é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Scalable Distributed Massive MIMO
Baseband Processing

Junzhi Gong, Harvard University; Anuj Kalia, Microsoft;
Minlan Yu, Harvard University

https://www.usenix.org/conference/nsdi23/presentation/gong

This paper is included in the
Proceedings of the 20th USENIX Symposium on
Networked Systems Design and Implementation.

April 17-19, 2023 * Boston, MA, USA
978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc flal] aeala

.% King Abdullah University of

Science and Technology

+ ——
R W E » Ny

Scalable Distributed Massive MIMO Baseband Processing

Junzhi Gong
Harvard University

Abstract

Massive MIMO (multiple-in multiple-out) is a key wire-
less technique to get higher bandwidth in modern mobile
networks such as 5G. The large amount of computation
required for massive MIMO baseband processing poses a
challenge to the ongoing softwarization of radio access net-
works (RAN), in which mobile network operators are re-
placing specialized baseband processing chips with com-
modity servers. Existing software-based systems for mas-
sive MIMO fail to scale to increasingly larger MIMO di-
mensions with an ever-increasing number of antennas and
users. This paper presents a new scalable distributed sys-
tem called Hydra, designed to parallelize massive MIMO
baseband processing while minimizing the overhead of dis-
tributing computation over multiple machines. Hydra’s
high scalability comes from reducing inter-server and inter-
core communication at different stages of baseband process-
ing. To do so, among other techniques, we take advantage
of hardware features in modern commodity radios in novel
ways. Our evaluation shows that Hydra can support over
four times larger MIMO configurations than prior state-of-
the-art systems, handling for the first time, 150 X32 massive
MIMO with three servers.

1 Introduction

Massive MIMO is a key wireless technique to increase spec-
tral efficiency in modern mobile networks such as 5G. Mas-
sive MIMO refers to using a large number of radio antennas
to simultaneously serve a large number of users on the same
frequency resources. Mobile network operators today are
deploying multi-user massive MIMO to handle the increas-
ing demand from mobile users [16]. For example, T-Mobile
recently demonstrated the benefits of massive MIMO in a
setup with 64 antennas serving eight concurrent users [12],
achieving an impressively high total downlink bandwidth of
5.6 Gbps. A promising way to handle the demand for higher
spectral efficiency and mobile bandwidth is to increase the
massive MIMO dimensions: the number of radio antennas,
and the number of users served simultaneously [17, 26, 28].

Anuj Kalia
Microsoft

Minlan Yu
Harvard University

While the previous-generation LTE networks typically
used small MIMO configurations (e.g., four antennas), mas-
sive MIMO deployments with 64 antennas are already com-
monplace in 5G, and future deployments could use hun-
dreds of antennas [16]. For example, AirSpan’s Air5G 7200
already supports 128 transmit and 128 receive antennas [2].

This paper tackles the challenge of scalably supporting
increasing massive MIMO dimensions in virtualized RANs
(VRAN). With vRANSs, mobile network operators are replac-
ing specialized RAN hardware, such as ASICs and DSPs for
wireless signal processing, with commodity x86 servers [5,
10, 11, 13, 15]. RAN virtualization offers important bene-
fits, such as mitigating vendor lock in and increasing RAN
flexibility and feature velocity. However, massive MIMO
remains a challenge for software-based RANs [8]. This is
due to the extremely high computational requirements of
massive MIMO, in the presence of tight millisecond-scale
latency deadlines. For example, the largest massive MIMO
configuration considered in this paper—150 antennas and
32 users—requires our system (Hydra) to use 71 CPU cores,
cumulatively handling 80.6 Gbps of fronthaul traffic, within
a latency deadline of 2.5 ms.

Our goal is to design a system that can efficiently scale
to increasing massive MIMO dimensions by using the re-
sources of more servers, to handle the requirements of 5G
and future radio technologies. Key to Hydra’s scalability is
a set of new techniques that we design to scalably distribute
massive MIMO computation among a pool of servers while
minimizing the distribution overhead from inter-server and
inter-core communication. Existing projects that imple-
ment massive MIMO baseband processing in software, such
as Agora [17] and BigStation [28], lack a path for scaling
to increasing MIMO dimensions. One the one hand, single-
machine systems like Agora and Intel’s FlexRAN [3] are lim-
ited to the CPU and network bandwidth resources of only
one machine. One the other hand, the BigStation project
studies the opportunities for distributing multi-user MIMO
computation, but does not seek to optimize the distribution
overhead, which is the focus of this work.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 405

Massive MIMO RU Hydra servers

XXX XXX XX
§§§§;§§§ Fronthaul

XXX XXX XX Switch Server
XX XX XX XX

XXX XXX XX Server

Figure 1: The architecture of a virtualized and distributed
massive MIMO baseband processing system.

A massive MIMO baseband processing system (also called
a baseband unit, or BBU) connects to a multi-antenna radio
unit (RU) over a wired fronthaul link (Figure 1). In our setup,
the BBU consists of one or more servers in a datacenter, con-
nected to the fronthaul via an Ethernet switch. The RU and
the BBU exchange packets containing in-band and quadra-
ture (IQ) samples for hundreds or thousands of Orthogo-
nal Frequency Division Multiplexing (OFDM) subcarriers.
The BBU’s computation consists of a pipeline of stages,
each with a different type of parallelism [18, 28]. Hydra’s
design includes three key new ideas (summarized below)
to map these BBU computation stages and the inter-stage
shuffling of intermediate data to different hardware compo-
nents, while minimizing inter-server and intra-server com-
munication for scalability.

Taking the uplink direction as an example, the computa-
tion stages are as follows (Figure 2). First, antenna-parallel
processing converts each antenna’s time-domain IQ sam-
ples into the frequency domain using a fast Fourier trans-
form (FFT). Second, subcarrier-parallel processing converts
each subcarrier’s per-antenna IQ sample streams into de-
modulated per-user streams. Third, user-parallel processing
runs forward error correction on the per-user streams, con-
verting them to user bit streams. The BBU connects these
stages using communication mechanisms that shuffle the
outputs of one stage into the inputs of the next stage.

Our first two ideas reduce inter-server communication
(compared to BigStation), and the third reduces intra-server
communication (compared to Agora).

1. BBU-RU interface. We identify that an existing hard-
ware feature in modern RUs—the ability to perform
FFT and generate separate packets for configurable
subcarrier ranges—can be used to build a scalable dis-
tributed system for massive MIMO. Note that these RU
abilities were not originally intended to build scalable
distributed systems (Section 3.1); instead, we found a
novel use case of these abilities. These FFT-capable RUs
exchange frequency-domain IQ samples with the BBU,
instead of time-domain IQ samples like in BigStation.
Hydra routes packets for different subcarrier ranges
to different servers, partitioning the fronthaul traffic
and feeding the subcarrier-parallel pipeline stage with
near-zero overhead. Compared to BigStation’s design

in which BBU servers run FFT and shuffle subcarrier
ranges in software, our approach reduces inter-server
communication by up to 66.4%.

2. Within the BBU cluster. Due to abundant paral-
lelism, massive MIMO BBU processing offers many op-
tions to distribute computation within the server pool,
at the cost of inter-server communication. For exam-
ple, BigStation shuffles the BBU’s intermediate data
over the network within the subcarrier-parallel stage,
and predicts benefits from splitting individual matrix
inverse operations across servers. Such inter-server
communication limits BBU scalability. To minimize
inter-server communication in Hydra, we observe that
the subcarrier-parallel stage transforms the data di-
mension from antennas to users, and massive MIMO
by nature uses much fewer users than antennas. There-
fore, we delay inter-server communication until af-
ter the subcarrier-parallel stage, shuffling only a small
fraction of the BBU’s input data rate among its servers.

3. Within one server. Within a machine, Hydra affini-
tizes the processing of an OFDM subcarrier to a CPU
core. This ensures that the same CPU cores process
a subcarrier through multiple subcarrier-parallel BBU
sub-stages, eliminating inter-core shuffling of interme-
diate outputs. Hydra also avoids centralized schedul-
ing of BBU tasks, which reduces inter-synchronization
overhead, and prevents a single thread from becoming
a bottleneck. This allows Hydra to use up to 47% fewer
CPU cores than Agora’s design (Section 5.6).

Besides the above key ideas, we also dynamically increase
or decrease the number of CPU cores used, to efficiently
handle the varying demands in mobile networks and re-
duce the energy consumption. We build Hydra starting
from Agora’s open source implementation. Our evaluation
with an RU emulator shows that the number of antennas
and users that Hydra can handle scales with the number of
servers. With three servers, Hydra handles 150x32 MIMO,
which has 2.3x more antennas and 2x more users than the
prior state of the art single-machine system (Agora). With a
larger 18-node cluster of old servers, Hydra handles 256 x 32
MIMO. Our evaluation also shows Hydra reduces CPU use
by 46% when the traffic demand is low, compared to the cor-
responding system without dynamic core scaling.

2 Background and motivation

Antennas at a multi-user massive MIMO RU receive wire-
less signals that are a combination of several users’ trans-
missions. Each antenna has associated hardware that digi-
tizes these signals into per-subcarrier IQ samples (typically
represented as fixed-point complex values), assembles the
IQ samples into packets, and transmits them to the BBU over
a wired fronthaul link. The BBU’s task is to recover the bits

406 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

transmitted by each user from these jumbled complex num-
bers.

Doing so requires a huge amount of signal processing on
the IQ samples, including matrix operations and forward er-
ror correction. This high computation cost is justified by the
corresponding improvements in spectral efficiency. Note
that although server hardware is an important contributor
to operating expenditure, spectrum is often the most valu-
able resource in mobile networks.

2.1 Massive MIMO basics

Traditional single-user base stations allows at most one user
to communicate with the base station on a given frequency
resource (i.e., a subcarrier), avoiding inter-user interference.
Multi-user MIMO uses interference canceling to allow a mo-
bile base station to serve multiple users concurrently on the
same subcarrier. Multi-user MIMO exploits spatial diversity,
which means that different users are separated in physical
space and therefore have different channels to the RU. Mas-
sive MIMO refers to multi-user MIMO with a large number
(typically 32 or more) of base station antennas.

An MxN massive MIMO configuration uses M RU an-
tennas to simultaneously serve N user antennas. On a
given subcarrier, we can represent the signals transmitted
by the N user antennas using an Nx 1 complex-valued col-
umn vector xyx1. The signal yy«; received by the RU is
a mixture of all users’ transmissions. y can be modeled as
~ Wuxn X Xnx1, where W is the “channel matrix”, i.e., W;
is the wireless channel between antenna i and user ;.

Zero-forcing receivers. The BBU’s main task then is to
jointly process the signals y from all RU antennas to recover
the users’ signals x. Importantly, the BBU can do this joint
processing for each subcarrier in parallel. The joint pro-
cessing consists of two steps. First, the BBU estimates the
channel matrix W by using “pilot” transmissions from the
users that have well-known numerical values, and are sep-
arated in time or frequency to avoid inter-user interference.
Second, with the common “zero-forcing” approach, the BBU
then computes the pseudo-inverse of the channel matrix W,
as H = (W*W)~!'W*. For subsequent non-pilot data trans-
missions, the BBU recovers an approximation of x by com-
puting H Xy, in a process called equalization.

After reconstructing x, the BBU performs demodulation
to map the complex numbers to bits. The demodulated bits
contain both user data bits and parity bits, appended by the
radio protocol.

Finally, the BBU decodes the demodulated output via a
forward-error correction (FEC) algorithm to produce the
users’ bits. Similar to Agora [17], Hydra uses 5G’s Low Den-
sity Parity Check (LDPC) algorithm for decoding.

2.2 Massive MIMO baseband processing

Our goal in Hydra is to distribute massive MIMO BBU pro-
cessing among a pool of servers using the fewest number

Equalization]—>[Demodulation]+[Decoding I—): Is“i,%rri
1

Upstream
precoder

Zero-forcing

Downstream
precoder

;(LJJ (—[IFFT]4—[Precoding](—[Modulation

Antenna
parallel

From
RU

. From core
Encoding](— network

User

) 1
Subcarrier |
parallel 1
1
1

parallel

Y

Figure 2: Massive MIMO processing pipeline.

of CPU cores and servers, achieved by minimizing distri-
bution overheads from inter- and intra-server communica-
tion. We next discuss the two aspects of the massive MIMO
processing pipeline that are crucial for designing a scalable
distributed system: (1) the opportunity for distribution pre-
sented by the different types of parallelism in each stage,
(2) and the scalability challenge posed by the need to shuf-
fle data from one pipeline stage’s output to the next stage’s
input (which we colloquially call the “data shuffling over-
head”).

Through the paper, we use the largest massive MIMO
configuration supported by Hydra as a running example
for exposition: 15032 MIMO; with a typical 20 MHz con-
figuration: 2048 subcarriers, out of which 1200 subcarriers
carry data and the rest are used for guard bands; and 1 ms
“slots” (discussed next).

Slots and symbols. Wireless protocols such as 4G and
5G divide time into slots. Each slot duration is typically
further subdivided into 14 symbol durations. In each sym-
bol duration, each RU antenna sends packets to the BBU
containing IQ samples for all subcarriers. The radio proto-
col reserves pre-configured symbols for pilot signals from
users, which are used for channel estimation. Similar to
prior work [18, 28], we use the first symbol for pilots.

2.2.1 Types of parallelism

As noted by prior work [18, 28], massive MIMO baseband
processing exhibits parallelism in different dimensions at
different stages of the processing pipeline. This allows BBUs
to divide the processing among multiple workers (i.e., CPU
cores or servers). Figure 2 shows the three dimensions of
parallelism for both uplink and downlink.

In the first antenna-parallel stage, the BBU performs FFT
on the 150 antenna streams in parallel, converting time-
domain IQ samples into frequency-domain samples. This
step also eliminates the guard subcarriers and retains the
1200 subcarriers. The second frequency-parallel stage con-
sists of three sub-stages: the BBU performs channel inver-
sion, equalization, and demodulation for the 1200 subcar-
riers in parallel. The BBU may amortize the high cost of

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 407

matrix inversion by assuming that the channel matrix for
some small configurable number of consecutive subcarriers
is the same. In the third user-parallel stage, the BBU per-
forms FEC decoding for each user independently.

2.2.2 Challenge: Inter-stage data shuffling

Massive MIMO processing is not perfectly parallelizable be-
cause the type of parallelism changes at each stage of mas-
sive MIMO processing, requiring shuffling the output of one
stage to the input of another stage. One of our design goals
in Hydra is to minimize this shuffling overhead.

Antenna-parallel to subcarrier-parallel shuffling.
Consider a thread Ty that has computed the FFT for a fron-
thaul packet in the antenna-parallel stage. At this point, Tj
has data for all 1200 subcarriers. Ty must then transmit data
from different subcarrier ranges to the subcarrier-parallel
stage threads processing the corresponding subcarrier
ranges. This transmission uses shared-memory for destina-
tion threads on the same machine, and over-the-network
transmission for remote threads.

Subcarrier-parallel to user-parallel shuffling. Con-
sider a thread T, that has finishes the subcarrier-parallel
stage (i.e., demodulation) for its partition of subcarriers. At
this point, 7. has data for all users, and must transmit differ-
ent user ranges to threads running user-parallel processing.

In Section 3, we discuss how Hydra avoids the overhead
of both explicit and implicit intra-stage data shuffling in
prior BBU designs.

2.3 The need for distributed computing

Our goal for building a scalable distributed design for mas-
sive MIMO BBUs is to provide a path for scaling to massive
MIMO’s ever-increasing computational demands. If mas-
sive MIMO vRANSs are limited to a single server, they will
suffer from limited mobile bandwidth, spectral efficiency,
and have a less competitive feature set compared to tradi-
tional BBUs based on specialized hardware. Note that while
this paper focuses on increasing antennas and users as the
main driver for higher computation requirements, other im-
portant factors such as increasing the frequency bandwidth
(e.g., 20 MHz to 100 MHz) and decreasing the slot size (e.g.,
1 ms to 0.5 ms) also substantially increase the computation
resources required and fronthaul traffic bandwidth.

PHY latency deadlines. The radio protocol’s NACK
(negative acknowledgment) turnaround time imposes a la-
tency deadline on BBU processing. For example, in 4G and
5G, in case of an irrecoverable bit error on the uplink, the
BBU must send a downlink NACK to the user within four
slots (i.e., within 4 ms). In this work, we set Hydra’s latency
deadline to 2.5 ms at the 99.99-th percentile, to allow 1.5 ms
for the MAC to schedule the downlink NACK.

High computational requirements. The number of
CPU cores required to meet the BBU’s latency deadline in-

creases with MIMO dimensions, eventually exceeding the
capacity of a single machine and necessitating a distributed
design. For example, even after our optimizations, Hy-
dra requires two servers to support 128x32 MIMO, and
three servers to support 150x32 MIMO. Our 15032 mas-
sive MIMO configuration requires 71 CPU cores. Note that
although servers with very large numbers (100+) of high
performance cores are available today, vVRAN operators typ-
ically deploy smaller servers due to constraints such as
power draw and fleet homogeneity. We explain these fac-
tors in detail next.

Limitation of single-machine systems. The CPU re-
quirement of large MIMO configurations such as 150x32
(71 cores) is too high for a single VRAN server. This is be-
cause VRAN servers are deployed in small edge datacen-
ters that have limited energy and space budgets, which pre-
cludes using beefy servers (e.g., quad-socket servers with
100+ cores). VRAN servers are typically single-socket or
mid-range dual-socket servers. For example, HPE'’s servers
targeted for vRAN have at most 28 CPU cores [14]. Sim-
ilarly, Dell’s reference architecture for vVRAN has 40 cores
per server [4].

In addition, massive MIMO servers co-exist with vVRAN
servers handling other workloads, such as BBUs for non-
massive RUs, and virtualized implementations of higher cel-
lular protocol layers (e.g., MAC). Datacenter operators pre-
fer maintaining a uniform fleet of servers, i.e., it is uncom-
mon to deploy special high core-count servers for just one
workload. Therefore, a distributed design that can support
massive MIMO workloads in typical vRAN servers is useful.

Another advantage of not relying on high-end beefy
servers, which we have currently not explored in this work,
is cheaper fault tolerance. vRAN deployments must provide
extremely high availability since they are part of the criti-
cal phone infrastructure. One way to limit vRAN downtime
is to deploy some servers as hot backups. Maintaining a
beefy backup server to guard against the failure of a single
beefy server is more expensive compared to maintaining a
smaller backup server to guard against failure of one of Hy-
dra’s servers.

2.4 Limitations of prior distributed designs

BigStation [28] is the state-of-the-art design for virtualized
distributed massive MIMO baseband processing. BigStation
was designed around a decade ago for 4G MIMO processing,
supporting up to 12 antennas and 12 users. BigStation’s de-
sign (Figure 3) has two limitations:

High inter-core and inter-server communication.
BigStation was designed for relatively small MIMO con-
figurations, and aimed to meet latency deadlines with the
weaker CPU cores available in 2012. Thus, BigStation ag-
gressively distributes decomposable BBU tasks among CPU
cores in the cluster (Section 3.2). As the MIMO dimension

408 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Time-domain
1Q samples

Equal & Demod Decodel
Equal & Demod Decodel
Equal & Demod Decodel

Functions running on
commodity servers

RU antennas

(a) BigStation architecture

Frequency-domain
1Q samples

Decode |

Decode |

Decode |

RU antennas

Functions running on
commodity servers

(b) Hydra architecture

Figure 3: Architecture comparison between BigStation and
Hydra (uplink). Unlike BigStation, Hydra shuffles data only
after the subcarrier-parallel stage. “ZF”, ’Equal”, "Demod”,
and “Decode” are short for zero-forcing, equalization, de-
modulation, and LDPC decoding, respectively.

increases, the communication overhead in BigStation be-
comes significant and limits its scalability. In contrast, today
we have higher MIMO dimensions and more powerful CPU
cores that can individually complete the required MIMO op-
erations within the radio protocol’s deadline. Therefore,
Hydra’s design centers on keeping computation local on a
CPU core to the extent possible.

Time-domain fronthaul traffic. BigStation was de-
signed for older RUs that lacked FFT support (Section 3.1).
To handle the large number of antennas in massive MIMO,
BigStation’s servers spend a correspondingly large amount
of CPU cycles in (a) performing FFT and IFFT, and (2) send-
ing, receiving, and shuffling IQ samples (Section 4). For ex-
ample, in the uplink direction, the servers first receive time-
domain IQ samples from antennas, perform FFT, and then
shuffle the frequency-domain IQ samples among each other
to enter the subcarrier-parallel processing stage.

2.5 Motivation and challenges for Hydra

The above limitations of single-server and distributed
MIMO BBUs motivated us to create a new distributed de-
sign. The key challenge in Hydra is: how can we distribute
massive MIMO BBU processing among a pool of workers
(servers or CPU cores) with minimal overhead? An ideal
design is to perfectly parallelize the workload among the
BBU servers without any inter-server communication.
When splitting massive MIMO BBU processing for an RU

with fronthaul traffic Fp,, Gbps among N servers, the min-
imal network communication each server must handle is
Cuin = Fpyw/N Gbps. Our design achieves close to perfect
parallelism with only 20% additional inter-server commu-
nication compared to Cy,;, (Section 5.2).

3 Design

We next describe Hydra’s three main design components.
Our design focuses on reduces communication overhead,
with three approaches: (1) using the ability of modern RUs
to run FFT and split packets into subcarrier ranges (Sec-
tion 3.1), (2) shuffling data between servers at a stage that
minimizes inter-server traffic (Section 3.2), and (3) avoiding
inter-core data movement and coordination within a server
(Section 3.3).

For brevity, similar to prior work [18, 24, 29] we primar-
ily focus on uplink processing, which is often more com-
putationally intensive than downlink processing due to the
higher cost of channel decoding compared to encoding. In-
terestingly, we find that downlink processing can be costlier
than uplink on some server architectures (Section 5.2).

3.1 Scalable fronthaul traffic partitioning

Massive MIMO radios generate a high rate of fronthaul traf-
fic. For a scalable design with minimal overhead, it is criti-
cal to not re-shuffle any substantial fraction of the fronthaul
traffic between servers. Doing so adds overhead in terms
of CPU cycles, latency, and datacenter network bandwidth
use. We show that the new ability in modern RUs to run
FFT and generate separate packets for different subcarrier
ranges allows partitioning the fronthaul traffic among Hy-
dra’s servers with zero overhead. This reduces the amount
of traffic that each server must handle before the subcarrier-
parallel stage by up to 66.4% compared to BigStation.

Quantifying fronthaul bandwidth. For example, the
fronthaul bandwidth in our running example configuration
(Section 2.2)—150x32 MIMO, 20 MHz frequency bandwidth
(2048 subcarriers, 1200 data subcarriers), 1 ms slots with 14
symbols—is 80.6 Gbps, assuming that the RU performs FFT
and eliminates guard subcarriers: Each of the 150 antennas
generates one packet with 1200 subcarriers (four bytes per
IQ sample) for each of the 14 symbols in a slot. Therefore,
the BBU receives 1501200 x4 x 14 bytes every millisecond,
totaling 80.6 Gbps.

Note that most of the factors listed in Section 2.3 cause
the fronthaul bandwidth to increase linearly. For example,
using 100 MHz bandwidth with 0.5 ms slots is a common
configuration in 5G deployments. This increases the fron-
thaul bandwidth by 5.5x to 444 Gbps by (1) increasing from
1200 to 3300 data subcarriers (4096 total subcarriers), and
(2) doubling the rate at which the BBU receives packets.

To better describe the advantages of Hydra’s fronthaul
traffic partitioning approach, we begin by first discussing
BigStation’s approach. We compare the datacenter network

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 409

System Receive rate Transmit rate
BigStation 47.3 Gbps 12.9 Gbps
Hydra 20.2 Gbps 0 Gbps

Table 1: Comparison of datacenter network bandwidth used
in BigStation and Hydra before the subcarrier-parallel stage.
These numbers are for a 150-antenna RU and 20 MHz band-
width with 1 ms slots.

bandwidth handled by each machine before the subcarrier-
parallel stage in BigStation and Hydra, assuming each BBU
design uses a cluster of four machines, and our running ex-
ample MIMO configuration.

BigStation’s approach BigStation uses RUs without FFT
support, and therefore operates on time-domain IQ sam-
ple packets, with 2048 IQ samples each (one IQ sam-
ple per subcarrier). In our example MIMO configura-
tion, the fronthaul bandwidth for BigStation is therefore
80.6x2048/1200 =137.5 Gbps. BigStation partitions the
fronthaul traffic by antenna: each of the four BigStation
servers receives packets for an exclusive range of 32 anten-
nas, i.e., 137.5/4 = 34.4 Gbps.

BigStation’s servers then run FFT on the time-domain
IQ sample packets and drop the guard subcarriers, retain-
ing 1200 subcarriers. To feed the next subcarrier-parallel
stage (Section 2.2.2), each server must send 75% of the
1200 subcarriers to other machines. This corresponds to
32x(0.75x1200) x4 x 14 bytes per millisecond, or 12.9 Gbps.
Symmetrically, each server also receives 12.9 Gbps of shuf-
fling input from the other three servers.

Hardware capabilities of modern radios The O-RAN
alliance [9] defines specifications for various components
and interfaces in 5G vRAN deployments. There are two
hardware capabilities in modern O-RAN-compliant RUs
that allow us to design new ways to partition fronthaul traf-
fic. (1) FFT support. O-RAN’s fronthaul specification [7] re-
quires RUs to support FFT. Running FFT at the RU reduces
fronthaul bandwidth requirement by dropping guard sub-
carriers at the RU. For example, in our 20 MHz configura-
tion with 2048 subcarriers and 1200 data subcarriers, run-
ning FFT at the RU cuts down fronthaul bandwidth by 41%.
Since FFT is cheap to implement, it is widely included in
RUs. This O-RAN feature benefits massive and non-massive
RUs alike (e.g., small cells in a city that have low-bandwidth
connections to the BBU).

(2) O-RAN also requires the RU to support configurable
“fragmentation” (Section 3.5 in the fronthaul spec [7]) of
its IQ sample packets on both the uplink and the down-
link. This is needed to support fronthaul networks with
different MTUs (a fronthaul packet with 1200 subcarriers
requires 4800 bytes, which exceeds Ethernet’s typical 1500-
byte MTU), and to allow the BBU to request only certain

frequency ranges from the RU. The latter is useful for re-
ducing fronthaul traffic during low load when only a few
frequency resources are in use.

Hydra’s approach We found a novel use case of these
two RU abilities, which is different from what they were
originally designed for (i.e., reducing fronthaul traffic or
handling different MTUs): distributing massive MIMO fron-
thaul traffic among a pool of servers with zero overhead.

Fortunately, O-RAN RUs do not fragment packets at ar-
bitrary boundaries, such as in the middle of an IQ sample.
With such an implementation of fragmentation, Hydra’s
servers would need to re-shuffle some IQ samples between
servers before the subcarrier-parallel processing stage. In-
stead, each fragment contains a contiguous range of subcar-
riers, and the BBU can configure these ranges over its con-
trol plane connection to the RU. In Hydra, we use as many
equally-sized ranges as the number of servers. If the num-
ber of subcarriers is not a multiple of the number of servers,
one server gets a slightly larger range than others.

For example, in a four-server Hydra cluster, we config-
ure the RU to send four packets per antenna in each symbol
duration. The four packets contain IQ samples for data sub-
carrier ranges 0-299, 300-599, 600-899, 900-1199. We then
route the i’ packet to server i. Each Hydra server therefore
receives 80.6/4 =20.2 Gbps and sends no datacenter network
traffic before entering the subcarrier-parallel stage.

Table 1 compares the amount of traffic received and
sent by each server before the subcarrier-parallel stage
in BigStation and Hydra for our example configuration.
Hydra’s total bi-directional bandwidth requirement per-
server (20.2 Gbps) is 66.4% percent lower than BigStation’s
(60.2 Gbps). Our evaluation shows that using FFT-capable
RUs with subcarrier range fragmentation reduces the num-
ber of CPU cores needed by Hydra by up to 46% (Section 5.5).

3.2 Scalable PHY computation partitioning

After partitioning subcarriers, Hydra still needs to run
the subcarrier-parallel stage (i.e., zero-forcing, equalization,
and demodulation), and the user-parallel stage (i.e., decod-
ing). There are several possible approaches to partitioning
this remaining computation among Hydra’s servers. We
observe that the massive MIMO processing pipeline pro-
gressively reduces the amount of data transferred between
pipeline stages. Hydra minimizes the amount of inter-
server data shuffling by delaying shuffling to the last stage
of the MIMO processing pipeline (decoding). Compared to
BigStation’s design, Hydra’s servers shuffle up to 42% less
data (Section 3.2.2).

3.2.1 Hydra’s approach

Recall that in our running example, the i Hydra server
S; receives IQ samples for subcarriers [300xi, 300x (i + 1)).
S; runs all the subcarrier-parallel processing sub-stages for
these 300 subcarriers locally, i.e., without shipping any com-

410 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

putation to remote servers. After demodulation, S; creates
32 per-user output buffers, each with 300 entries for the cor-
responding users’ transmissions on each subcarrier. The de-
coding for 75% of these users happens on other servers, so
S; ships its outputs for those users over the network.

Rationale. The transition point between subcarrier-
parallel and user-parallel stages offers an efficient point for
shipping computation across servers. This is because the
subcarrier-parallel stage reduces the amount of data flowing
through the BBU’s uplink pipeline: The equalization step for
a subcarrier transforms per-antenna samples into per-user
samples, and the number of antennas in massive MIMO is
substantially larger than the number of users. For example,
648 is the typical massive MIMO configuration in today’s
5G deployments. In our running 128 x 32 massive MIMO ex-
ample, equalization shrinks the pipeline’s flow by 4x.

3.2.2 BigStation’s approach

The main alternative to our approach is computation and
data shipping even within the subcarrier-parallel stage. For
example, unlike Hydra, the computation for a given subcar-
rier in BigStation happens on different servers: BigStation
reserves a set of its servers for only matrix inversion. These
servers then ship the computed inverses to other servers
running equalization and demodulation.

Comparison with Hydra. In our running example with
15032 MIMO, we assume that groups of 32 subcarriers (as
many as the number of users to avoid inter-user interfer-
ence during pilot transmission) have the same channel ma-
trix. Therefore, there are 1200/32 channel matrices, and
each matrix is 150 x 32 x 8 = 38400 bytes in size. Shipping
these matrices over the network in each millisecond slot du-
ration requires 11.5 Gbps.

Shuffling data between the subcarrier-parallel stage and
the user-parallel stage for this MIMO configuration cumula-
tively requires 16 Gbps for a three-server BBU (Section 5.2).
This shuffle is required in both Hydra and BigStation, but
it is the only shuffle required in Hydra. Therefore, Hydra’s
inter-server shuffle bandwidth (16 Gbps) is 42% lower than
BigStation’s (11.5 Gbps + 16 Gbps) for this configuration.

Alternative approaches. Similarly, early versions of our
system aimed to maximize parallelism in the MIMO BBU
by dynamically shipping individual matrix inversion and
multiply operations over the cluster. Our thinking was in
line with BigStation’s hypotheses [28, Section 5.3] that for
very large MIMO systems, the matrix inverse and multi-
ply operations may need to be partitioned across servers.
However, such an approach is unnecessary and inefficient:
distributing individual MIMO matrix operations is unneces-
sary because modern CPU cores are individually powerful
enough to meet the BBU’s deadline. For example, comput-
ing the pseudo-inverse of a 150x32 channel matrix takes
only around 150 ps on our servers. Our evaluation shows

that confining a subcarrier’s processing to a single server (a
single core) works well on today’s hardware. In addition,
shipping the matrix operations adds overhead by shipping
a huge amount of matrix contents over the network, requir-
ing similar bandwidth to the fronthaul bandwidth.

3.3 Scaling within a machine

In our goal to build a scalable distributed system for massive
MIMO baseband processing, we also had to create new op-
timizations for the processing within a single machine. We
found that our baseline Agora system has a large amount of
overhead from inter-core data movement and synchroniza-
tion. We next describe two optimizations to reduce inter-
core data movement and synchronization that we made on
top of Agora. Our evaluation shows that these optimiza-
tions are crucial: without them, for some large MIMO con-
figurations, Hydra either fails to support the configuration,
or requires over 2x more CPU cores (Section 5.6).

Subcarrier-to-core affinity Recognizing the high cost
of inter-core communication, we design Hydra to use the
same CPU core for all the subcarrier-parallel sub-stages for
a given subcarrier. In contrast, Agora centers its design
around fine-grained task distribution, so a random core runs
any individual matrix inverse or matrix multiply. Although
this is a straightforward way of parallelizing MIMO process-
ing that provides flexibility in allocating tasks to cores, it
incurs a large amount of inter-core communication.

In Agora, the CPU core that computes the channel matrix
inverse for a subcarrier (C;) is almost always different from
the CPU cores that run equalization and demodulation for
that subcarrier (C,). Note that a given channel matrix in-
verse computed from the pilot symbols is used for equaliza-
tion in 13 subsequent data symbols. This creates overhead
by repeatedly moving the computed matrix inverse from
C;i’s private caches to C,’s caches. It also reduces the cache
efficiency of all cores, since the same matrix contents are
duplicated in several caches.

In Hydra, the same CPU core performs channel matrix
inversion, equalization, and demodulation for a given sub-
carrier. This eliminates inter-core cache movement and du-
plication of cached data.

No central coordinator thread. Agora uses a
coordinator-worker thread design, in which a single
coordinator thread communicates with worker threads via
shared-memory queues. The coordinator thread queues
task descriptors to the workers (e.g., the address and
dimension of a source matrix to invert), and receives com-
pletions from workers. We find that in Agora’s design, the
worker threads spend a substantial amount of time blocked
and waiting for work from the coordinator. This happens
because the coordinator must schedule a large number of
tasks, restricting performance. In contrast, Hydra’s threads
use shared-memory counters to track dependencies in the

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 411

Task Without HT ~ With HT
Invert a 150 X 32 matrix 2.9 K/sec 4.8 K/sec
Equalization (32x150 times 150x1) 0.96 M/sec 1.23 M/sec
Precoding (150x32 times 32x1) 0.67 M/sec 0.72 M/sec
LDPC decoding (one UE) 20.2 K/sec 23.3 K/sec
LDPC encoding (one UE) 48.5 K/sec 60.0 K/sec

Table 2: Comparison of single-core processing rate with and
without Hyper Threading (HT) for 150x32 MIMO.

MIMO pipeline, avoiding the coordinator bottleneck. In
addition, since we also use subcarrier-to-core affinity, there
are over 10x fewer cross-core task dependencies in Hydra
than in Agora.

3.4 Downlink processing

The BBU’s downlink pipeline is the reverse of the uplink
pipeline. A separate MAC layer sends per-user data to Hy-
dra’s user-parallel threads, which perform LDPC encod-
ing, and send the corresponding subcarrier ranges to Hy-
dra’s subcarrier-parallel workers. Subcarrier-parallel work-
ers then apply the precoder matrix that they computed dur-
ing uplink processing (the precoder is the transpose of the
channel matrix inverse) to transform per-user streams to
per-antenna streams. The packet I/O threads on each ma-
chine then combine the outputs of each subcarrier-parallel
worker to generate one packet for the machine’s assigned
subcarrier range, which is then sent to the RU.

4 Implementation

We implement Hydra in C++ for Linux, building on top of
Agora’s open-source codebase. Similar to Agora, (1) we use
Intel MKL for matrix operations accelerated with AVX-512
SIMD instructions, (2) we use Intel’s FlexRAN library [6] for
LDPC decoding and encoding.

Thread types in Hydra. A Hydra deployment consists of
one or more Hydra processes running on different servers in
a cluster. Each Hydra process launches three sets of threads,
each pinned to a different core: (1) packet IO threads, (2)
subcarrier-parallel threads, and (3) user-parallel threads.
Packet IO threads send and receive fronthaul traffic, and
shuffle BBU pipeline data between servers. Each subcarrier-
parallel and user-parallel thread is assigned a static range of
subcarriers or range of users, respectively. For each MIMO
dimension, we use the fewest number of threads for each
thread type (currently determined manually) required to
handle the maximum workload.

Hyper Threading. While Agora disables Hyper Thread-
ing (HT), we find that enabling it improves the performance
of massive MIMO processing by reducing the negative im-
pact of memory stalls. Massive MIMO processing generates
a large memory footprint (e.g., 1200 150x32 matrices, or
11.5 MB), causing misses in the CPU’s L1-L3 caches, which
reduce CPU efficiency. Hyper Threading hides the impact

of these memory stalls by overlapping memory accesses
with compute, e.g., by allowing one logical thread to use
a SIMD unit while another logical thread is stalled. Table 2
shows that for 150x32 MIMO, using HT improves a single
core’s throughput by 7.5%-65.5% for different PHY routines
measured in isolation in micro benchmarks. For end-to-end
runs, we were able to fit 150 x32 MIMO processing in three
servers only with HT enabled. For smaller MIMO configu-
rations that we were able to test both with and without HT,
using HT reduces the number of physical CPU cores needed
by Hydra, e.g., from 68 to 53 cores for uplink processing for
128 x32 MIMO.

Dynamic CPU core utilization. Since mobile networks
experience highly variable workloads, it is important for the
BBU to scale its energy consumption with the workload [1].
For example, cell sites in residential areas have high utiliza-
tion during the day time, but almost no utilization at night.
Hydra scales its CPU usage with the workload as follows.
For every slot, the MAC layer (not included in our sys-
tem yet) communicates the set of users active on each sub-
carrier to Hydra. If during a slot with low load, the base
station has fewer active users than the number of users per-
mitted by the MIMO dimension, Hydra puts the correspond-
ing user-parallel threads to sleep. Similarly, if a slot’s MAC
configuration has some subcarriers not assigned to any user,
Hydra puts the corresponding subcarrier-parallel threads to
sleep. While this approach is fairly simple, we believe that
it works well because mobile networks experience highly
bursty workload patterns, with significant periods of zero
load. For example, recent measurements show that a 4G cell
is fully idle in 75% of the slots [20]. During zero-load peri-
ods, Hydra disables most of its threads, keeping only the
packet I/O threads active. The CPU cores yielded by Hy-
dra may be used by other co-located latency-tolerant edge
workloads such as machine learning and analytics [20].

5 Evaluation

This section presents our evaluation of Hydra’s perfor-
mance, the effectiveness of our design choices, and com-
parisons with design choices made by prior massive MIMO
baseband processing systems (i.e., Agora and BigStation).
For evaluation, we created a complete version of BigSta-
tion based on the original design [29]. To focus the evalua-
tion on the distributed system design differences between
BigStation and Hydra, we also implement all of Hydra’s
single-machine optimizations for BigStation.

5.1 Evaluation setup

5.1.1 Server setup

We run our evaluation in two clusters. For most experi-
ments, we use a “main” cluster of four commodity servers,
with three servers running our distributed BBU, and one
server acting as a fronthaul traffic generator emulating an

412 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

RU (Section 5.1.2). All servers are connected to an Arista
7060 switch with 100 GbE single-port Mellanox ConnectX-
5 NICs. Each server has two Intel Xeon Silver 4216 CPUs
(2.1 GHz, AVX512 support), with 16 cores per CPU. We use
at most 29 cores per server to leave some cores for the OS
to avoid kernel thread starvation.

To demonstrate our design’s scalability to more servers
than available in our main cluster, we use another cluster in
CloudLab [19] consisting of 27 servers, with up to 18 servers
for the BBU, and nine servers for emulating the RU. These
servers are less powerful than our main cluster’s servers.
All servers are connected to Mellanox 2410 switches with a
Mellanox ConnectX-4 25 GbE NIC. Each server has one ten-
core Intel E5-2640v4 CPU (2.4 GHz, no AVX512 support).

As is typical in VRAN systems [3, 18], we configure each
server to reduce jitter: we run our processes as real-time
processes with the highest scheduling priority, and remap
OS interrupts to an unused core. Our experiments run in a
dedicated cluster without network congestion and therefore
experience no packet loss. Unless specified otherwise, the
experiments run in the main cluster.

5.1.2 Emulated fronthaul traffic generator

Since O-RAN-compatible massive MIMO radios are not
readily available today, we emulate the fronthaul traffic
with a software-based generator, using Agora’s DPDK-
based generator as a starting point. The generator applies a
Rayleigh fading channel with Gaussian noise (25 dB signal-
to-noise ratio). Agora’s generator emulates a basic RU with-
out FFT support, transmitting time-domain IQ samples; we
modify it to emulate an O-RAN radio: our generator runs
FFT, discards guard subcarriers, and splits packets into mul-
tiple subcarrier ranges, one per Hydra server. In addition,
for the packet for a given subcarrier range, the generator
uses the network address (IP and MAC address) for the cor-
responding Hydra server.

In the CloudLab cluster, which has 25 GbE, the fron-
thaul bandwidth exceeds a single server’s NIC bandwidth
for MIMO configurations with over 46 antennas. To over-
come this, we split the traffic generation for the antennas
across multiple servers. All servers are time-synchronized
to a sub-microsecond accuracy with PTP, and agree on the
first slot’s start time during initialization. We also add gen-
erator support to change the set of active subcarriers and
users to emulate high and low load scenarios.

5.1.3 Wireless parameters

Our wireless settings are similar to Agora: all experiments
use a 20 MHz configuration with 1200 data subcarriers (2048
total subcarriers), 1 ms slot duration, and 64 QAM modula-
tion. We use 1/3 LDPC code rate and base graph #1, with a
LDPC lifting size (“Z”) up to 104. This configuration results
in 29.7 Mbps data rate per user, or 950 Mbps for 32 users.
Since our primary focus is performance, our experiments

use the peak load where all subcarriers and users are active,
unless mentioned otherwise.

5.2 End-to-end performance

Figure 4 shows the number of CPU cores and servers needed
by Hydra and BigStation to support different massive MIMO
configurations. We show the numbers for both uplink and
downlink processing. We run the experiment for 100 sec-
onds, spanning 100k 1 ms slots. To support a MIMO di-
mension, the BBU must satisfy two constraints: (1) the
BBU’s 99.99th percentile latency must be below 2.5 ms (Sec-
tion 2.3), and the BBU must have a throughput of one slot
per slot duration (1 ms in our case) to keep up with the
RU. Hydra supports up to 150x32 MIMO with three BBU
servers. For 150 x32 MIMO, Hydra uses 71 cores for uplink
processing, or 83 cores for downlink processing.

Interestingly, we find that in our main cluster, Hydra’s
downlink processing is more expensive than uplink. This is
the opposite of measurements in the Agora paper, as well
as our CloudLab measurements for Hydra (Section 5.4.3).
This happens because downlink precoding (0.72 M/s per
core for 32x150 by 150x 1 multiplications) is more expen-
sive than uplink equalization (1.23 M/s per core for 150x32
by 32x 1 multiplications) on our main cluster (Table 2)." In
our CloudLab cluster, the lack of AVX512 instructions re-
verses this effect (i.e., downlink becomes cheaper than up-
link) by making LDPC decoding far more expensive than
LDPC encoding: decoding is 10x more expensive than en-
coding on CloudLab, compared to 2.5x more expensive on
our main cluster.

5.2.1 Comparison with BigStation

BigStation supports only up to 128 x 16 MIMO with the three
servers. For MIMO configurations that BigStation supports,
Hydra uses only around half the CPU cores for uplink pro-
cessing, and between 30-40% fewer CPU cores for downlink
processing. BigStation’s worse performance comes from
two factors. First, BigStation spends additional CPU cycles
for running FFT in software instead of the RU, and shuffling
a larger amount of data between servers than Hydra. Sec-
ond, the higher network I/O and data shuffling generates
more memory pressure and inter-core communication than
Hydra, reducing BigStation’s compute efficiency.

We provide a detailed accounting of Hydra’s and BigSta-
tion’s CPU usage below, with 128 x16 downlink processing
(the most challenging downlink configuration supported by
BigStation) as the example.

» Packet I/0O. BigStation uses 24 cores for packet I/O,
compared to only four for Hydra.

« IFFT. BigStation uses six cores for IFFT processing,
whereas Hydra uses the RU’s ability to perform IFFT.

1We are investigating the root cause of this difference by studying Intel
MKL'’s implementation of matrix multiplication.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 413

Hydra-UL C——

100
80
60
40
20

Cores required

BigStation-UL —=—3

Hydra-DL ==—= BigStation-DL Emmmm

64x8 64x16

64x%x32

128x16 128x32 150x32

Figure 4: Number of cores and servers required to support different massive MIMO settings for Hydra and BigStation in
uplink (UL) and downlink (DL) mode. BigStation supports up to 128 x 16, so the bars for larger configurations are not shown.

i Uplink
| Downlink + v v

plementary CDF
= = e
o o o 5
w N = o

Dl e o e e o =
£ 10 99,39t Tatency

0.5 1
Latency (ms)

(0}
fun
e

5

o

Figure 5: Complementary CDF of Hydra’s latency for
15032 uplink and downlink processing.

« Subcarrier processing. BigStation uses 33 cores
for subcarrier-parallel processing (six cores for zero-
forcing, and 27 cores for precoding). Hydra uses 31
cores for its combined subcarrier processing stage.

« LDPC encoding. BigStation uses nine cores for LDPC
encoding, compared to six for Hydra.

5.3 Comparison with Agora

Hydra supports Agora’s largest 64 x 16 MIMO configuration
with one server for both the uplink and downlink. Differ-
ent from Agora’s single-server design, Hydra allows using
two servers to support 12832 MIMO, and three servers to
support 150 x32 MIMO.

For a single-server performance comparison, we compare
Hydra’s performance with the numbers published in the
Agora paper [18]. This is because we were unable to re-
produce numbers comparable to those reported in Agora
due to hardware differences, e.g., we use weaker CPUs
(16-core Xeon Silver 4216, $900 per CPU) than those used
in Agora’s evaluation (16-core Xeon Gold 6130, $1900 per
CPU). For 64x16 uplink processing, Hydra uses 19 CPU
cores compared to Agora’s 28 (including Agora’s two packet
I/O cores); for downlink processing, Hydra uses 27 cores
compared to Agora’s 23.

5.4 Hydra’s performance details

5.4.1 Tail latency

Figure 5 shows that Hydra successfully meets our latency
target of sub-2.5 ms 99.99th percentile latency for Hydra’s

37 Uplink === Downlink == '
£20¢f 18 -

g_ 16
o151 12 -
10

vi0t -
5 8 . 8 . 4 8
Ll Wl 1 -
[7p]

0

64x32 128x16 128x32 150%32 256x%32

Figure 6: Number of servers required to support different
massive MIMO settings in the CloudLab cluster.

largest-supported 150 x 32 MIMO configuration. For the up-
link, Hydra’s maximum latency is only 1.8 ms, and its 99.99-
th percentile tail latency is 1.7 ms. For the downlink, Hy-
dra’s maximum and 99.99% latency are both 2.3 ms.

5.4.2 Additional network traffic

For 150x32 MIMO, Hydra processes 80.6 Gbps of fron-
thaul traffic, and cumulatively shuffles only 16 Gbps among
servers, or 20% additional traffic. (Since there are three
servers, each server transmits two-thirds of 32x400x6
bytes per data symbol. Since we use 64 QAM modulation,
our demodulation stage represents each subcarrier’s sample
with 6 bits.)

5.4.3 Server scalability

We use the CloudLab cluster to study how Hydra’s design
scales with an increasing number of servers. Figure 6 shows
how Hydra supports higher massive MIMO dimensions as
the number of servers increases in the CloudLab cluster. Hy-
dra supports 256 x32 MIMO with 18 servers for uplink pro-
cessing, or with 10 servers for downlink processing. For
the regime studied, the number of servers needed for up-
link processing scales roughly linearly with the number of
antennas: for 32 users, Hydra needs 8, 12, and 18 servers for
64, 128, and 256 antennas, respectively. There is room for
further scaling since Hydra does not hit a scalability bottle-
neck at 256 x32; this scale was limited by only the number
of CloudLab servers we managed to reserve.

Different from our main cluster, downlink processing is
cheaper than uplink processing in the CloudLab cluster.
This is primarily because LDPC decoding is 10x more ex-

414 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

'080 1 1 T 1 A
L70 64 antennas —e—

5601 128 antennas —=—;

=50

240

030

020

o010

U o 1 1 1 1 1 J

0 8 16 24 32 40 48
users

Figure 7: Minimum number of CPU cores required to sup-
port different massive MIMO settings.

80 . -
=70} Hydra = Time- 1Q :! -

L60} -

250t -

040} -

030+ -

5201 -

O10}t -
0

64><16 64x32 128x16 128x32

Figure 8: CPU cores needed by Hydra and Time-IQ for dif-
ferent massive MIMO configurations (uplink).

pensive than encoding on CloudLab servers, but only 2.5x
more expensive on our main cluster.

5.4.4 User scalability

Figure 7 shows the minimum of CPU cores required to sup-
port an increasing number of users for two antenna config-
urations: 64 antennas and 128 antennas. We find that Hydra
can scalably support more users by using more cores. Using
LDPC accelerators (e.g., Intel’s ACC100 accelerators) can al-
low Hydra to support even more users.

5.5 Benefits of leveraging RU features

To quantify the performance benefits of offloading FFT and
subcarrier range splitting to the RU, we created a variant
of Hydra called “Time-IQ” that works with time-domain IQ
samples. Time-IQ runs FFT in software on the BBU servers
to generate frequency-domain IQ samples, which it then
shuffles among the servers for the subcarrier-parallel stage.
Figure 8 compares the number of cores needed by Hydra
and Time-IQ to support four different massive MIMO set-
tings. Hydra uses 42%, 22%, and 46% fewer CPU cores for
the 64x16, 64x32, and 128 X 16 configurations, respectively.
Time-IQ is unable to support the 128 x32 MIMO configura-
tion with the 87 cores available in our cluster, whereas Hy-
dra supports this configuration with 53 cores.

Next, we then run both Time-IQ and Hydra for 128x16
massive MIMO using 59 cores (the minimum CPU cores re-
quired by Time-IQ) and measure the 99.99-th tail latency
breakdown. Figure 9 shows the 99.99-th percentile comple-
tion time for each of the three pipeline stages (the antenna-
parallel FFT stage, the subcarrier-parallel stage, and the
user-parallel decoding stage). Time-IQ has higher latency
than Hydra due to the additional FFT processing in soft-

'gz.z . . -
£ = FFT

> i — Subcarrier-parallel .
s 1.8 —— User-parallel B
©l.6 -
£1.4 .
8 1.2 ':‘ -
o 1

o Hydra Time-IQ

Figure 9: 99.99-th tail latency breakdown for Hydra and
Time-IQ design for 128 x16 MIMO (uplink) with 59 cores.
The figure starts at 1 ms because it takes 1 ms to receive all
IQ samples from RU antennas.

140 ! ! ! ! -

120 Hydra D _
v Central-coordination E—3
5100 76 Agora placement — -~
g 80

= 60 -

g 40 _

O 20 -
0 64><16 64x32 128x16 128><32

Figure 10: CPU cores needed by Hydra, Central-
Coordination, and Agora-Placement for different massive
MIMO dimensions (uplink).

ware, and a longer subcarrier-parallel stage. Time-IQ’s
subcarrier-parallel stage is longer because it must shuffle
frequency-domain IQ samples between the antenna-parallel
stage and the subcarrier-parallel stage.

5.6 Impact of intra-server optimizations

We next evaluate the effectiveness of our optimization to
reduce inter-core communication (Section 3.3): affinitizing
the processing of subcarriers to CPU cores, and avoiding
a central coordinator thread for task scheduling. We cre-
ated two variants of Hydra for this measurement: The first
variant, called “Agora-Placement,” works without a coordi-
nator thread, but uses Agora’s random assignment of tasks
to CPU cores, which increase inter-core data movement
and reduces cache effectiveness. The second variant, called
“Central-Coordination,” affinitizes subcarrier processing to
CPU cores, but uses a coordinator thread to schedule tasks
to workers. Figure 10 shows that reducing inter-core com-
munication and avoiding centralization of task coordination
logic is crucial for performance. In addition, the two vari-
ants are unable to support 128 x32 MIMO with three servers.

For example, using a coordinator thread for task schedul-
ing can more than double the number of CPU cores needed.
We verify that this happens because of the large amount of
time that worker threads in Central-Coordination spend in
waiting for work from the coordinator thread. For exam-
ple, with 12832 MIMO and 53 cores (the minimum needed
by Hydra to support 128 x32), workers cores in the Central-

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 415

100

- ' ' ' ' ' a
32 active users

100% subcarriers 24 active users

50% subcarriers
24 active users
50% subcarriers

~
w
T

16 active users
25% subcarriers

251 -

CPU usage (%)
19,1
o

0 5 10 15 20 25 30 35
Time (second)

Figure 11: Hydra’s CPU usage with a dynamic workload.

Coordination design spend around 0.5 ms on average in ev-
ery millisecond slot waiting for the coordinator. In contrast,
Hydra’s workers spend only 0.14 ms on average waiting on
shared-memory counters to saturate.

5.7 Dynamic CPU core scaling

We next evaluate the efficiency of Hydra’s dynamic CPU
core scaling mechanism. We run Hydra under 150 X32 mas-
sive MIMO with 1200 data subcarriers, and dynamically
change the number of active users and active data subcarri-
ers. We change the workload in four stages, and each stage
lasts for 8—10 seconds. The four stages are 1) 32 active users
and 100% active subcarriers, 2) 16 active users and 25% ac-
tive subcarriers, 3) 24 active users and 50% active subcarri-
ers, and 4) 24 active users and 25% active subcarriers.

In a production RAN, the MAC layer sends commands to
the PHY informing it about the number of active users and
subcarriers in every slot; the PHY can use this information
to adjust its CPU utilization [20]. Since we do not currently
have a MAC layer, Hydra servers read per-slot configura-
tion from a configuration file. Figure 11 shows the real-time
CPU usage of Hydra over time, normalized to 71 cores at
100% load. Hydra first utilizes full CPU resource for the first
stage, and reduces the CPU usage to 54% in the second stage.
Hydra then dynamically changes the CPU usage to 80% and
70% in the third and the fourth stage.

6 Related Work

Software-based RAN processing. The use of commod-
ity servers for high-performance PHY processing was pio-
neered by Sora [27], which demonstrated the use of mod-
ern CPU features such as SIMD for wireless signal process-
ing for WiFi. The Sora project later led to BigStation [28],
which was the first to use a distributed system to handle the
high computation requirements of multiuser MIMO. Agora
is a more recent project that focuses on massive MIMO pro-
cessing within a single server. Hydra builds upon these
designs by combining the single-machine design of Agora
with ideas from BigStation, but focuses on minimizing
the overheads in distributing massive MIMO computation.
Intel’s FlexRAN [3] is a production-grade single-machine

PHY implementation is 5G NR-compliant and is used in
large-scale VRAN deployments [10]. However, FlexRAN
is closed-source, with a few open-source components like
their LDPC encoder and decoder. Hydra’s design could ben-
efit from FlexRAN’s other high-performance signal process-
ing blocks, such as matrix inversion and demodulation.

Hardware-based RAN processing. The LuMaMi
testbed [24] is a massive MIMO processing system that
uses specialized hardware (e.g., FPGAs and PCle switches).
LuMaMi can handle 100x10 massive MIMO with 0.5 ms
slots. While LuMaMi and Hydra cannot be compared
apples-to-apples, it is interesting to note that Hydra can
handle a substantially larger MIMO configuration (i.e.,
150%32), although with a more relaxed latency deadline
(1 ms slots). We believe that comparing software-only and
hardware-based approaches for massive MIMO processing
is an interesting avenue for future research.

Quantum computing approaches such as QuA-
Max [23] and ParaMax [22] have recently been proposed to
tackle the high computational cost of massive MIMO. While
our work uses linear MIMO methods (i.e., zero-forcing
equalization and precoding), quantum-based approaches
can handle more expensive non-linear methods like sphere
decoding [21, 25]. Since sphere decoding can be too
expensive for a single server, Hydra’s techniques may be
used to distribute the work among multiple servers.

7 Conclusion

We have presented the design of Hydra, a new distributed
design for scalable massive MIMO processing in software.
Hydra focuses its design on reducing the overhead in dis-
tributing massive MIMO computation among a pool of
servers. Our design leverages features of modern RUs in
novel ways to partition the fronthaul traffic with zero over-
head, uses an efficient split for shuffling inter-server data
between the MIMO pipeline’s stages, and reduces inter-core
communication and coordination for processing within a
machine. The result is that Hydra can support much larger
MIMO configurations than prior state-of-the-art, demon-
strating support for 150x32 MIMO for the first time in
software. Importantly, we have demonstrated that massive
MIMO processing can be efficiently distributed over mul-
tiple servers, using only 20% additional network I/O com-
pared to the required fronthaul traffic. We believe that our
design can be used to scalably support even more challeng-
ing MIMO configurations in the future.

Acknowledgments. We thank the NSDI reviewers for
their helpful feedback. We are grateful to Jian Ding and Rah-
man Doost-Mohammady for their feedback, and help with
the Agora code. We also thank Lin Zhong for early discus-
sions on the project. Junzhi Gong and Minlan Yu are sup-
ported in part by the NSF CNS-1955422 and CNS-1955487.

416 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A technical look at 5G energy consumption and perfor-
mance. https://www.ericsson.com/en/blog/2019/
9/energy-consumption-5g-nr.

AirSpan 7200: Massive Throughput in a Single, Compact Unit Open-
RANGE 7200. airspan.com/5g-products/.

An Overview of FlexRAN* Software Wireless Access Solutions.
https://software.intel.com/content/www/us/
en/develop/videos/an-overview-of-flexran-
sw-wireless-access-solutions.html.

Building an open VRAN Ecosystem. https://
www.delltechnologies.com/asset/en-us/
solutions/service-provider-solutions/
technical-support/altiostar-redhat-nec-
and-dell-technologies-vran-solution-
reference-architecture.pdf.

Dish selects Fujitsu, Altiostar for 5G radios, Open vRAN.
https://www.fiercewireless.com/operators/
dish-selects-fujitsu-altiostar-for-5g-
radios-open-vran.

FlexRAN LTE and 5G NR FEC Software Development Kit Modules.
https://software.intel.com/content/www/us/
en/develop/articles/flexran-1lte-and-5g-nr-
fec-software-development-kit-modules.html.

O-RAN Fronthaul Control, User and Synchronization Plane Specifi-
cation v6.0. https://www.o-ran.org/specification-
access.

Open RAN and the mission to crack massive MIMO.
https://www.lightreading.com/open-ran/open-
ran-and-mission-to-crack-massive-mimo/d/d-
id/768081.

Operator Defined Open and Intelligent Radio Access Networks.
https://www.o-ran.org/.

Rakuten Mobile and NEC to Build Open vRAN Architecture
in Japan. https://global.rakuten.com/corp/news/
press/2019/0605_01.html.

Telefonica invests in VRAN vendor Altiostar. https:
//www.fiercewireless.com/tech/telefonica-
invests-vran-vendor-altiostar.

T-Mobile Achieves Mind-Blowing 5G Speeds with MU-MIMO.
https://www.t-mobile.com/news/network/t-
mobile-achieves-mind-blowing-5g-speeds-
with-mu-mimo.

Vodafone starts trials of OpenRAN in Europe and Africa.
https://www.gsma.com/futurenetworks/digest/
vodafone-starts-trials-of-openran-in-
europe-and-africa/.

vRAN 2.0 on HPE Infrastructure.
h50146.www5.hpe.com/products/servers/
document/pdf/edgeline/vran2.0.pdf.

https://

Open RAN Alliance. O-RAN: towards an open and smart RAN. white
paper, October, 2018.

Robin Chataut and R. Akl. Massive mimo systems for 5g and beyond
networks—overview, recent trends, challenges, and future research
direction. Sensors (Basel, Switzerland), 20, 2020.

[17] Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong.

(18

[19

[20

[21

[22

(23

(24

[25

(26

[27

[28

[29

[t

—

=

—

—

=

=

=

—

]

=

—

Agora: Real-time massive MIMO baseband processing in software.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies, pages 232-244, 2020.

Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong.
Agora: Real-time massive MIMO baseband processing in software.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies, pages 232-244, 2020.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation
of CloudLab. In Proceedings of the USENIX Annual Technical Confer-
ence (ATC), pages 1-14, July 2019.

Xenofon Foukas and Bozidar Radunovic. Concordia: teaching the
5G vRAN to share compute. In Fernando A. Kuipers and Matthew C.
Caesar, editors, ACM SIGCOMM 2021 Conference, Virtual Event, USA,
August 23-27, 2021, pages 580-596. ACM, 2021.

Chin-yun Hung and Tzu-hsien Sang. A sphere decoding algorithm
for mimo channels. In 2006 IEEE International Symposium on Signal
Processing and Information Technology, pages 502-506, 2006.

Minsung Kim, Salvatore Mandra, Davide Venturelli, and Kyle
Jamieson. Physics-inspired heuristics for soft mimo detection in 5g
new radio and beyond. In Proceedings of the 27th Annual Interna-
tional Conference on Mobile Computing and Networking, MobiCom
’21, page 42-55, New York, NY, USA, 2021. Association for Comput-
ing Machinery.

Minsung Kim, Davide Venturelli, and Kyle Jamieson. Leveraging
quantum annealing for large mimo processing in centralized radio
access networks. In Proceedings of the ACM Special Interest Group on
Data Communication, SSIGCOMM ’19, page 241-255, New York, NY,
USA, 2019. Association for Computing Machinery.

Steffen Malkowsky, Jodo Vieira, Liang Liu, Paul Harris, Karl Nieman,
Nikhil Kundargi, Ian C. Wong, Fredrik Tufvesson, Viktor Owall, and
Ove Edfors. The world’s first real-time testbed for massive mimo:
Design, implementation, and validation. IEEE Access, 5:9073-9088,
2017.

Konstantinos Nikitopoulos, Juan Zhou, Ben Congdon, and Kyle
Jamieson. Geosphere: Consistently turning mimo capacity into
throughput. SIGCOMM Comput. Commun. Rev., 44(4):631-642, aug
2014.

Clayton Shepard, Jian Ding, Ryan E Guerra, and Lin Zhong. Un-
derstanding real many-antenna MU-MIMO channels. In 2016 50th
Asilomar Conference on Signals, Systems and Computers, pages 461-
467. IEEE, 2016.

Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and
Geoffrey M Voelker. Sora: high-performance software radio using
general-purpose multi-core processors. Communications of the ACM,
54(1):99-107, 2011.

Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu,
Jiansong Zhang, and Yongguang Zhang. BigStation: Enabling scal-
able real-time signal processing in large MU-MIMO systems. vol-
ume 43, pages 399-410. ACM New York, NY, USA, 2013.

Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu,
Jiansong Zhang, and Yongguang Zhang. BigStation: Enabling scal-
able real-time signal processingin large MU-MIMO systems. ACM
SIGCOMM Computer Communication Review, 43(4):399-410, 2013.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation

417

https://www.ericsson.com/en/blog/2019/9/energy-consumption-5g-nr
https://www.ericsson.com/en/blog/2019/9/energy-consumption-5g-nr
airspan.com/5g-products/
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran
https://software.intel.com/content/www/us/en/develop/articles/flexran-lte-and-5g-nr-fec-software-development-kit-modules.html
https://software.intel.com/content/www/us/en/develop/articles/flexran-lte-and-5g-nr-fec-software-development-kit-modules.html
https://software.intel.com/content/www/us/en/develop/articles/flexran-lte-and-5g-nr-fec-software-development-kit-modules.html
https://www.o-ran.org/specification-access
https://www.o-ran.org/specification-access
https://www.lightreading.com/open-ran/open-ran-and-mission-to-crack-massive-mimo/d/d-id/768081
https://www.lightreading.com/open-ran/open-ran-and-mission-to-crack-massive-mimo/d/d-id/768081
https://www.lightreading.com/open-ran/open-ran-and-mission-to-crack-massive-mimo/d/d-id/768081
https://www.o-ran.org/
https://global.rakuten.com/corp/news/press/2019/0605_01.html
https://global.rakuten.com/corp/news/press/2019/0605_01.html
https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.t-mobile.com/news/network/t-mobile-achieves-mind-blowing-5g-speeds-with-mu-mimo
https://www.t-mobile.com/news/network/t-mobile-achieves-mind-blowing-5g-speeds-with-mu-mimo
https://www.t-mobile.com/news/network/t-mobile-achieves-mind-blowing-5g-speeds-with-mu-mimo
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa/
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa/
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa/
https://h50146.www5.hpe.com/products/servers/document/pdf/edgeline/vran2.0.pdf
https://h50146.www5.hpe.com/products/servers/document/pdf/edgeline/vran2.0.pdf
https://h50146.www5.hpe.com/products/servers/document/pdf/edgeline/vran2.0.pdf

	Introduction
	Background and motivation
	Massive MIMO basics
	Massive MIMO baseband processing
	Types of parallelism
	Challenge: Inter-stage data shuffling

	The need for distributed computing
	Limitations of prior distributed designs
	Motivation and challenges for Hydra

	Design
	Scalable fronthaul traffic partitioning
	Scalable PHY computation partitioning
	Hydra's approach
	BigStation's approach

	Scaling within a machine
	Downlink processing

	Implementation
	Evaluation
	Evaluation setup
	Server setup
	Emulated fronthaul traffic generator
	Wireless parameters

	End-to-end performance
	Comparison with BigStation

	Comparison with Agora
	Hydra's performance details
	Tail latency
	Additional network traffic
	Server scalability
	User scalability

	Benefits of leveraging RU features
	Impact of intra-server optimizations
	Dynamic CPU core scaling

	Related Work
	Conclusion

