines we use did
not announce the international pricing for M6ce.4XLARGE124
[85], we alternatively choose Standard_Dc16s_v3 instances
from Azure Cloud for price estimation, which have the same
properties as M6ce.4XLARGE128. According to the prices
for Azure Cloud VMs [65], the host (machine) cost is 1121
USD/month. The cost varies with different performance goals.
For example, running 16 instances for 216 clients achieves
615 ms latency, which results in $0.274 amortized monthly
cost per client. In the scaling experiment, Boomerang+ runs
32 8-core instances for 220 clients, resulting in $0.017 amor-
tized cost and 7.76 second latency based on the price for the
alternative instance Standard_Dc8s_v3 (560 USD/month).
Ideally, adding more servers will further reduce the latency,
but it will also increase the overall server cost.
Bandwidth cost. We assume that each client sends a 256 Byte
message every 500 ms, adding up to 1.24 GB data ingress to
(or egress from) the server if the client stays online for one
month. To save data transfer costs, we can set the servers in
the same availability zone, within which the transferred data is
free of charge. If the clients and servers transfer data between
different continents, the price is at most 0.16 USD/GB [63].
Then, the server-side bandwidth cost is 0.198 USD/month
for each client. Overall, we believe Boomerang+ is afford-
able for clients while maintaining good privacy and high-
performance services. Its promising cost is comparable to
non-private cloud-based IM services today [64, 69, 84, 86].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 899

	Introduction
	Threat Model and Security Goals
	Threat Model and Assumptions
	Security Goals

	Boomerang: Basic Instantiation
	Overview
	Client
	Server
	Background of Oblivious Primitives
	Oblivious Proactive Pattern Patching
	Oblivious Re-order

	Boomerang+: Horizontal Scalability
	Overview
	Entry Nodes
	Irregular Pattern Patching
	One-time Message Assignment
	Oblivious Sub-batch Padding

	Boomerang Node
	Server Churn

	Analysis
	Implementation and Evaluation
	Evaluation Overview
	Boomerang+ Performance
	Microbenchmarks

	Related Work
	Conclusion
	Discussion and Limitations
	Balls into Bins
	Security Analysis
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	Boomerang Performance
	Supplementary Experiments for Resource Allocation
	System Dollar Cost

