
This paper is included in the 
Proceedings of the 20th USENIX Symposium on 

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the 
20th USENIX Symposium on Networked 

Systems Design and Implementation 
is sponsored by

LinkLab 2.0: A Multi-tenant Programmable 
IoT Testbed for Experimentation with 

Edge-Cloud Integration
Wei Dong, Borui Li, Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, 

and Yi Gao, Zhejiang University
https://www.usenix.org/conference/nsdi23/presentation/dong



LinkLab 2.0: A Multi-tenant Programmable IoT Testbed for Experimentation with

Edge-Cloud Integration

Wei Dong², Borui Li², Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, Yi GaoB

College of Computer Science, Zhejiang University,

Alibaba-Zhejiang University Joint Institute of Frontier Technologies, China

{dongw, libr, lihy, wuh, gongkj, zhangwz}@emnets.org, gaoyi@zju.edu.cn

Abstract

In this paper, we present LinkLab 2.0, a completely pro-
grammable and controllable IoT testbed with the support
of edge devices and cloud infrastructures. To be more spe-
cific, LinkLab 2.0 leverages a tiered architecture for the pro-
grammable devices and the management system to achieve
scalability. To better support the integrated experiment among
IoT, edge and cloud, LinkLab 2.0 provides one-site pro-
gramming support and leverages the customizable offloading
with serverless functions. Moreover, LinkLab 2.0 proposes
a device-involved multi-tenancy approach to ensure respon-
siveness for concurrent requests. Furthermore, targeting 24/7
availability for experimenters, LinkLab 2.0 leverages proac-
tive and reactive anomaly detection to improve the reliability
of the testbed. Finally, we describe the supported research
experiments and the outreach usage by external users. We
also report lessons learned from the four-year operation. Lin-
kLab 2.0 has supported experiments for 2,100+ users. The
accumulated usage time across all the devices exceeds 17,300
hours.

1 Introduction

Many modern IoT systems are deeply integrated with edge
and cloud platforms. New edge computing platforms like
NVIDIA Jetson, and new computing technologies like compu-
tational offloading [41, 47] and serverless computing [27, 51]
greatly enhance the capabilities of IoT systems [9, 26, 30, 49]
and will eventually usher in an era of Internet of Everything.
For example, in an industrial machine power monitoring sce-
nario [34], hundreds or thousands of IoT devices monitor and
collect energy data at a high frequency. To reduce the band-
width usage and improve the real-time performance, edge
devices are usually required to perform data prepossessing
and analytics before forwarding the data to the cloud.

However, a major challenge is the lack of a fully pro-

grammable testbed for allowing the community to deeply

explore new cloud/edge technologies and their ªsweet spotº
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Figure 1: Overview of LinkLab 2.0.

with a large number of IoT devices and highly heteroge-

neous computing platforms.

We notice that there exist multiple sensor network testbeds
such as MoteLab [67], Indriya2 [7], and FIT IoT Lab [1],
allowing the research community to experiment with various
sensornet/IoT hardware and IoT software. Unfortunately, they
do not fully address the aforementioned challenge. Specifi-
cally, these testbeds do not natively support edge/cloud inte-
gration. Most testbeds do not support the device-edge-cloud
communication path and do not allow programming on the
edge devices. Moreover, they do not have good support for
multi-tenant and high concurrent online experiments with
a growing need for teaching and research purposes in the
COVID-19 era. In this paper, we present LinkLab 2.0, a
multi-tenant IoT testbed with edge-cloud integration, aiming
to address the following systems and engineering challenges:

(1) How to support device-edge-cloud integrated experi-

ments? Towards this, LinkLab 2.0 enables one-site integrated

programmability and control for IoT, edge and cloud devices
with several front-end and back-end supports. LinkLab 2.0
also supports new computation paradigms by supporting cus-

tomizable offloading with serverless functions. Moreover, the
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Table 1: Functionality comparison of existing IoT testbeds.

Testbeds
Remote

Develop

Edge

Support

Cloud

Support

Virtual

Devices

Web

IDE

MoteLab [67] ✓ ✘ ✘ ✘ ✘

Indriya2 [7] ✓ ✘ ✘ ✘ ✘

FIT IoT [1] ✓ ✘ ✓
∗

✘ ✘

LinkLab 2.0 ✓ ✓ ✓ ✓ ✓

*FIT IoT Lab must work with FIT Cloud for cloud-IoT experiments

above programming support requires a separate and reliable
channel to deploy experiments onto the devices. Hence, Lin-
kLab 2.0 employs a vNIC-based bandwidth reservation mech-

anism on edge and cloud devices to guarantee the timeliness
for controlling the devices (§3.2).

(2) How to ensure dynamic and dedicated usage with

a high level of concurrency and multi-tenancy? The
Kubernetes-based architecture makes LinkLab 2.0 adaptive to
highly fluctuating usages (§3.1). Furthermore, considering the
concurrent programming requests in the online education sce-
nario, LinkLab 2.0 leverages a device-involved multi-tenancy

technique to divide a proportion of services and devices as
a tenant for dedicated usage. LinkLab 2.0 also provides a
nimble configuration interface for administrators to manage
the tenants (§3.3).

(3) How to ensure a high level of reliability, especially for

the IoT devices? In accordance with the complicated poten-
tial root causes of IoT devices, LinkLab 2.0 uses a proactive

and reactive problem detection approach to detect whether
the devices are broken and locate the error as soon as pos-
sible. For the whole testbed, LinkLab 2.0 detects anomalies
by automatically analyzing the multi-model logs during the
operation of the testbed (§3.4).

Figure 1 shows the overall architecture of LinkLab 2.0. Lin-
kLab 2.0 consists of three layers: device layer, edge layer and
cloud layer. In each layer, there are various programmable
devices to facilitate different levels of programmability and
control for users. Besides programmable devices, there are
dedicated devices and services to manage the programmable
devices, namely LinkLab 2.0 Device Center (LDC). There
are three different data paths among different layers. The ex-
perimental data path is used in the experiments conducted by
users. The control data path is used for programming and con-
trolling the devices of LinkLab 2.0, while the monitoring data
path is used for experimental data collection and system mon-
itoring of LinkLab 2.0 which is important for guaranteeing
24/7 availability.

Currently, LinkLab 2.0 is equipped with 420+ real IoT/edge
devices of 14 different types. Furthermore, LinkLab 2.0 sup-
ports theoretically unlimited virtual devices with device-level
simulation and a web-based IDE for easier access to the de-
vices. The controller-server-client architecture of LDC allows
LinkLab 2.0 to scale easily to accommodate substantial IoT
devices at different physical sites. Table 1 compares the func-
tionality of LinkLab 2.0 with other well-known testbeds.

LinkLab 2.0 (https://linklab.emnets.cn) facilitates
researchers to conduct a broad range of experiments to ex-

plore new system designs. It incorporates various embedded
computing platforms (e.g., Arduino, ESP32), IoT protocols
(e.g., LoRa, MQTT, COAP) and techniques for edge com-
puting (e.g., container-based service composition, edge AI).
Furthermore, during the four-year operation, we extend Lin-
kLab 2.0’s ability to better serve the community, especially
for educational purposes. In §5, we exemplify the supported
experiments and outreaches of our testbed to showcase the
various capabilities of LinkLab 2.0.

2 Basics and Usage of LinkLab 2.0

Building and managing a testbed with numerous heteroge-
neous devices from the device, edge and the cloud layer at
the same time need a prudent design. In this section, we first
present the bird’s-eye view and the usage of LinkLab 2.0, then
we compare LinkLab 2.0 with the existing testbeds.

LinkLab 2.0 in a nutshell. Towards the aforementioned
goal, as Figure 1 shows, LinkLab 2.0 exhibits a three-layer
architecture for both hardware and software, namely the IoT
device layer, edge layer and cloud layer. LinkLab 2.0 supports
both real and virtual devices for users to program with.

Currently, LinkLab 2.0 includes over 420 real devices for
IoT, edge and cloud programming. The IoT devices are de-
ployed in various environments (e.g., multi-hop scenario) as
shown in Figure 2. These devices also incorporate various
sensing peripherals and networking technologies for users.
Another key hardware building block is the programmable
edge devices and cloud server (also listed in Table 2), which is
currently not well-supported by other testbeds such as FIT [1]
and CloudLab [18]. For the programmable cloud server, Lin-
kLab 2.0 provides users with a built-in cloud infrastructure
with general-purpose computing resources (i.e., CPU, GPU).
Moreover, LinkLab 2.0 supports users to use the public cloud
service such as Microsoft Azure or the users’ own server as
the cloud node in their experiment.

In addition to the real devices, LinkLab 2.0 also introduces
virtual devices to support the experiments that are large-scale

or trace-driven. We propose two kinds of virtual devices:
code-level and message-level. The code-level virtual device
accepts the same code as the real node and simulates all
behaviors of the device. The message-level virtual device
only simulates the network behavior such as MQTT publish,
which enables a theoretically unlimited number of devices
for large-scale experiments. Furthermore, LinkLab 2.0 also
supports binding time-stamped datasets to virtual devices to
reproduce an experiment with a pre-recorded trace.

Lifecycle of an experiment. LinkLab 2.0 provides com-
prehensive support for users to carry out experiments. Con-
ducting experiments contains the following steps:

(1) Project Creating and Resource Claiming: Users should
first create a project, select the hardware and claim the occu-
pation time via our web portal. The experiment automatically
terminates when the requested time quota runs out.

(2) Programming and Provisioning: For IoT devices, users
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Table 2: List of deployed programmable devices in LinkLab 2.0.
Cat. Device ISA # Operating System Wireless Peripherals/Characteristics

IoT

TelosB MSP 30 Contiki/RIOT Zigbee Temperature, Humidity etc.
Arduino Mega 2560 AVR 26 Bare-metal/RIOT WiFi/BLE Temperature, Humidity, SD Card, etc.

Arduino Uno AVR 16 Bare-metal/RIOT LoRa LoRa Shield
ESP32-DevKitC Xtensa 180 Zephyr/RIOT/etc. WiFi/BLE LED

nRF52840 ARM32 10 Zephyr/RIOT/etc. Zigbee/BLE/Thread LED
STM32 F103C8 ARM32 54 FreeRTOS/RIOT/etc. LTE Temperature, Humidity, Light, etc.

AliOS Things DevKit ARM32 8 AliOS Things WiFi/BLE 9-axis IMU, pressure, Mic., etc.
HaaS100 ARM32 29 AliOS Things WiFi/BLE/Ethernet SD Card, LED

COTS IoT devices / 11 Philips/Xiaomi/Tuya WiFi/BLE/Zigbee Water/Temp./PIR sensor, Plug, Bulb, etc

Edge

Raspberry Pi 4B ARM64 47 Raspbian Buster (Linux) WiFi/BLE/LoRa with 8GB RAM
NVIDIA Xavier AGX ARM64 3 Ubuntu 18.04 (Linux) Ethernet with AI accelerator
NVIDIA Xavier NX ARM64 1 Ubuntu 18.04 (Linux) Ethernet with AI accelerator
NVIDIA Jetson TX2 ARM64 1 Ubuntu 18.04 (Linux) WiFi/Bluetooth with AI accelerator
NVIDIA Jetson Nano ARM64 8 Ubuntu 18.04 (Linux) Ethernet with AI accelerator

Cloud LinkLab 2.0 Built-in Server x86_64 1 Ubuntu 20.04 (Linux) WiFi/Ethernet with 36-core CPU and GPU

(a) TelosB (b) Arduino Mega (c) Arduino Uno (d) ESP32 (e) nRF52840 (f) STM32 F103 (g) AOS DevKit (h) HaaS100

Figure 2: IoT devices deployment in LinkLab 2.0.

could simply upload the experiment binary via our web portal.
Furthermore, LinkLab 2.0 also provides a web-based IDE and
online compiling services to allow users to conduct experi-
ments anytime and anywhere. For programming the edge and
cloud, LinkLab 2.0 supports both programming with server-
less functions and Docker-based development.

(3) Data Collection Configuring: The experimental data
collection of LinkLab 2.0 is based on logging "channels".
Each channel represents a specific category of experimental
data. Currently, LinkLab 2.0 provides three channels: con-
sole logs, network traffic and energy measurement (for some
devices that are connected to a Monsoon Power Monitor).

(4) Experiment Execution: Once finished the provisioning,
users could start the experiment by clicking the "start" button.
During the experiment, users could select one or more devices
to view the serial/console outputs instantly and adjust the
configurations from the web portal.

(5) Report Acquisition and Data Processing: After the ex-
ecution, users could download the experimental report from
the web portal and use data processing tools such as Python
or R to perform further analysis.

Comparison to other testbeds/infrastructure. We com-
pare the development process of LinkLab 2.0 with the one
using FIT IoT Lab (for IoT device deployment) and FIT
Cloud Lab/Microsoft Azure (for edge/cloud development)
in Figure 3 and summarize the differences as follows. (1) Lin-
kLab 2.0 is the only testbed that includes the IoT, edge and
cloud, which facilitates users to do a one-stop development.
Users are not asked to login with multiple credentials and
the inter-device network is automatically configured. Users
of FIT IoT Lab will spend a long period configuring the bor-
der router and setting up the connectivity between IoT and
the cloud. (2) Furthermore, thanks to our integrated program-

ming support (§3.2), users could have a bird’s-eye view when
selecting devices and the networking parameters are shown
when programming, which could shorten the development
time. (3) The Web-based IDE and built-in online compilation
environment enable the one-key provision of developed ex-
periments. However, using FIT and Azure, developers could
only separately write code for the IoT and cloud and manu-
ally deploy the program, which both need much coordination
efforts between platforms.

3 Designs of Management Services

Managing such a multi-tiered testbed with various heteroge-
neous devices faces several non-trivial challenges. In this part,
we will present the challenges and solutions from the basic
architecture design to programming and reliability issues.

3.1 Overview of Management Architecture
As shown in Figure 4, all the IoT, edge and cloud devices are
managed by a three-tier architecture named LinkLab 2.0 De-
vice Control (LDC). LDC contains three building blocks: the
controller, the server and the client. The LDC controller is the
top-level management service, which is responsible for gath-
ering the programming and controlling tasks from the users.
The LDC server takes the experiment tasks as input, assigns
the tasks to the devices and forward the binaries or configu-
rations to the LDC client (for IoT devices) or directly to the
programmable devices (for the edge/cloud). The LDC client
is at the lowest level, which directly interacts with the IoT
devices and provides device control interfaces (e.g., program,
reset, and keep-alive) to the LDC server via the network.

Kubernetes-based management services. The architec-
tural design of LinkLab 2.0 does not happen overnight. We
next elaborate on the alternatives and our considerations dur-
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Figure 3: Development process of FIT IoT Lab (for IoT), FIT Cloud Lab or Microsoft Azure (for cloud) against LinkLab 2.0.
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Figure 4: Kubernetes-based management services.

ing the development of such a heterogeneous and large-scale
testbed.

Monolithic or cloud-native? In retrospect, LinkLab 2.0 is
originally built in a native, monolithic way, which means the
management functionalities are centralized in a handful of
monolithic services and bare-metally deployed on the server
with binaries. Nevertheless, after a few irritating experiences
of migrating the services between servers or establishing sub-
sites, we decided to adopt a cloud-native architecture (see Fig-
ure 4), which means decoupling functionalities to microser-
vices and deploying them with containers. The rationale is we
frequently build sub-sites to extend LinkLab 2.0’s coverage
and community, which makes us value the ease of service
management and migration brought by cloud-native more
than the extra overhead brought by containerization.

Be adaptive to highly fluctuating workloads. Since one of
LinkLab 2.0’s usage scenarios is online education, we ob-
serve a highly fluctuating workload during the operation of
LinkLab 2.0, i.e., many concurrent requests during classes
while few users are active at night. Simply over-provisioning
the management services is too conservative and uneconomi-
cal, hence LinkLab 2.0 leverages Kubernetes for adaptivity.

Kubernetes [53] is an open-source system that enables the

automated scaling of containerized services by instantiating
service replicas. As Figure 4 shows, all the key services are
containerized and managed by Kubernetes (except NATS, EMQX
and databases because they have their own scaling policy).
The addition of a server allocator makes LinkLab 2.0 scalable
for building LDC servers in multiple remote sub-sites.

Benefits. This Kubernetes-based management architecture
is scalable to user requests. Once the user request bursts,
services shown in Figure 4 will automatically scale up to
handle the requests and scale down to save the resources
when there are few requests.

Tiered management of devices. Due to the different pro-
gramming approaches between IoT and edge/cloud devices,
LinkLab 2.0 employs tiered management of the devices.

IoT devices. The real IoT devices are connected to a Rasp-
berry Pi (RPI), which the LDC client deployed on, via USB
serial. LDC client includes a programming service based on
the burning tool provided by the manufacturers of the devices
(e.g., avrdude for Arduino-series boards). An alternative is
using the Over-The-Air (OTA) technology to update the bi-
naries, while we gave up this idea due to the scarce storage
space on IoT devices and the wireless interference.

The management of virtual devices is akin to the real nodes.
The only difference is the addition of creating and deleting
interfaces for users to adjust the number and type of simulated
devices, and the managing commands are transmitted via the
network rather than USB serial.

Programmable edge and cloud. The management of the
programmable edge/cloud devices differs from IoT devices
in two ways: (1) LinkLab 2.0 leverages network-based con-
trolling instead of USB serial because the transmission speed
of USB serial (115.2Kbps) is generally much slower than the
network (>100Mbps), while the data size for provisioning
edge device is mainly in gigabyte magnitude. (2) The LDC
client is directly deployed on the programmable edge/cloud
devices because they have enough computing ability to handle
the management commands.

Hence, LinkLab 2.0 develops a runtime for the edge/cloud
(Figure 5) to support the programming, controlling and moni-
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toring tasks. The LDC client is part of the edge/cloud runtime
and responsible for handling the commands sent by the LDC
server and reports the status of the edge device. Once the
LDC client receives an experiment deployment configuration,
the configuration manager parses it and deploys the experi-
ment. After provisioning, the lifecycle of the services of the
experimental application is managed by a service manager,
including starting, restarting and destroying the instances.

Benefits. This tiered management system as well as the
distributed design of LDC client and server dramatically re-
duces the efforts for adding the devices to LinkLab 2.0. Users
who intend to add new IoT devices only need to deploy an
LDC client and plug the device into the client. Without these
designs, adding devices requires plugging them into the same
hardware device that the LDC server lies on, which reduces
the scalability for deploying the IoT devices in the wild or
physically remote from the LDC management cluster.

3.2 Achieving IoT-Edge-Cloud Integration

We now introduce how LinkLab 2.0 achieves the integrated
programming for IoT, edge and cloud and how to guarantee
the reliable programming of the multi-layered devices.

Integrated programming for IoT, edge and cloud. The
most important feature of LinkLab 2.0 is to facilitate one-site
programming for IoT devices, edge and cloud. Moreover, Lin-
kLab 2.0 also supports serverless functions and computation
offloading to lower the threshold for experiencing cutting-
edge programming paradigms.

One-site programming for the three layers. In order to fa-
cilitate the one-site programming for IoT, edge and cloud,
LinkLab 2.0 optimizes each step of conducting an experiment.
(1) During the selection of devices, LinkLab 2.0 provides
users with the hardware network topology. With this view of
topology, users could choose devices from different layers
with fully aware of the connectivity between devices. (2) For
the programming step, users could use a Web-based IDE of
LinkLab 2.0 to write code directly in the web browser and
leave the compilation and deployment to LinkLab 2.0 backend
services. LinkLab 2.0 also automatically handles the network
between devices and shows the networking parameters (e.g.,

IP address) for each device during users’ programming. (3)
During the experiment execution, LinkLab 2.0 supports the
customization of configurations, especially the parameters for
inter-layer communication, which could not be easily config-
ured in other testbeds such as FIT IoT Lab. The programmable
configurations include connectivity settings (e.g., round-trip
time, bandwidth, packet loss rate) and performance settings
(e.g., resource quota of services, docker priority).

Customizable offloading with serverless functions. Recent
advances in serverless computing [60, 61, 74] allow users to
focus on the application logic other than wasting time on
the configuring environment and parallelism from scratch.
Hence, besides the basic Docker-based development, users
of LinkLab 2.0 could decompose their experiment logic into
serverless functions and deploy them on edge or cloud devices.
Moreover, to further simplify the serverless programming in
the IoT-edge-cloud scenario, LinkLab 2.0 provides device-

interaction APIs for serverless functions to read data from an
IoT device.

Based on the serverless functions, LinkLab 2.0 provides
systematic support for function offloading. Primarily, users
could use @remotable annotation to mark the function that
could be offloaded. Moreover, a large amount of related re-
search [36, 50] concentrates on the offloading policy. There-
fore, LinkLab 2.0 presents a customizable offloading frame-

work to enable users to define and test their own offloading
policies. Towards this, LinkLab 2.0 first decouples the of-
floading policy module from the offloading handler, which is
responsible to intercept the function execution and transmit it
to the offloading destination. Second, LinkLab 2.0 provides
customization interfaces for users to define their own policies.

Timely edge control based on vNICs. As we stated before,
LinkLab 2.0 uses the network to manage the programmable
edge and cloud, which is the same data channel that most
experiments use. Suppose an experiment intends to occupy
as much bandwidth as it can (which most experiments do),
the management delay of this device will dramatically in-
crease, or even the device will stop responding to manage-
ment commands. Existing cloud testbeds could alleviate this
by employing a dedicated network interface card (NIC) for
management and control. Nevertheless, most of the COTS
edge devices only have one NIC and are not customizable
after manufacture.

Hence, we develop a software-based tool, resGuard, to en-
sure the responsiveness of the management service under any
circumstances. (1) For outbound traffic, the resGuard first
uses cgroup to categorize the key management tasks (pro-
cesses) and other user tasks. Then, resGuard leverages tc

rate to guarantee the minimum bandwidth of management
tasks. (2) For inbound traffic, however, the aforementioned
approach is not applicable because tc only implements an
egress packet queue and cgroup could not classify the in-
bound traffic to its destination process. Hence, resGuard
takes advantage of the ifb virtual NIC mechanism of Linux.
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1 tenant:
2 name: NSDI2023
3 user: "alice", "bob"
4 hardware_exclusive: "AMega-1", "AMega-2", "ESP32-1", "RPI-1"
5 hardware_shared: "ESP32-2", "ESP32-3", "RPI-2"
6 services: "$all$" # enable all services

7 service_quota:
8 − compiling: 10 # unit: req/s

9 − burning: 5 # unit: req/s

Figure 6: Example configuration to create a tenant.

The ifb vNIC is a message queue by implementation and any
packet that is redirected to ifb will return to its original NIC
automatically after traffic shaping. Therefore, resGuard redi-
rects all the inbound traffic to ifb and uses tc to prioritize the
packet from the IP addresses which host the management ser-
vices. Note that resGuard only prioritizes the management
service, the experiments could only utilize all the resources
if there is no management task. In addition, resGuard also
reserves CPU quota for management tasks via cgroup.

3.3 Achieving Multi-tenancy

During the COVID-19 pandemic, we make LinkLab 2.0 avail-
able to teachers and students for educational purposes. How-
ever, this scenario poses new concurrency and multi-tenancy
challenges for LinkLab 2.0, which is guaranteeing a dedicated
and responsive usage of services and devices during a certain
period of time. This is because the programming requests are
expected to be handled immediately in a limited class time.

The containerized architecture of our management services
(Figure 4) is a good start for achieving multi-tenancy for its
scalability and isolation property. However, the programmable
devices, which are one of the building blocks of LinkLab 2.0,
are not included in this isolation framework. Hence, Lin-
kLab 2.0 proposes device-involved multi-tenancy. With this
technique, operators could easily create a new tenant for a
dedicated usage, and LinkLab 2.0 assures the programming
responsiveness of services and devices within a preset quota.

Device-involved multi-tenancy. Services in Figure 4 are
reconstructed to support multi-tenancy. First of all, each
database owns a TenantID field for other services to look up.
To avoid the interference of the tasks from different tenants,
the device allocator creates waiting queues for each tenant
and launches an appropriate number of instances to handle
the requests. Other services will subscript the task from NATS

once they are assigned to a tenant.
Once a new request of a user is received, LinkLab 2.0 will

first query which tenant the user belongs to and put the re-
quest to the corresponding queue. Then, the device allocator
searches for if there are idle devices that meet the user request
and belong to the requesting tenant. If so, the request will
be assigned to the device. Furthermore, this device-involved
multi-tenancy is also a lightweight approach to IoT device vir-
tualization. When creating a new tenant, administrators could
assign devices to the tenant in the ªexclusiveº or ªsharedº
manner. ªExclusiveº means the device could only be accessed
by the users of the tenant, while ªsharedº means the device

is shared with other tenants. There are primarily sensing and
actuation IoT devices in LinkLab 2.0. If a sensing device is
set to ªsharedº, we can multiplex its sensing data to multiple
tenants if necessary. On the other hand, the actuation devices
cannot be shared after being allocated to avoid conflicting
operations.

We also leverage an accounting mechanism for the con-
tainerized services in Figure 4 to record the resource usage
of each tenant. If a tenant exceeds its preset quota, the user
management will reject the new request from this tenant.

Tenant management. We build a command-line interface
(CLI) for administrators to manage tenants, such as creat-
ing a tenant or to moving a device/user to an existing tenant.
As Figure 6 shows, administrators could allocate users, hard-
ware resources, and software services with quota in a YAML

configuration file when creating a new tenant. Then use our
management CLI with LinkLab 2.0-manage tenant -c

<config>.yaml to create (-c) a new tenant to LinkLab 2.0.
Besides adding new tenants, LinkLab 2.0 also supports modi-
fying (-m) and deleting (-d) tenants.

3.4 Achieving Reliability

Reliability is the principal requirement of a testbed that is
used for both academic and educational purposes. To achieve
24/7 availability, LinkLab 2.0 employs an anomaly detection
system. The goal of the monitoring system is to keep two
groups of reliability problems away from LinkLab 2.0: (1)
Device-related problems, such as unexpected offline and ab-
normal sensor readings; (2) Service-related problems, such
as improper resource occupation and service breakdown.

Proactive and reactive device anomaly detection. To-
wards the device-related problems, we use both proactive and
reactive detection to catch the exceptions as soon as possible.

Reactive detecting. Basically, the devices in LinkLab 2.0
are monitored reactively, which means we only use the data
that is non-intrusively collected from the IoT device. Such
as we monitor the working state of the peripherals using the
readings piggybacked from users’ experiment applications.

Proactive probing. To monitor the devices that are used
infrequently and improve the coverage of device problem
detection, LinkLab 2.0 also employs proactive probing. We
create a benchmark set for each kind of IoT device that covers
most of the functionalities of the device. Once a device is
idled for a period of time (empirically set to 2 hours), our
monitoring system programs the benchmarks to the devices
and analyzes the output. Note that we make the regular user
requests could preempt the execution of probing benchmarks
for a better device utilization. Once abnormal behavior occurs,
our monitoring system will send an alarm to the operators.

Benefits. Besides alarming the maintainers of device fail-
ures, our device anomaly detection approach is also benefi-
cial to the reproducibility of experiments conducted on Lin-
kLab 2.0. To ensure the correctness and accuracy of the exper-
iments, we pay attention to the result consistency and abrasion
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of our devices by correlating the piggybacked sensor data in
the reactive detection with the environmental data collected
by the maintainers and the outputs of proactive probing with
our pre-defined ground truth.

Service anomaly detection via multi-model log fusion.

In this part, we introduce how LinkLab 2.0 detects service
abnormalities through log analysis during system operation.

Multi-model system runtime data collection. The runtime
log is an implicit indicator of the system’s health. LinkLab 2.0
collects both structured and semi-structured runtime data for
further anomaly detection.

(1) Structured key performance indicators (KPIs). KPIs
are the quantitative metrics that reflex the operating status
of the system. For each layer of LinkLab 2.0 (IoT, edge and
cloud), we collect different KPIs according to the intrinsic
difference of each layer. (a) For the edge/cloud layer, we
collect the network throughput, CPU, memory, etc., as the
KPIs. (b) For devices of the IoT layer, the connectivity of
each device (indicated by its heartbeat message to the LDC
client) is recorded. The KPIs are periodically collected by our
monitoring system. The interval is empirically set to 2min in
the current deployment.

(2) Semi-structured event logs. Each building block of Lin-
kLab 2.0, especially the management services in Figure 4,
reports the underlying behavior of the component via the
semi-structured event logs. These logs are mainly service-
specific outputs with timestamps and labels of severity levels
such as FATAL and ERROR. Our monitoring system collects
these logs from each layer of LinkLab 2.0 for further analysis.

Multi-model log fusion based anomaly detection. The col-
lected KPIs are time-series data, which are eligible for further
processing. Nevertheless, the collected semi-structured event
logs also need to be structured for anomaly detection. We pro-
pose the simFDT approach, which extends the widely-used
fixed depth tree (FDT) model with the ability to parse logs in
variable lengths using the similarity between logs and tem-
plates, to cope with diverse logs generated by heterogeneous
devices. After parsing by simFDT, we employ a sliding win-
dow to count the different events in a period of time as vectors
and feed the vectors to our anomaly detection algorithm.

We employ Autoencoder (AE) to detect abnormal events
of our entire system using the KPIs and the vectors parsed by
simFDT. AE is widely used for anomaly detection on time-
series data [13, 42, 55]. In order to reduce the overhead of
transmitting monitoring data, we leverage multi-level detec-
tion by separately training anomaly detection AEs for each
layer and deploying the models on the nearest upper layer of
the devices/services being monitored. For example, the AE
for IoT devices is deployed in the LDC client cluster and the
AE for the LDC client cluster is on LDC servers.

Operational findings of anomaly detection. We have
implemented and deployed the aforementioned anomaly de-
tection approaches to our production environment to achieve
24/7 reliability. Up to now, LinkLab 2.0 achieves 98.2% hard-

Table 3: Detected anomalies during the operation of Lin-
kLab 2.0 (sorted by the occurrence in descending order). Dev.
and Svc. mean the device- and service-related problems, re-
spectively.

# Type Root causes of detected anomalies

1 Svc. Docker images of services are recycled by Kubernetes.
2 Svc. Failed deployment of a newly developed feature.
3 Dev. The power supply of an edge/IoT device is broken.
4 Dev. Loose connection between devices and peripherals.
5 Svc. Disconnection of the reverse proxy to the cluster.
6 Dev. The peripheral/pinout of an IoT device is broken.
7 Svc. Network fluctuations for hours or days.
8 Svc. Deletion of key files caused by maintainer’s misoperation.
9 Svc. Power outage in the equipment room of LinkLab 2.0

ware available time across the IoT, edge and cloud layer since
the introduction of this system, and Table 3 shows the de-
tected anomalies. We can see from the table that our anomaly
detection approaches could recognize the abnormal states for
services, devices and the entire system.

Nevertheless, we observe false positives (FPs) and true
negatives (TNs) during the long-term deployment. Here, we
will elaborate on the occurrence of FPs and TNs, and discuss
how LinkLab 2.0 evolves to cope with the problems.

The observed FPs include: (1) The number of testbed us-
ages increases sharply, which leads to the false warning due
to unusual high resource usage. (2) The regular operational
actions by the maintenance team run out of the resources
(i.e., deploying a new version, too many concurrent proac-
tive tests for anomaly detection). (3) The false warning on
unprecedented low resource usage after a server upgrade. The
rationale behind these FPs is the data sources of the anomaly
detection are inadequate. Hence, we subsequently improve
the detection system by correlating the detection results with
the operational data (e.g., active user, deployment status) and
the domain knowledge of operators (e.g., server upgrade).

The TNs are mainly short-time service unavailability (usu-
ally for a few to tens of seconds) incurred by the network
fluctuation. These TNs could be easily addressed by shorten-
ing the interval of KPI collection and proactive probing. We
argue that the selection of the interval in the current deploy-
ment exhibits a good tradeoff between detecting accuracy and
overhead, and we will adjust the interval for the time-sensitive
situations such as supporting live classes and exams.

4 System Performance

We test our system to answer the following questions: (1)
Is LinkLab 2.0 scalable? (2) Whether the resGuard of Lin-
kLab 2.0 is reliable for programming edge/cloud devices and
what is the performance? (3) How does the multi-tenant de-
sign of LinkLab 2.0 perform?

Effectiveness of the scalable architecture. In this part, we
evaluate the scalability of LinkLab 2.0’s architectural design
by simultaneously issuing hundreds of concurrent requests
and see how many resources that used by LinkLab 2.0.
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Figure 7: Resource usage of management services for differ-
ent concurrencies. MR is the maximum number of service
replicas (i.e., the number of containers instantiated to serve
the requests of a service) when auto-scaling.

Figure 7(a) illustrates the usage of the CPU. Note that we
use the product of CPU utilization and time as the metric of
CPU usage in order to illustrate the overall usage during a
period of time rather than the instant usage, and we omitted
the illustration of memory usage because it shares almost the
same distribution to the CPU and page limit. We can observe
in Figure 7(a) that the relationship between CPU usage and
the concurrent request is linear across all the settings, which
is scalable because the per-user resource is stable even under
extreme concurrencies. Another observation is that the CPU
usage seems to be decreasing when the maximum number of
replicas (MR) increases. To investigate more on the reason
for the decrease, we go into the average CPU utilization of
each setting, as Figure 7(b) shows. We can see that the CPU is
under-utilized with lower MR, which may be because the tasks
have to wait longer when there is no worker replica to process
them. Nevertheless, the benefit of auto-scaling also has its
upper bound. In our setting, the upper bound is 5 replicas,
which we can see in both Figure 7(a) and 7(b), because the
management services of LinkLab 2.0 are deployed on a cloud
cluster with five nodes (each has a 2.5GHz CPU core).

Effectiveness of resGuard. In this part, we evaluate the
programming reliability of the IoT devices and edge/cloud
devices with our three-tiered management system.

For the IoT devices, there are only 504 (1.9%) failed trials
in 27,216 programming tasks from May 2020 to January
2021. For edge/cloud devices, we conduct an experiment to
evaluate the effectiveness of the resGuard we introduced
in §3.2. The evaluation methodology is that we attempt to
deploy a new experiment on the edge device while another
experiment is still running on that device, and we adjust the
bandwidth occupation of the existing experiment to see how
the deployment time varies under different situations. We
use two jobs as new deployment tasks: (1) the user deploys
an InfluxDB and views the logs, and (2) the user deploys a
Kafka logging service to the edge device. Figure 8 shows the
results. We can see that the deployment time increases rapidly
without resGuard while the deployment times stay still with
resGuard when the existing experiment takes up more than
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3MB/s bandwidth.
Effectiveness of multi-tenancy. To evaluate the effective-

ness of multi-tenancy, we use 100 devices of LinkLab 2.0 and
separate them into two tenants: G1 and G2. Then we emit
concurrent requests on behalf of the two tenants in different
distributions and record the latency per request of each stage
in LinkLab 2.0. We set the device quota as: G1 has 80 devices
and G2 has 20 devices. Figure 9 shows the results. We can ob-
serve that once the request number exceeds the device quota
of the tenant (e.g., G1=100>80, G2=10<20), its per request
latency increases greatly while the latency of the other tenant
is not affected. Moreover, the increased time is mainly spent
on waiting for allocation, which is a piece of direct evidence
that the tenants would not preempt the resources of others.

5 Representative Use Cases

LinkLab 2.0 facilitates various new usages in addition to
the basic wireless and embedded experiments supported by
existing IoT testbeds [3, 7, 28, 57]. Furthermore, during the
evolution of LinkLab 2.0, we extend it from an academic
testbed to an innovative learning and examining platform for
schools and individuals. We summarize the representative use
cases of LinkLab 2.0 in Table 4 and Table 6 and will elaborate
on both the research usages and outreaches in the rest of this
section, respectively.

5.1 Supported Research Experiments

Potential research domains. We summarize the potential
research domains that LinkLab 2.0 could support in Table 4.
Besides traditional wireless and embedded experiments, re-
searchers could conduct experiments with respect to server-
less computing, edge AI and other research topics easily and
holistically with the integrated architecture, heterogeneous
devices and various deployment methods of LinkLab 2.0. Fur-
thermore, with the involvement of edge and cloud, researchers
could extend the networking protocol experiments to the IoT
domain and obtain data from both the server and client.

While implementing all the research above is beyond the
scope of this paper, we internally developed three represen-
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Table 4: Research usages of LinkLab 2.0. F1-F4 are LinkLab 2.0’s features: F1: distributed and scalable architecture (§3.1), F2:
serverless/docker-based development (§3.2, S for serverless, D for docker), F3: offloading (§3.2), F4: multi-tenancy (§3.3).

Category LinkLab 2.0’s representative use cases Scale
LinkLab 2.0’s components/features used in researches

Cloud Edge IoT F1 F2 F3 F4

Potential

Research

Domains

Cloud-Edge-IoT integrated application [21, 31, 73, 76] 2+ devices ● ● ●

N/A

S, D ◗

N/A

Wireless and embedded experiments [39, 64, 77] 2+ devices ◗ ● ● D ◗

Offloading algorithms [23±25, 40, 43] 2+ devices ◗ ◗ ● S ◗

FaaS and serverless computing [2, 5, 6, 14, 17, 60, 61] 2+ devices ◗ ◗ ● S ●

Container-based service composition [35, 62, 63, 75] 1+ devices ◗ ◗ ● D ◗

Edge AI [29, 38, 45, 54, 71, 72] 1+ devices ◗ ◗ ● N ◗

IoT networking protocols [15, 37, 59] 3+ devices ◗ ◗ ● D ❍

Industrial Internet of Things [11, 32, 44, 65, 69] 3+ devices ◗ ◗ ● D ◗

Example

Researches

dSpace: Composable abstractions for smart spaces [21] 5~10 devices ● ● ● D ❍

HRank: AI model pruning for edge computing [45] 3+ devices ❍ ● ● S, D ❍

Measurement of different IoT messaging protocol [59] 3+ devices ● ❍ ● D ❍

1
●=all of the cases use the component/feature, ◗=many but not all of the cases use the component/feature, ❍=the component/feature is not used.

2 N/A means feature F1 and F4 is not applicable for individual usages.

Table 5: Collected data in Edge AI experiment with LinkLab.
Device Action Time (s) Size Acc.¶

NVIDIA

Xavier AGX

(w/ accelerator)

Rank generation 590.7
Before:
115MB

⇓

After:
15MB

92.9%
(93.9%)

Model pruning 4,213.5
Inference 15.2

Raspberry Pi

(no accelerator)

Rank generation 180.1
93.9%³

(93.9%)
Model pruning ±²

Inference 385.4³

¶ Values in the parentheses are the results presented by the authors of [45].
² Model pruning on Raspberry Pi (RPI) is too long to finish.
³ Measured using HRank authors’ model since pruning on RPI is too long.

tative experiments that could evaluate the functions and lead
the further usage of LinkLab 2.0. Code and tutorials of these
experiments are publicly available1.

Experiment 1: Cloud-Edge-IoT integrated application.

We use a programming framework for smart spaces named
dSpace [21] as an example to show the potential of Lin-
kLab 2.0 for deploying cloud-edge-IoT integrated research.

Implementation. We directly deploy the open-source
dSpace runtime [20] on the cloud. A home automation frame-
work (Home Assistant in our implementation) is deployed
on the edge to manage the IoT devices locally and provide
device-controlling APIs for the dSpace runtime.

Findings. (1) The original version of dSpace only takes
the COTS IoT devices into consideration. With the help of
LinkLab 2.0, could explore a larger design space by obtaining
more detailed data on network traffics and energy consump-
tion by deploying instrumented codes on the prototyping
devices of LinkLab 2.0. (2) The integrated architecture of
cloud-edge-IoT and the docker-/serverless-based program-
ming approach of LinkLab 2.0 facilitate users to explore the
"sweet spot", and this dSpace case is an ideal example. To
be more specific, users could easily move the Home Assis-
tant module between edge and cloud to evaluate the tradeoff
between deploying the Home Assistant module on the edge
(unreliable edge-cloud connection but shorter local control
latency) and cloud (responsive device-controlling APIs but
higher device control latency).

Experiment 2: Edge AI. Recently, Edge AI is recognized
as one of the emerging technologies by Gartner [22] since

1https://linklab.emnets.cn/tutorials
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Figure 10: Collected performance of IoT protocols.

it could provide lower latency and better privacy for users.
In order to illustrate how LinkLab 2.0 facilitates Edge AI
experiments, we conducted an example experiment based on
HRank [45] which prunes the AI model to make it feasible to
be executed on the resource-constrained edge devices.

Implementation. For model pruning, HRank first generates
the rank of each layer of the model by performing the training
process with a very small portion of the dataset. Then, HRank
prunes the less important filter by retraining the original model
with the generated rank. With LinkLab 2.0, users could simply
apply for an edge device, deploy the rank generation and
pruning algorithm, and evaluate the accuracy degradation
of inference with the serverless functions or native dockers.
Table 5 shows the comparison of the execution time, model
size and inference accuracy of HRank on heterogeneous edge
devices, namely Xavier AGX (AGX for short) and Raspberry
Pi (RPI for short).

Findings. (1) During our reproduction of HRank, we en-
countered an abnormal result. It is known that AGX’s CPU is
more powerful than RPI’s, and AGX is also featured with a
GPU-like accelerator. Nevertheless, the rank generation time
on AGX is much longer than on RPI (see Table 5), which is
unusual. After our investigation, we finally found the reason
as follows. The HRank code leverages a GPU-based matrix al-
gebra library named MAGMA to accelerate the rank generation,
but it does not have an ARM distribution for AGX. Hence, on
the AGX, HRank must move the intermediate variables during
training from GPU to CPU to calculate rank and move back
to the GPU, which leads to massive performance degradation.
We attribute this interesting finding to LinkLab 2.0’s various
and heterogeneous edge devices that could be used to obtain a

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    1691



Table 6: Outreaches of LinkLab 2.0. Similar to Table 4, F1~F4 represent LinkLab’s features and S/D represent serverless/Docker.

Category Outreaches of LinkLab 2.0 Scale
LinkLab 2.0’s components/features used in cases

Cloud Edge IoT F1 F2 F3 F4

Educational

Institutions

E1: IoT curriculum of undergraduates in College A ~40 users/yr. ● ● ● ❍ D ❍ ●

E2: IoT fieldwork courses for students in College B ~90 users/yr. ● ❍ ● ❍ S, D ◗ ❍

E3: Joint construction of an IoT Laboratory with University C ~400 users ● ● ● ● S, D ◗ ●

Commercial

Cooperations

C1: Online IoT device playground of Merchant D ~150 users ❍ ❍ ● ● D ❍ ●

C2: IoT Engineer Certification Exams of Merchant D ~500 users ● ● ● ❍ D ❍ ●

Third-party

Individuals

T1: Geek developers
1000+ users

● ● ● ❍ S, D ◗ ❍

T2: Self-learners of rudimentary IoT developments ● ❍ ● ❍ S, D ❍ ❍

●=all of the cases use the component/feature, ◗=many but not all of the cases use the component/feature, ❍=the component/feature is not used in the case.

more thorough view of the performance of the algorithms. (2)
In addition to the above experiment, LinkLab 2.0 also allows
users to build edge AI applications with the real-world sens-
ing data which could be acquired from our IoT devices and
test the performance brought by unstable wireless networks,
which are currently not supported by other testbeds.

Experiment 3: Measurement of IoT protocols. Different
from the dominance of HTTP for web applications, there is
no unique protocol that could serve all the diverse application
scenarios of IoT. Hence, conducting measurement studies on
IoT protocols under different scenarios is worthwhile, espe-
cially before the actual deployment of IoT applications.

Implementation. As [59] illustrates, we compare the two
most-used IoT protocols, MQTT and CoAP, using Lin-
kLab 2.0. To make the measurement closer to the real-world
application, we leverage the widely-used EMQX message bro-
ker on the cloud for both CoAP and MQTT. With respect to
the clients, we develop the client based on libcoap and paho.
Figure 10 shows the measured end-to-end latency (device-
edge-cloud-device) and message loss rate against the increas-
ing number of devices.

Findings. (1) By virtue of the LinkLab 2.0’s theoretically
unlimited number of virtual IoT devices, users could easily
simulate large-scale, real-world IoT applications to evaluate
the performance of edge cases. (2) With the help of Lin-
kLab 2.0’s bandwidth management, users could measure the
performance of protocols under different network conditions.

5.2 Outreaches
We now report the three types of external users for non-
academical usages as shown in Table 6.

Educational institutions. The most valued and long-acting
outreach of LinkLab 2.0 is supporting the IoT programming
practices of the relevant courses in schools, especially after
the outbreak of the COVID-19 pandemic.

As shown in Table 4, the usage of LinkLab 2.0 covers reg-
ular IoT curriculum (E1) to fieldwork courses (E2). A and B
are both technical colleges that teach students both theoretical
expertise and practical skills, and students of these colleges
mainly choose to serve the local economy for non-academic
jobs after their graduation. To cope with this teaching objec-
tive, LinkLab 2.0 decides to establish a series of experiments
to better train students from various knowledge and socioeco-
nomic backgrounds ready for job markets.

(a) Online virtualization (b) Tabletop model (c) Tabletop schematics

Figure 11: Online-offline integrated smart elderly care educa-
tion toolkit for College B.

We use our cooperation with college B, which is proficient
in serving the local smart elderly care industry, to exemplify
how LinkLab 2.0 works with the institutions and builds cur-
ricula for their students. To initialize the cooperation, we set
up seminars with teachers in college B to introduce the func-
tionalities of LinkLab 2.0 and co-create a basic version of
the experiment series that fulfills the knowledge points of the
courses. Then we support students for one semester’s usage,
collect operational data for each experiment (e.g., average
completion time, retry counts) and discuss again with the
teachers to adjust the difficulty of each experiment or extend
the experiments to cope with the changing demands of the
job market. The above process is performed recursively in
the last three academic years. Up to now, the outcome of our
collaboration with College B includes (1) a set of lab exper-
iments for the technical school students who major in IoT,
and (2) an online/offline integrated education toolkit for smart
elderly care (see Figure 11). The toolkit includes an offline
tabletop model containing necessary sensors and actuators
for students to realize their ideas on smart elderly care, as
well as an online simulated environment to remotely test their
programs in a visualized way with the identical program to
the offline realization.

Furthermore, thanks to the cloud-native architecture, Lin-
kLab 2.0 also jointly built an IoT laboratory (E3) with Uni-
versity C in a short time, which contains a cabinet of devices
with LinkLab 2.0’s containerized management software pre-
installed. This laboratory is used for the experiments, exams
and research of all the IoT-related curricula in University C.

Commercial cooperation. LinkLab 2.0 also draws the at-
tention from commercial institutions. LinkLab 2.0 facilitates
an online IoT device playground named HaaS Lab (C1) for
Merchant D, which releases a new IoT development board
named HaaS (Hardware-as-a-Service). HaaS Lab allows users
to try the features of the HaaS board online before buying it
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Figure 12: Illustration of the number of registered users and
accumulated working hours of devices of LinkLab 2.0.

Figure 13: Evolution of LinkLab 2.0.

and Merchant D initiates HaaS Lab to promote its sale. More-
over, LinkLab 2.0 also supports an IoT engineer certification
program (C2), which contains a qualifying exam and a lab
exam, by creating a dedicated examination tenant.

Third-party individuals. There are 1,000+ third-party

individuals that use LinkLab 2.0. According to the question-
naire we collected when users are registered, geek develop-
ers and self-learners take a large proportion of individual
users. The geek developers use our testbed to prototype their
new ideas without buying the actual hardware (T1), and the
self-learners study rudimentary IoT developments (T2) with
LinkLab 2.0.

6 Evolution and Lessons Learned

We are excited to see a broad use of LinkLab 2.0 in diverse
scenarios since December 2018. Figure 12 illustrates the num-
ber of registered users and the device usage hours of Lin-
kLab 2.0. We can see from the figure that LinkLab 2.0 has
over 2,100 registered users and they have conducted 17,300
hours of experiments in total. We also noticed that during
the first wave of the COVID-19 pandemic in the first half of
2020, both the new user registration and experiment hours
of LinkLab 2.0 increased rapidly. Before January 2020, the
concept of online education of IoT is not widely recognized

and most of the experiments are occasionally conducted for
research purposes.

We have progressively extended the functionality of Lin-
kLab 2.0 since its first public release. According to the differ-
ent focuses of the LinkLab 2.0’s development, we divide the
four-year operation into three phases, as shown in Figure 13.

Phase I (2018/12~2019/8): IoT device testbed. In this
phase, we focus on the basic building blocks of LinkLab 2.0
as an IoT device testbed, such as device management, on-
line compiling, and the web-based programming interface.
Because of the diversity of the IoT hardware used in IoT
applications, we investigated popular online IoT forums and
academic projects, then selected five far-reaching develop-
ment boards that cover the mainstream IoT ISAs (i.e., ARM,
AVR, MSP and Xtensa).

Phase II (2019/8~2020/5): Integration with cloud and edge.

Based on our experience in IoT application development and
the requests from LinkLab 2.0’s user community, we realized
that the cloud and edge were indispensable for a complete
IoT application. Therefore, we started to bring cloud and
edge devices to LinkLab 2.0 and refactored the management
software to cope with this architectural change. In this phase,
we continue to increase the number of IoT devices. To better
cope with the community’s demand and avoid the waste of
investments, we leverage an expenditure utilization metric
with the device usage per day and the cost of a device to assess
how to allocate the purchase budget of hardware.

Phase III (2020/5~now): Cloud-native and multi-tenancy.

Advancing to the third phase, we extended LinkLab 2.0 with
Kubernetes-based scalability and multi-tenancy. Moreover,
we continued to enrich the list of supported IoT devices in
this phase, such as the nRF52840 and COTS IoT devices.

During this four-year evolution, we have learned a lot
while developing and operating LinkLab 2.0 on a broad scale.
Hence, we report five lessons learned as follows.

Lessons Learned 1⃝: It is not easy to support hetero-

geneous devices for online experimentation. Before Lin-
kLab 2.0, we experienced a smooth development process
using a sensor network testbed with about 100 TelosB motes.
However, it is not a plain sailing when we try to bring more
heterogeneous IoT devices to LinkLab 2.0.

For example, ESP32 boards can not automatically enter
the programming mode because the flashing signal issued
by the uploading software is too short. We finally came up
with the idea of adding a 10µF electrolytic capacitor to the EN
port of ESP32 to lengthen the flashing signal, which works
properly. Unfortunately, we failed to attach some boards that
need to manually switch to the programming mode or restart
the device by pushing an on-device button (e.g., TI CC2650
DK and HiSilicon Hi3861). This manual intervention leads
to the human-in-the-loop problem and does not conform to
the design principle of LinkLab 2.0.

According to our operational experience, we summarize
a checklist on what device could be attached, which is: the
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devices (1) do not need a manual restart, (2) owns the inter-
face to get operational logs, and (3) support compilation and
upload via a command-line interface. We believe this check-
list is favorable for the operators of existing or blueprinting
testbeds that use IoT devices, and the researchers that intend
to conduct large-scale experiments automatically.

Lessons Learned 2⃝: It is difficult but important to sup-

port CI/CD (continuous integration/deployment) as well

as online monitoring for providing 24/7 continuous ser-

vices. We planned to adopt the CI/CD process at the beginning
of developing LinkLab 2.0. However, building a proper test-
ing environment for CI/CD is challenging for LinkLab 2.0.
Specifically, a complete testing environment of LinkLab 2.0
includes various devices and cloud servers with the proper
software. It is not easy to build such an environment for each
developer, especially those who worked remotely in a dif-
ferent city during the pandemic. Therefore, CI/CD was not
supported in LinkLab 2.0 during Phase I. However, after expe-
riencing problems like software incompatibilities and devices
offline, we added CI/CD support to LinkLab 2.0 in Phase II.

Specifically, we set up a testing environment with dedicated
cloud servers and a representative subset of devices for CI/CD.
Note that compared with the cloud servers, the IoT/edge de-
vices are much more problematic. Therefore, using a subset
of operating devices instead of using dedicated testing devices
can significantly increase the similarity between the testing
environment and the operating environment. To further avoid
the interference of automatic testing to the operating devices,
a device will only be selected to act as a testing device without
any adjacent tasks.

Even with CI/CD, online monitoring is also important for
quality assurance. Device malfunctioning, wireless connec-
tion instabilities, and bursty usages are inevitable for an IoT
testbed. Hence, LinkLab 2.0 performs online monitoring for
all its software components and devices constantly. In case of
any problems, alerts will be sent to maintainers automatically.

Lessons Learned 3⃝: Cloud-native is not optional, but

necessary. As shown in Figure 12, the number of Lin-
kLab 2.0’s users surges during the COVID-19 pandemic.
Without the containerized architecture, resource management
became painful due to the busty usages (e.g., concurrent ex-
periments of a class of students) and various QoE require-
ments (e.g., time constraints for online exams). Table 4 gives
such examples including classes (E1) and exams (C2). There-
fore, during Phase III, LinkLab 2.0 became fully cloud-native
by containerizing all services and using Kubernetes for on-
demand auto-scaling, service provisioning, etc.

An unexpected benefit of becoming cloud-native is that
it is one of the necessities to support multi-tenancy. After
using LinkLab 2.0 for experiments or teaching, some users
started to ask for dedicated devices instead of shared ones,
for performance and privacy considerations. Therefore, we
extended LinkLab 2.0 to support multi-tenancy (e.g., E3 and
C1 in Table 4 are two typical tenants), which was straightfor-

ward with cloud-native. With multi-tenancy, we could divide
a certain proportion of services and devices into a dedicated
tenant to meet various requirements of the usage scenarios.

Lessons Learned 4⃝: Incorporating open-source projects

can not always accelerate the development process. Lin-
kLab 2.0 builds on top of a large body of open-source projects,
such as the Kubernetes for service management and EMQX
for message dispatch. However, open-source software is not
always ready for out-of-the-box usage, and an active com-
munity is profoundly important. For example, we build our
web-based IDE based on Eclipse Theia [19], but we have to
extend it for interacting with remote IoT devices and many
other features, which means massive modifications. With an
active community like Theia’s, some of the modifications may
be inspired by the existing discussions or solved by submitting
issues. Unluckily, some modifications are unprecedented to
the community and should be conducted by a developer who
knows this open-source project well. Nevertheless, gigantic
projects like Theia are too complicated to know everything
about, especially for student developers.

Lessons Learned 5⃝: Plan for obsolescence. For a long-
term project, the availability of underlying open-source soft-
ware could change unexpectedly. The first example is an IoT
OS named AliOS Things gives up the support of ESP32,
STM32 and other boards after a version iteration due to their
adjustment of commercial strategy. To make things worse,
they also stopped the maintenance of the compilation tool-
chain for the old version, which influences LinkLab 2.0’s
online compilation and flashing service. To this end, we man-
aged to rebuild the obsolete tools with public documentation
and older versions, which costs much labor work. The second
one is the API obsolescence in open-source projects, which
occurs when we update Theia from v0.8 to v1.1. After the
update, most of our WebIDE components work improperly.
Afterward, we check our entire code base for external depen-
dencies, persist the current version to avoid the discontinuance
impact, and be cautious when adopting newer versions.

Hence, according to the above five lessons learned, our
suggestions for future testbed stakeholders are four-fold. (1)
The devices which satisfy the checklist in lessons learned 1
are easier to attach into the testbed. (2) Take fully advantages
of the cloud-native micro-service software architecture to bet-
ter cope with bursty requests and minimize the maintenance
overhead. (3) Try to incorporate the open-source software
which owns an active community and has been tested by time.
(4) Always remember to leave a copy of external resources
such as compiling tools to avoid the obsolescence.

7 Future Directions

In this section, we envision the potential future directions and
our plans for Phase IV of LinkLab 2.0.

Firstly, we plan to attach more types of devices in Lin-
kLab 2.0. Recently, more kinds of heterogeneous devices are
used in edge computing scenario. For example, the FPGA-
based edge devices are widely used [68, 70] because they
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exhibit excellent performance on accelerating specific tasks
while keeping high energy efficiency. However, FPGA de-
vices have limited support for multi-tenancy, which is a key
feature of LinkLab 2.0. We plan to borrow the partial recon-
figuration approach [33] to provide concurrent programming
support and design a shim [16] for our LDC client to man-
age the FPGAs. Another important group of devices are the
boards featured with the trusted execution environment (TEE)
such as Arm Trustzone [8]. Such devices are used for secure
AI model training [52], sensor data collection [48, 58], etc.
Nevertheless, developing a TEE-based application is differ-
ent from existing development process because it requires
to develop the trusted and untrusted part of the application
separately and deploy them individually. Hence, we plan to
embrace the new programming pattern of TEE-based applica-
tions and attach more devices facilitated with TEE to serve a
broader research community.

Secondly, we also consider improving the granularity and
performance of our monitoring system as the next milestone
of LinkLab 2.0. As the number of supported devices and core
services grow continuously, configuring our monitoring sys-
tem becomes more difficult and requires more human-on-the-
loop efforts. This is mainly because the current metrics-based
and log-based monitoring system is not fine-grained enough to
track the micro-service invocation of each request. Recently,
the micro-service observability based on eBPF (extended
Berkeley Packet Filter) is widely studied both in academia
and industry [10, 12, 46]. It can provide more fine-grained
monitoring by leveraging user-space programmable kernel
extensions. Hence, we plan to incorporate eBPF with our mon-
itoring system to achieve more fine-grained and low-overhead
anomaly detection.

8 Related Work

With the proliferation of IoT technology, applications and
research of IoT grow rapidly. Several testbeds are proposed
to ease IoT research and application developments.

Device-edge/cloud integrated testbeds. FIT IoT Lab
testbed [1], proposed by the FIT consortium, is a large-scale
wireless sensor network testbed deployed across France. Ex-
cept for the full programmability of the sensor devices, FIT
IoT Lab also provides researchers with energy monitoring
and network sniffing infrastructure to obtain the experiment
data from multiple perspectives. Another testbed that con-
sists of experiments for both edge/cloud and IoT devices is
COSMOS [56], deployed in New York. COSMOS focuses on
supporting the experiments of advanced wireless technologies
such as mmWave and dynamic spectrum sharing.

LinkLab 2.0 differs from the above testbeds which also
include the programmability on both IoT and cloud/edge de-
vices in the following: (1) LinkLab 2.0 is the only testbed that
supports the one-site development for IoT, edge and cloud. (2)
For edge/cloud experiments, existing testbeds only provide
bare-metal development, while LinkLab 2.0 supports both
Docker- and serverless-based development. The above two

differences accelerate the experiment setup process for the
users of LinkLab 2.0.

IoT and sensor network testbeds. MoteLab [67] is a wire-
less sensor network testbed maintained by Harvard University.
MoteLab includes 30 MicaZ motes and a web interface. In-
driya2 [7] is a sensor network testbed with 41 TelosBs and
17 CC2650 sensortags that enables users to upload the exe-
cutable, monitor the outputs of the devices and obtain data
from the database. SmartSantander [57] is a city-scale testbed
containing thousands of sensors with IEEE 802.15.4 or RFID
connections that deploy across Santander city. Users could
both work with the sensing data and program the sensors with
executables to for their experiments. GioTTO [3, 4, 66] is a
campus-scale sensor testbed deployed at scale on the UCSD
and CMU campuses across several buildings. With the data
accessing APIs and the machine learning layer of GioTTO,
users could build intelligent inference applications without
writing much code.

Compared with these testbeds, LinkLab 2.0 proposes a
novel multi-tiered architecture for managing and controlling
IoT devices to achieve high deployment extensibility. Further-
more, LinkLab 2.0 leverages the containerized management
services for elastic scaling to enable the concurrent experi-
mentation of multiple users.

9 Concluding Remarks

We introduce LinkLab 2.0, a fully programmable testbed that
facilitates the integrated experiment with IoT devices, edge
devices and the cloud infrastructures. LinkLab 2.0 achieves
multi-tenancy and scalability by leveraging the container-
based architecture and the auto-scaling technique of Kuber-
netes. Moreover, our multi-level monitoring system ensures
the 24/7 availability for both the hardware infrastructure and
software services. Since its public availability in Decem-
ber 2018, LinkLab 2.0 has supported over 17,000 submis-
sions of experiments from 2,100+ users, and the accumu-
lated usage time across all the devices exceeds 17,000 hours.
From the four-year operational experience of LinkLab 2.0
for academia and education, we summarize five key obser-
vations and lessons learned concerning the device support,
CI/CD process and open-source projects adoption, which we
believe is favorable for other projects and testbeds requiring
the integration of cloud, edge and IoT.
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