
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Norma: Towards Practical Network Load Testing
Yanqing Chen, State Key Laboratory for Novel Software Technology, Nanjing
University and Alibaba Group; Bingchuan Tian, Alibaba Group; Chen Tian,

State Key Laboratory for Novel Software Technology, Nanjing University; Li Dai,
Yu Zhou, Mengjing Ma, and Ming Tang, Alibaba Group; Hao Zheng, Zhewen Yang,

and Guihai Chen, State Key Laboratory for Novel Software Technology,
Nanjing University; Dennis Cai and Ennan Zhai, Alibaba Group
https://www.usenix.org/conference/nsdi23/presentation/chen-yanqing

Norma: Towards Practical Network Load Testing
Yanqing Chen†,‡, Bingchuan Tian‡, Chen Tian†, Li Dai‡, Yu Zhou‡, Mengjing Ma‡, Ming Tang‡,

Hao Zheng†, Zhewen Yang†, Guihai Chen†, Dennis Cai‡, and Ennan Zhai‡
†State Key Laboratory for Novel Software Technology, Nanjing University ‡Alibaba Group

Abstract
Network load tester is important to daily network operation.
Motivated by our experience with a major cloud provider,
a practical load tester should satisfy two important require-
ments: (R1) stateful protocol customization, and (R2) real net-
work traffic emulation (including high-throughput traffic gen-
eration and precise rate control). Despite the success of recent
load testers, we found they fail to meet both above require-
ments. This paper presents Norma, a practical network load
tester built upon programmable switch ASICs. To achieve the
above requirements, Norma addresses three challenges: (1)
modeling stateful protocols on the pipelined architecture of
the ASIC, (2) generating replying packets with customized
payload for stateful protocols, and (3) controlling mimicked
traffic in a precise way. Specifically, first, Norma introduces
a stateful protocol abstraction that allows us to program the
logic of the state machine (e.g., control flow and memory
access) on the programmable switch ASIC. Second, Norma
proposes a novel multi-queue structure to generate replying
packets and customize the payload of packets. Third and fi-
nally, Norma coordinates meters and registers to construct a
multi-stage rate control mechanism capable of offering pre-
cise rate and burst control. Norma has been used to test the
performance of our production network devices for over two
years and detected tens of performance issues. Norma can
generate up to 3 Tbps TCP traffic and 1 Tbps HTTP traffic.

1 Introduction
Understanding whether the network meets expected perfor-
mance is essential to today’s cloud providers, especially for
performance-sensitive services such as live streaming and
edge cloud games [30, 35, 57]. For example, in edge cloud
games, the players complain about their unsmooth feelings if
the network latency reaches 50 ms, and cannot play the games
when the latency exceeds 100 ms [54].

Network load tester is one of the most important testing
tools that checks the performance of network devices by
proactively generating various testing packets including dif-
ferent protocols, rates, and traffic patterns [7, 13]. A network
load tester could be used by the operator to test the perfor-
mance of devices, debugging the root causes of packet loss.
In a typical network load testing scenario, the tester gener-
ates user-defined traffic and sends it to the Device Under Test
(DUT). After receiving the testing packets, the DUT processes
the traffic and forwards it back to the tester for further pro-
cessing, such as dropping or replying to the incoming packets.

Based on the analysis of the outgoing and incoming traffic, the
tester can evaluate the performance of the DUT in multiple
aspects, including throughput, latency, and packet loss.

As a major cloud provider, we also deploy load testers in
production networks to test pre-online network devices and
functions. Load testers have become indispensable for daily
network operation tasks, such as performance monitoring,
failure troubleshooting, and stress testing. Building a prac-
tical load tester that works for large-scale cloud networks
should satisfy the following important requirements from our
network operators.

• (R1) Stateful protocol customization. Besides switches
and routers which work in a stateless way, cloud networks
also have complex and stateful network functions, such as
stateful packet filters and L4/L7 load balancers. The proto-
cols used by these network functions might be stateful (e.g.,
HTTP) or self-defined by the cloud provider. To provide the
all-around testing capability, a practical load tester should
be able to generate packets with not only stateless protocols
(e.g., UDP) but also stateful (e.g., TCP) and customized
(e.g., private tunnel protocols) protocols.
• (R2) Real traffic emulation. As the scale and single-port

bandwidth of cloud networks grow fast, a practical load
tester should be able to mimic real, cloud-grade traffic in
a cost-effective way: (1) it can generate Tbps-level traffic,
and (2) it can create and send precise rate packets with
customized payload and burst patterns.

A number of previous efforts have focused on network
load testing [7, 9, 13, 18, 24, 31, 32, 47, 53, 55, 59]. While
these state-of-the-art systems can work well in principle, in
reality in our situation, they fail to simultaneously satisfy
the above two requirements (see Table 1). Specifically, soft-
ware load testers [9, 18, 24, 31, 32, 47] and FPGA-based load
testers [60] are unable to generate Tbps-level traffic or con-
trol rate precisely (i.e., fail R2). On the other hand, hardware
load testers (e.g., Keysight [7] and Spirent [13]) can only
generate and emulate fixed types of protocols (i.e., unable to
support the customized protocols R1). Recently, researchers
have developed load testers based on programmable switch
ASICs [53, 55, 59], which are capable of sending Tbps-level
traffic and are customizable. While these pioneer systems
have shown the potential to partially solve the above prob-
lems, they cannot customize stateful protocols or provide
precise rate control, i.e., partially failing R1 or R2.

We, therefore, decided to build a practical load tester to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1733

satisfy our operators’ requirements for their daily usage.

Our approach: Norma. This paper presents Norma, a high-
performance network load tester, based on the RMT-based1

programmable switch ASIC. The key idea of Norma is to
execute load testing based on template packets derived from
tested protocols, which enables Norma to achieve R1 and
R2 simultaneously. First, template packets continuously loop
in the pipeline and can be conditionally replicated to gen-
erate testing packets of both stateless and stateful proto-
cols. Operators can flexibly customize headers and payload
of template packets; thus, Norma can be used to test vari-
ous cloud network functions. Second, through controlling
rates and patterns of replicating template packets, Norma can
generate load testing traffic that faithfully mimics realistic
traffic. Besides programmable switch ASIC resource limita-
tions [33, 38, 39, 41, 50–52, 56], building Norma nevertheless
requires us to address the following challenges.

Challenge 1: First, RMT-based programmable switch
ASICs are unfriendly to modeling stateful protocols (e.g.,
TCP and HTTP), since the ASIC architecture is implemented
as a pipeline that processes packets in a sequential way and
only supports accessing states once per packet. However,
most stateful protocols need to read and write a state multiple
times. This, therefore, makes it difficult to model or customize
stateful protocol behaviors on current programmable switch
ASICs. On the other hand, testing the performance of state-
ful protocols (e.g., stateful load balancer, DDoS defense, and
ACL) is crucial, which accounts for the majority of our load
testing requirements and tasks. To the best of our knowledge,
none of the prior work solved this problem. Existing load
testers based on programmable switch ASICs like Hyper-
Tester [59] can only support stateless protocol customization.
To address this challenge, we introduce a new data structure,
named stateful protocol abstraction, to enable programming
the logic of the state machine (including control flow and
memory access) on programmable switch ASICs. We con-
struct a state machine framework via the stateful protocol
abstraction. In the framework, packets are looped inside the
ASIC, and each round corresponds to a step in the state ma-
chine of the emulated stateful protocol. We can use this frame-
work to emulate arbitrarily complex protocols (including both
stateful and stateless), as long as the hardware resources of
the ASIC are sufficient (§4.1 and §4.2).

Challenge 2: Load testers need to reply according to state
machines when receiving packets of stateful protocol from
DUT. Replying packets involves packet generation with
customized payload as well as header modification, which
presents the second challenge. The programmable switch
ASIC uses PHV2 resources to add, delete, and modify packet

1RMT (Reconfigurable Match Tables) is a reconfigurable pipeline-based
architecture for programmable switch ASICs. Each pipeline consists of a
parser, multiple match-action stages, and a deparser [22, 40].

2PHV (Packet Header Vector) stores and transits parsed headers or meta-
data between neighboring stages. More details can be found in [10, 22].

headers and payload. Due to limited PHV resources, the ca-
pability of load testers to generate and modify packets with
a large payload and statefully complex headers is inherently
constrained. To address this challenge, we propose an effi-
cient multi-queue structure based on registers3 inside the pro-
grammable switch ASIC. In this structure, the stateful packet
will enqueue to trigger the corresponding type of template
packet to dequeue. In this way, Norma supports generating
replying packets with customized payloads for most stateful
protocols (§4.3 and §4.4).

Challenge 3: The final challenge is that programmable
switch ASICs is hard to offer precise control of the packet
rate and burst, thus resulting in unrealistic traffic emulation.
The above two control capabilities are important requirements
of our daily operation and testing; however, we have not seen
any of state of the art systems that can achieve the above goals.
The rate control relies on the specific hardware named meter;
however, in practice, the speed limit of the hardware meter
is coarse-grained, i.e., not all target rates can be precisely
achieved, which results in an error in the control of packet
rate. In addition, the programmable switch ASICs do not
support the generation of traffic bursts with given patterns. To
address this challenge, we proposed a multi-stage rate control
mechanism based on the coordination of meters and registers
in the programmable switch ASIC. The meters provide coarse-
grained rate control, which will be further tuned by the follow-
up registers in a fine-grained manner. In this way, the special
requirements of the tester for rate and burst control can be
satisfied with great precision (§5).

Norma has been used to test the performance of pre-online
devices that would be deployed in our production network for
over two years. For example, we used Norma to test the for-
warding capability and ARP learning rate of L2/L3 switches
and tested stateful gateways by generating L4/L7 flows. Eval-
uation results show Norma can generate up to 3 Tbps TCP
traffic and 1 Tbps HTTP traffic while maximizing the use of
pipeline bandwidth. Experiments also show that Norma can
achieve precise rate control and burst capability. The relevant
rate error does not exceed 0.01% in the worst cases.

Contributions. We make the following contributions:

• It is new for us to implement the stateful responder into
the programmable switch ASIC to support stateful pro-
tocols. The pipeline-folded switch ASIC and the queue
implemented in P4 are the keys to make it possible.
• We propose high-precision packet rate and burst control

method. This provides us the ability to reproduce traffic at
accurate rates and desired burst patterns.
• We use Norma to test our pre-online devices. Norma is

useful for our network developers and operators to find
performance issues and system bottlenecks.

3Registers are memory blocks attached to each stage, whose data can be
shared by multiple packets across different ports inside a pipeline [10, 22].

1734 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ethics. This work does not raise any ethical issues.

2 Background & Motivation
This section details our operators’ requirements and discusses
related work.

2.1 Requirements for Production
Based on the experience of our operators, we summarize the
requirements of our network load tester in Table 1.

(1) Supporting protocol customization. In cloud networks,
traffic can be carried via non-standard private protocols. These
protocols are usually defined and experimentally developed by
the cloud providers, e.g., QUIC [42] and Multipath QUIC [28,
58], which provide great extensibility of network functions
and can be quickly iterated according to the needs of upper-
layer applications. These non-standard protocols and traffic
are not supported by commercial hardware network testers.

In particular, the majority of protocols we need to test
are stateful. The DUT keeps the state of L4/L7 sessions for
stateful protocols. For example, an L4 gateway may perform
a TCP relay or SYN proxy, and an L7 load-balancer balances
the load of the HTTP traffic according to the HTTP header of
the first packet. In these cases, the load tester should be able
to emulate the establish, transmission, and release processes
of a session, and reply to the incoming packets according to
the specification of the protocol.

(2) Emulating realistic traffic. During the development and
operation of network devices, our operators need to evaluate
the device or optimize configurations by emulating realistic
traffic. The volume of mixed traffic flows can be as large as
O(1 Tbps), or O(1 Gpps) for small packets. It is essential
to emulate the traffic similar to the realistic load. We have
observed the case that a DUT works well in the experimental
development with simple traffic, but suffers from continuous
packet drop after it goes online. It is not acceptable for cloud
providers.

To test the DUT with emulated traffic under heavy loads, the
tester should support sending traffic at the line rate of DUTs.
Besides, the tester needs to emulate various traffic patterns
and mixed traffic flows for network operators to determine the
optimal configuration like hash function, CPU allocation, and
queuing policy of devices. The traffic is expected to be cheap
in terms of hardware cost, power consumption, and rack size.
Plus, in cloud network testing, the value of the field in the
packet header is required to be editable. For example, one
may expect the source IP address to be randomly chosen from
the prefix 10.0.0.0/16.

In addition, since a network load tester is usually used for
network checking, debugging, and troubleshooting, it is re-
quired to control the sending rate based on the determined
configuration. In other words, the tester should be able to gen-
erate the random burst traffic and emulate the failure scenarios
precisely. All of the testing data are collected by measuring
the incoming and outgoing traffic in multiple dimensions,

such as throughput and packet drops. A network load tester is
required to support fine-grained bidirectional measurement
of the large volume of traffic.

2.2 Related Work
Table 1 shows the comparison between Norma and the state-
of-the-art load testers in terms of our production requirements.

Software network testers. Software solutions [9, 18, 24,
31, 32, 47] are highly flexible. The early software network
testers [6, 11, 17, 23] are based on the standard Linux IO
API which limits the performance and accuracy. There are
many works [9,18,31,47] that utilize the IO frameworks such
as DPDK [2], Netmap [47], and PF_RING ZC [8] that are
working on accelerating packet processing on various CPU
architectures. However, the computing bottleneck makes it
difficult to apply to 100 Gbps network test scenarios. The
state of the art such as MoonGen [31] needs over 14 2.4 GHz
cores to generate 64-byte packets at 100 Gbps, corresponding
to only one port capability of Norma. In addition, software so-
lutions are not stable when testing complex packet processing
due to the indefinite packet processing time [59]. Therefore,
they are not scalable and cost-effective in industrial scenarios
that require Tbps-level load testing.

Commodity hardware testers. Vendors like Keysight [7]
and Spirent [13] provide network infrastructure performance
tests using their test suites with hardware-based modules.
These commercial hardware testers [7,13] are able to emulate
standard traffic demands by providing rich testing functions.
There are also application and security tests that cover the L4
protocols. Benefiting from the specially designed software
and hardware, it achieves high throughput and accuracy on
packet generation and measurements. Commercial hardware
tester uses dedicated ASICs from the vendors to accelerate
network traffic generation, which can provide O(1 Tbps) traf-
fic for stateless protocols.

However, the commercial hardware tester is a black box,
which makes it hard to adapt to the agile development of self-
defined protocols. The vendors are aiming to provide standard
tests thus the customizability of user-defined packet structures
and protocols is lacking. Besides, they are expensive to deploy
in a large-scale system (e.g., $100,000 for a 100 Gbps dual-
port packet generation module [59]) which requires a large
number of testers.

Programmable hardware testers. To achieve a balance of
programmability and performance, some network testers [19,
27, 48] using programmable hardware such as NetFPGA [60]
are proposed. These works achieve accurate rate controlling
and precise measurement results. However, the NetFPGA-
based testers are still expensive to achieve Tbps-level test
traffic (e.g., a NetFPGA board costs $5,341 with two 100 GbE
interfaces [1], and a programmable switch ASIC with 32
100 GbE interfaces only costs $2160 [5]). And it is non-trivial
to develop new functions on FPGA boards.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1735

Table 1: The required properties of a tester listed by our network operators, and the comparison between Norma and prior work.
Requirements Meaning Norma CHT ST HT NetFPGA
Stateful Protocol Support

Generation Whether the traffic of stateful protocols (e.g., HTTP) can be generated? 3 3 3 7 3
Customization Whether the stateful protocol can be fully customized by users? 3 7 3 3 3

Real Traffic Emulation
Cheap High-Speed Traffic Whether O(1 Tbps) traffic can be generated in a cheap way? 3 7 7 3 7
Precise Rate Control Whether the rate of generated traffic is precise? 3 3 7 7 3
Precise Burst Control Whether the traffic can be sent out with customized burst pattern? 3 3 7 7 3
Precise Measurement Whether the traffic features can be precisely measured? 3 3 7 3 3

CHT=Commercial Hardware Testers ST=Software Testers HT=HyperTester

Programmable switch ASICs like Intel Tofino [16] pro-
vide customizable packet processing logic via programmer-
friendly P4 language [21]. HyperTester [53, 55, 59] leverages
the recirculate primitive in P4 language and packet replication
engine to generate packets. It can generate stateless traffic
at the rate of 1.6 Tbps. HyperTester confirms the feasibility
to implement a stateless hardware tester via Tofino’s pro-
grammable switch ASICs and proves the traffic quality via
microbenchmarks. However, HyperTester cannot emulate the
data plane behavior of the stateful protocol. We cannot use
HyperTester to test a stateful L4/L7 gateway, because Hyper-
Tester cannot generate and maintain the session as what the
TCP/HTTP specification describes. In addition, HyperTester
cannot emulate realistic traffic in a high-fidelity way. We ana-
lyze the reason and conduct experiments in §9.2. Inspired by
HyperTester, IMap [43] uses programmable switch ASICs for
network scanning. It is not a network load tester in a general
sense.

Stateful packet processing. Many works are providing state-
ful packet processing to offload networking functions into
hardware. FlowBlaze [46], FAST [44], and OpenState [20]
define state machine abstraction to describe network func-
tions, while Domino [49], dRMT [26], SDP [34], and Ibanez
et al. [37] propose customized RMT-based architecture using
FPGA to achieve the processing ability of the stateful packet.
These works are orthogonal to Norma. Norma focuses on em-
ulating high-throughput stateful traffic to test the performance
of the DUT, instead of implementing every detail of stateful
protocols. This gives us the chance to implement the state
machine on programmable switch ASICs like Tofino. None
of the prior work focuses on this.

3 Norma Overview

Norma is a practical cloud network tester for load testing.
We use the programmable switch ASIC to leverage its large
capability of packet processing and programmability. In this
part, we explain the reason for using the pipeline-folded [14,
15, 45] programmable switch ASIC first (§3.1). Then, we
introduce the high-level architecture of Norma (§3.2). This
architecture illustrates how our testing functions are arranged
in the ASIC and work as a practical network tester.

Ingress pipeline 0

Egress pipeline 2

Ingress pipeline 1

Ingress pipeline 2

Ingress pipeline 3 Egress pipeline 3

Egress pipeline 0

Egress pipeline 1

Tr
af

fic
 M

an
ag

er

Packet in Packet out

Packet in Packet out

Figure 1: The packet path of pipeline-folded programmable
switch ASICs. Half of the pipelines are in loopback mode.

3.1 The Pipeline-Folded Switch ASIC
As shown in Figure 1, the pipeline-folded programmable
switch ASIC we use (i.e., BFN-T10-032Q [5]) has 64×100G
ports with maximum port bandwidth of 3.2 Tbps. It has four
physical pipelines in total, but only two of them are con-
nected to front panel ports (e.g., pipeline 0/2, namely external
pipeline). The remaining two pipelines are connected to the
internal loopback ports, whose egress direction is wired to the
ingress direction inside the ASIC (e.g., pipeline 1/3, namely
internal pipeline).

Norma chooses the pipeline-folded programmable switch
ASIC for three reasons. (1) The internal pipelines and exter-
nal pipelines can be programmed with different P4 programs.
By dividing functions such as basic switching, packet editor,
stateful responder, etc. into the above two groups, Norma
can support all of them simultaneously with the limited hard-
ware resources inside the ASIC. (2) Besides the recirculation
capability provided by P4 primitives, internal pipelines pro-
vide 3.2 Tbps extra loopback bandwidths. Therefore, high-
throughput traffic generation can be achieved without affect-
ing the front-panel port throughput. (3) The folded pipelines
double the stages we can use. That means we can imple-
ment more complex processing logic than the unfolded one,
which is the fundamentals of stateful packet processing. The
RMT-based programmable switch ASIC guarantees that these
additional stages do not affect the processing rate of the traffic
and only introduce negligible latency.

3.2 Norma’s Architecture
Norma takes advantage of the pipeline-folded programmable
switch ASIC and arranges all required functions in the archi-
tecture shown in Figure 2. The input and output represent
the front-panel ports of the switch. The basic switching logic
(omitted in figures) and measurement functions are imple-

1736 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Internal pipeline
External pipeline

TM

Stateful

1) Classifier

Template
Input Output7) Packet Editor

§5
2) Measurement

§6

5) Stateful Responder
§4 6) Multicast Controller4) Rate/Burst Controller

§5

3) Packet Editor
§5

8) Measurement
§6

S

T

S

T

stateful traffic

template traffic

outgoing/replying traffic

Figure 2: The function models and workflow of Norma. Different colors of arrow lines represent different traffic types. Nodes S
and T are loopback ports.

mented in external pipelines, while other functions are im-
plemented in internal pipelines. The S and T nodes represent
two loopback ports in internal pipelines, allowing packets to
travel from the egress back to the ingress. The traffic manager
(TM) is responsible for packet replication and forwarding.

Traffic. Norma needs to classify incoming traffic to decide
which function to enable according to the user’s test task. We
detail three kinds of traffic shown in Figure 2 as follows.

• Stateful traffic includes incoming packets of stateful pro-
tocols such as TCP and HTTP, represented as blue lines.
Once received, these packets will be preprocessed by the
packet editor (e.g., updating the TCP sequence number)
and then handled by the stateful responder, which triggers
replying traffic.
• Template traffic includes template packets sent from the

control plane, represented as green lines. Control plane pro-
grams construct template packets according to the user’s
test task and send them to the ASIC via PCIe. Then Norma
keeps these packets looping all the time in loopback ports
of internal pipelines. If a template packet is marked by the
multicast controller, it will be replicated by the packet repli-
cation engine (PRE) in the ASIC’s TM module. Then the
replicated packet will be forwarded to the DUT as outgoing
traffic via external egress pipelines. In this way, Norma can
generate line rate traffic on the data plane, though there
is no memory for the ASIC to store packets. The loop-
ing template packets determine what kind of traffic can be
generated.
• Outgoing/Replying traffic is represented as red lines. The

two traffic types can be regarded as the same because they
go through the same paths. The replying traffic is triggered
by the stateful responder, while the outgoing traffic is not.

Modules and workflow. We now show the function modules
of Norma in turn by the following workflow.

1) Classifier. The traffic is classified by the classifier first.
Norma mainly focuses on stateful traffic and template traf-
fic. Other traffic is also classified, but omitted in Figure 2.

2) Measurement. All traffic enters the measurement module
and is measured according to the user’s measurement rules.
Measurement functions are described in §6.

3) Packet Editor. Stateful traffic and template traffic are
forwarded to internal egress pipelines. The packet edi-
tor preprocesses the stateful traffic or modifies template
packet fields. The packet modification function is intro-
duced in §5.

4) Rate/Burst Controller. After looping back to internal
ingress pipelines, the rate/burst controller marks template
packets to control the rate and burst pattern of the gener-
ated traffic. This part is detailed in §5.

5) Stateful Responder. Norma uses the extended finite-state
machine (EFSM) [25] to abstract the stateful protocol.
The stateful responder triggers the EFSM according to the
input stateful traffic. The replying traffic is generated with
the help of the template traffic. This part is detailed in §4.

6) Multicast Controller. The multicast controller marks
the template traffic and forwards it to the internal egress
pipeline it comes from to complete the high-speed looping
of the template traffic. In addition, the marked template
packets are replicated to the target output port through TM.

7) Packet Editor. Outgoing traffic needs to go through the
packet editor on the external egress pipeline one more
time. The supported actions of these two packet editors are
different for sophisticated traffic generation capabilities.

8) Measurement. Finally, all outgoing traffic enters the mea-
surement module in the egress direction.

4 Emulating Stateful Protocol
The essence of emulating a protocol is to run the processing
program on the programmable switch ASIC. Although, it
is not easy to port programs that originally run on CPUs to
the ASIC. The protocol implemented on Norma for testing
the DUT can be reduced to a human-descriptive sequence
of packet interactions, as long as the DUT does not perceive
the differences. Therefore, our high-level idea is to convert
such a program into a state machine and write it into the
match-action table.

In this section, we first introduce the EFSM [25] abstraction
of stateful responder, which helps us establish a general state-
ful protocol programming pattern for Norma (§4.1). Then we
take the HTTP protocol as an example to show the implemen-
tation details of the stateful responder in three steps: executing

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1737

Step I

Step Ⅱ

Step Ⅱ

Step III

Internal pipeline
External pipeline

Stateful

Template0

Classifier

Template1 T1Template packet 1
(TCP with payload)

Read

Write

Write [0] or [1]

Read [0]

TM

EnqueueUpdate state

Restore?

Post-
processing

table(s)

Get flow state

O
ut

pu
t

In
pu

t

a

T0

I

T0

I

a

T0

State table

State register

Queue

Stateful packet with flow ID

Template packet 0
(TCP without payload)

Stateful packet with state ID

Drop?

Read [1]

DequeueRestore?T1

[0]
[1]

T1

R
ep

ly
in

g

Dequeue
Action

I

Figure 3: A detailed view of the components of the stateful
responder. The classifier is not included in the stateful respon-
der but used to describe where the inputs come from.

the state machine (§4.2), generating replying traffic (§4.3),
and postprocessing of the replying traffic (§4.4). The brief
packet path and table placement are shown in Figure 3.

4.1 The Stateful Protocol Abstraction
To handle stateful protocols, we need to program the process-
ing logic of the protocol in the programmable switch ASIC.
The main process is to generate replying packets according
to the flow state and stateful packets, and the abstraction of
this process can be represented by the EFSM.

EFSM abstraction of Norma. An EFSM in Norma is defined
as a 7-tuple M = (I,O,S,D,F,U,T). S is a set of flow states.
I is the current flow state. O is the next flow state. D is a set of
variables, such as packet fields, metadata, and registers. F is a
set of enabling functions that trigger transitions based on the
variables (fi : D→{0,1}). U is a set of update functions that
update variables (ui : D→ D). T is a transition relation (T :
S×F× I→ S×U×O). Table 2 shows the state table of the
EFSM that handles HTTP GET requests. The conditions are
the enabling functions in set F , and the actions are update
functions in set U .

Hardware bases and limitations. The EFSM abstraction
provides an interface for users to customize stateful protocols.
Specifically, users need to construct the following three parts
in Norma to realize the EFSM. The first part is variables D
and flow states S. The parser and deparser provide the ability
to locate packet fields and metadata. Because programmable
switch ASICs natively support registers, the flow states are

Table 2: A part of the simplified HTTP state table.
Curr S Condition Next S Action

0 RST 0 ig_md.skip_mc = 1;
0 SYN 2 hdr.tcp.flags = R;
0 Unknown 1 hdr.tcp.flags = R;
1 SYN 2 hdr.tcp.flags = S|A;
1 Unknown 1 ig_md.skip_mc = 1;
2 RST 0 ig_md.skip_mc = 1;
2 HTTP GET 3 hdr.payload = 0x48· · ·
2 Unknown 1 hdr.tcp.flags = R;

. . .

saved in registers and updated by register actions [14].
The second part is conditions F . The conditions can be im-

plemented as keys in the match-action table. State transitions
and actions are triggered by matching the variables like the
current flow state and the input stateful packet. However, it
should be noted that the matching ability of the key is limited.
The relationship between keys in a table can only be a logi-
cal AND relationship, so complex matching rules need to be
expressed using multiple entries.

The final part is actions U . The actions modify and send
the template packets to reply to the stateful packet. It should
be noted that the implementation of actions is limited by
the resource constraints of the programmable switch ASIC.
Excessive register action and table execution may exceed the
number of stages in the switch. And it is hard to implement
actions that require iteration, such as sorting headers in a
packet. A possible solution is splitting the action that requires
iteration into multiple steps. The stateful packet loops in the
internal pipeline through node I in the internal pipeline in
Figure 3 and executes these steps. But this solution reduces
the throughput of the flow processing.

4.2 Executing State Machine
Implementing the EFSM on programmable switch ASICs
is challenging due to limitations on registers, and table ac-
tions. Next, we will introduce the details of the state machine
implementation, as shown in Figure 3 Step I.

State register. Norma stores the state of each flow in a register
array. Initially, a flow ID is assigned by the classifier to each
flow and used as an index to access registers. Then, the stateful
packet is forwarded to the internal pipeline with its flow ID
for indexing its state register. The flow state registers store
current state ID in Table 2 and other flow information such
as TCP sequence number, which can be read by the template
packet directly for generating the replying packet.

A side benefit of the flow ID is that it releases the fields
of 5-tuples and MAC addresses in the stateful packet. When
we generate the replying packet, these fields can be retrieved
via a post-processing table with flow IDs. Therefore, we can
write the flow ID and other bridged metadata4 into these fields
to avoid additional bandwidth consumption when the packet

4Bridged metadata is a temporary header carrying the data calculated in
current and previous pipelines to the next pipeline [14].

1738 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

carries the metadata looping from egress pipelines to ingress
pipelines.
State updating. As described in §4.1, the state table stores
the conditions for state transition. For the stateful packet, it
first reads its state ID from the state registers. Then, it gets the
next state ID and action ID from the state table. And finally,
the stateful packet writes a new state ID back into the register.
However, this process cannot be done simply because of the
register access restriction that a register cannot be accessed
more than once in one pass (a packet goes through the ingress
pipeline and egress pipeline). Reading and updating are two
accesses that cannot be merged into one due to complex de-
pendencies. To break this limitation, our idea is to let the
stateful packet do another pass. In the first pass, the stateful
packet reads the state register to get the state ID. In the second
pass, the stateful packet gets the new state ID through the state
table and then writes back to the state register. Note that this
design can make state register updating non-atomic, further
discussed in Appendix A.
State machine bypass. Some protocols can be implemented
with state machine bypass. Taking the SYN flood test as an
example, the tester receives a SYN packet and replies with
an RST packet. The SYN packet can be preprocessed by the
packet editor to obtain the action ID. Then, the packet skips
Step I in Figure 3 and directly passes the relevant packet
information to generate replying packets. For the stateless
traffic generation like UDP and ARP reply, the entire stateful
responder can be skipped.

4.3 Generating Replying Packets
Norma generates replying packets by replicating the template
packet looping in the internal pipeline, as shown in Figure 3
Step II. Take the HTTP GET test task as an example. Norma
needs to generate a PUSH packet when receiving an ACK
packet. The PUSH packet has a 1460-byte payload, and the
ACK packet does not. If the programmable switch ASIC can
add or delete the payload, we can generate these two kinds
of packets by modifying the input stateful packet. However,
PHV resources limit the total length of packet headers that
can be parsed. The 1460-byte payload cannot be completely
stored in the PHV. So we have to prepare ACK template traffic
and PUSH template traffic with 1460-byte payload separately
to generate corresponding traffic. Since the stateful packets
and template packets do not share packet fields and metadata,
Norma needs to transfer information from the stateful packets
to the template packets, such as the sequence number and
action ID. Then in post-processing tables, Norma can modify
the template packets according to the transferred information
to generate required replying packets.

Next, we will detail the approach to transferring informa-
tion across different packets.
A strawman solution. A straightforward way to transfer infor-
mation across packets is using a queue. The incoming stateful
packet pushes necessary information into the queue, and then

the template packet pops the information to its corresponding
fields or metadata. The register array in programmable switch
ASICs can be used to implement the queue. Besides the regis-
ter array for the elements, the queue needs three more registers
to maintain the data structure, one for the head pointer, one for
the tail pointer, and one for the queue length. Compared with
the common queue data structure, the one in programmable
switch ASICs has two critical limitations.

First, the template packet cannot decide whether to de-
queue according to the head element. To dequeue according
to the head element, the tester must first check whether the
queue length is zero, then read the queue element via the
head pointer, and finally decide whether to decrease the queue
length. In this way, the queue length register is accessed twice
in one packet path, which is not allowed by programmable
switch ASICs. Since template packets will inevitably take out
information from the queue, the queue cannot be shared by
multiple types of template packets.

Second, there is no way to prevent the queue from over-
flowing. Since the packet paths of the stateful packet and the
template packet are parallel, to ensure parallel safety, the in-
structions for dequeuing and enqueuing must be executed in
the following order. For dequeuing, reading elements must oc-
cur after decreasing the queue length; and for enqueuing, writ-
ing elements must occur before increasing the queue length.
To ensure that the queue does not overflow, the queue length
is compared with its capacity to get the enqueuing permission
first. Then the stateful packet writes its information to the
queue. And finally, the queue length increases. In this way,
the tester accesses the queue length register twice. So there is
no method to check the queue length before enqueuing.

In Norma, the consumer of the queue is the template pack-
ets, and the producer of the queue is the stateful packets. Tem-
plate packets poll from the queue to generate replying packets.
For example, the PUSH template packets poll the queue for
ACK packets. Therefore we must ensure that the polling rate
is higher than the arrival rate of the stateful packets to avoid
queue overflowing.

Multi-queue for multiple template traffic types. Because
of the limitations of the queue, only the stateful packet can
choose what kind of template packets to reply to. It is straight-
forward to allocate a queue for each type of template packets.
As shown in Figure 3 Step II, the stateful packet enqueues
using queue ID which is obtained from the state table and then
triggers the corresponding type of template packet to dequeue.
Compared to the strawman solution, there are two changes to
the multi-queue data structure. The first change is that three
register arrays are used as head pointers, tail pointers, and
queue lengths. Each queue ID identifies an element in these
register arrays. The second change is that the index of the
queue elements needs to be re-planned. A typical method is
using some lower bits of the pointer to represent the queue
ID, and the remaining bits to represent the element offset in
the queue. For example, one register array with a capacity of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1739

256 is used as 16 queues. The lower four bits are the queue
ID and the higher four bits are the offset.

Modifying payload. For some test cases where the complete
or partial payload of the template packet is capable to be
parsed in the PHV, we can treat this payload as a normal
packet header. First, the parser needs to parse the payload as
a header according to the total length in the IP header. Before
entering the post-processing table, the previously added pay-
load header must be set to invalid to avoid adding payloads
repeatedly. Second, the payload header needs to participate in
the calculation of the TCP checksum, which should be imple-
mented in both the parser and the deparser. In this way, Norma
can add, delete, and modify the payload without queues.

4.4 Post-Processing
As shown in Figure 3 Step III, post-processing tables are
used to modify the template packet and finally generate the
replying packet. First, the stateful packet enqueues the flow
ID and action ID. Then, the template packet obtains the action
ID from the queue and executes state actions according to
this action ID in post-processing tables. State actions must
implement the following functions: (1) restoring the MAC
addresses, IP addresses, and TCP ports according to the flow
ID; and (2) setting the correct egress port to the replying
packet. Other instructions such as updating the TCP sequence
number depend on the user’s testing requirements.

5 Emulating Realistic Traffic
Now we introduce how Norma emulates realistic traffic. We
have two requirements for real traffic generation. First, the
types of outgoing traffic generated by Norma cover our test
scenarios (§5.1). The packet editor can modify the fields of
the outgoing packet fields according to the user’s test tasks
such as port scanning and host probing. Second, the rate of
outgoing traffic controlled by Norma covers our test scenar-
ios (§5.2). Norma leverages the packet header compression
technique to overcome the bandwidth bottleneck caused by
bridged metadata conveyance, thus achieves the line-rate traf-
fic generation (Appendix B). On this basis, the rate/burst
controller is able to control the outgoing traffic rate accurately
and the burst pattern can be customized by the controller to
emulate the network traffic in corner cases.

5.1 Two-Stage Packet Editor
If the resources of the external pipeline are sufficient, the
packet editor only needs to be implemented on the exter-
nal egress pipeline. However, most resources of the external
pipeline has been occupied by switching functions. There
are no more stages available to support register operations
like generating random numbers and execution of the packet
editor table actions like packet field assignment.

We propose a two-stage editing mechanism to overcome
this limitation. Instead of editing the outgoing packet on the
external egress pipeline only, Norma splits the packet editor

Register A
(Rate Control)

Bypass Multicast

Meter Register B
(Burst Control) MulticastGreen Pass Pass

Red Skip Skip

Figure 4: The multi-stage rate control mechanism. Meters and
registers determine whether to multicast the template packets
or not to control the traffic rate and burst pattern.

into two parts. Because the internal egress pipeline is not
used by the switching function and measurement functions.
We implement a major packet editor that edits the template
packets on the internal pipeline first to complete most of the
work. However, modifying the template packet alone is not
enough. The outgoing traffic on multiple front-panel ports
is identical if these modified packets are replicated to these
ports through the PRE. So there is a minor one that edits the
outgoing traffic on the external pipeline to differentiate them
on each port. We leave implementation details in Appendix C.

5.2 Precise Rate & Burst Control
The traffic rate is an important feature in realistic traffic em-
ulation. Norma is required to send the traffic exactly at the
configured rate with diverse burst patterns. The meter [36]
(usually implemented by a token bucket) is a common rate
control component provided by the programmable switch
ASIC. In Norma, the meter first colors the template packets
that loop in the internal pipeline at line rate to red or green.
The multicast controller then marks the drop flag to the red
packets and writes the multicast metadata to the green packets
to generate outgoing traffic at the target rate. But the follow-
ing two limitations make the meter not quite practical. 1) The
meter colors the packets of the stable traffic with an equal
time interval. It is impossible to generate burst traffic where
packets are expected to be sent in batches. 2) The target rate
has a finite precision, i.e., not all target rates can be precisely
configured. The actual rate of the meter can be different from
what we set, and the error grows even larger if we choose a
shallower bucket depth to avoid unexpected bursts.

Norma proposes a multi-stage rate control mechanism in
the rate/burst controller to obtain the ability of accurate rate
control and bursts. As shown in Figure 4, the mechanism is
based on a meter, appended with multiple register units (e.g., 2
units in the figure). Each unit is implemented in the same way,
which skips the following m packets after passing n successive
packets. These units are connected in a cascaded way, and the
parameters m and n can be configured individually. Next, we
show how the design solves both two problems.

First, for the case of accurate rate control, the user wants to
generate 10 Gbps traffic. However, the two closest rates sup-
ported by the meter are 9.9 Gbps and 10.1 Gbps. In this case,
we can configure the meter to the larger rate. The parameters
m and n of register A in Figure 4 are set to 1 and 100, respec-
tively, which means skipping 1 packet after passing 100 pack-
ets. Therefore, the final rate becomes 10.1 Gbps×100

1+100 = 10 Gbps.

1740 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Time1 2 3 4

Tester

DUT

report report reportreport

Figure 5: Cross-interval packets make counters out of sync.
In time 2-3, the tester sends two packets and reports one is
lost, but it receives the lost one in time 3-4.

Second, for the case of burst pattern control, the user wants
to send burst traffic whose peak rate and average rate are
10 Gbps and 4 Gbps, respectively, which means there are
1,000 packets in a burst batch. To meet this goal, we only
need to configure the m and n of register B to 1,000 and 1,500,
respectively. These registers can be used flexibly. We can use
two or more registers together to get a more precise rate or to
construct complex burst patterns.

6 More Practical Considerations
To use Norma in practice, we also need to address some
engineering challenges. For a load tester, measurement is one
of the most important engineering challenges, since it is used
to estimate the performance of tested networks. We have two
requirements for the measurement. First, the measurement
must be accurate, which means that the measurement must
be done on the data plane as much as possible. Second, the
measurement should not affect the functionality of the DUT
and the pattern of the outgoing traffic. This means that the
outgoing packet should not carry additional headers to store
information such as timestamps.

This section first presents a measurement technique based
on a flapped version bit, which can obtain high-precision traf-
fic metrics in real time (§6.1). Then, we detail the blind mea-
surement technique used in the delay measurement that avoids
adding extra information to the outgoing packets (§6.2).

6.1 High-Precision Real-Time Measurement
A straightforward way is to let the programmable switch
ASIC periodically report the counter value to control plane
programs. Then, the metrics (e.g., throughput) can be cal-
culated as the quotient of the counter value difference and
the reporting period. However, this method is inaccurate for
complex metrics relying on bidirectional measurements. Con-
sider the measurement of packet drop rate in Figure 5, which
counts in both ingress and egress directions and reports the
difference. Note that there is a cross-interval packet that is
sent before the third report (at time 3) and received after it.
Thus the ASIC knows that there are two packets sent in total
and only one packet received during the reporting interval 2-3,
and reports “one packet is lost” to the control plane at time 3.
But in fact, there is no packet loss.

Norma synchronizes the counters in two directions by em-
bedding a version bit in packet headers (e.g., one bit in the

IPv4 identification field). The version bit flaps every time
a report happens. For example, in Figure 5, the version bit
values in three reporting intervals can be (1,0,1) or (0,1,0),
respectively. In the meanwhile, each original counter will be
replaced by a counter group composed of two counters, corre-
sponding to two versions. When receiving a packet, the ASIC
reads the version it belongs to from the packet header, and
updates the counter indexed by the version. Choosing the re-
porting period to a value larger than the maximum forwarding
time of the DUT, the cross-interval packets will disappear.

While Norma achieves high-precision real-time measure-
ment, it also adds a delay in reporting period to the data report.
In addition, the SRAM used by counters is doubled.

6.2 Blind Measurement of Forwarding Delay
Typically, the forwarding delay can be measured by embed-
ding a timestamp at the end of the packet. When Norma re-
ceives it, the timestamp will be parsed out and then compared
with the current timestamp. However, this method cannot be
applied to the programmable switch ASIC, whose pipelines
are unaware of the packet payload. An alternative way is to
embed to timestamp between the headers where the ASIC
can parse, but it does not work for stateful protocols. For ex-
ample, the HTTP header cannot be parsed by the ASIC due
to the variable header length, and such embedding inserts the
timestamp between the TCP header and the HTTP header.
When the DUT (e.g., an L7 gateway) receives the packet, it
incorrectly treats the timestamp as an HTTP header. Another
way is to embed the timestamp in packet headers, but there is
not enough room for a 32-bit nanosecond timestamp, which
is necessary for measurement precision.

Norma proposes the blind measurement technique, which
does not embed or add a timestamp into the packet but sends
blindly. Our approach is based on the synchronization frame-
work (§6.1). Within each reporting interval, the ASIC records
the timestamp of the first outgoing packet in a register and
regards the value as base timestamp Bo. For following out-
going packets in the interval, the ASIC calculates relevant
time as the difference between its timestamp and the base
timestamp and adds it to a time register. Here we use the
relevant time to avoid arithmetic overflow and denote To and
Po as the sum of relevant time and the outgoing packet num-
ber, respectively. The ASIC processes the incoming pack-
ets in the same way, and we denote corresponding values
as Bi, Ti, and Pi, respectively. When the interval passes, the
ASIC reports the all above values to the control plane, and
then the control plane calculates the average delay d as:
d = (Bi +Ti/Pi)− (Bo +To/Po) . It is noticeable that packet
loss can affect the precision of blind measurement. We leave
the analysis in Appendix D.

We use the example in Figure 6 to illustrate how it works.
Assume that the base timestamps of outgoing and incom-
ing packets are 1000 and 1005, respectively. Three outgoing
packets are sent at the time 1010, 1020, and 1030, so the time

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1741

Outgoing

Incoming

DUT
101010201030

114011301105

Base = 1000

Base = 1005

Time = 60
(10+20+30)

Time = 360
(100+125+135)

Figure 6: An example of blind measurement. The time offsets
are accumulated by Norma and not carried with packets.

100K 1M 10M 100M
Flow length (byte)

0
20
40
60
80

100

Ra
te

(G
bp

s)

Host0
Host1

Host2
Host3

Figure 7: CDN load balance
throughput.

0 2 4 6 8 10 12 14 16
Time (min)

0
50

100
150
200
250
300

Dr
op

 ra
te

(K
pp

s)

Figure 8: Packet drop on the
traffic manager.

register of outgoing packets is added by 10, 20, and 30, respec-
tively, which sum up to 60. Similarly, the time counter of in-
coming packets is 360. Therefore, the control plane calculates
the average delay as (1005+360/3)− (1000+60/3) = 105.

7 Implementation
Different from prior work, Norma depends on the pipeline-
folded programmable switch ASIC, and therefore, is built
from scratch. We write about 1,200 and 1,000 lines of P4 code
to implement HTTP and TCP traffic responding functions,
respectively. Except that, we write about 8,400 lines of P4
code to implement the rest of the data plane, as well as basic
switch functions such as routing and ACL.

The control plane of Norma is implemented with about
2,500 lines of Python code and runs in a SONiC-like operat-
ing system [12]. It uses internal gRPC to communicate with
the ASIC and provides HTTP APIs to users for job manage-
ment. With these APIs, users can create a traffic-sending job
with a desired packet header stack, traffic rate, burst pattern,
measurement, stateful responder, etc., and then submit it to
Norma. After that, the job manager automatically allocates
loopback ports (Appendix E) to these jobs and starts sending
packets, until the job is terminated by users.

8 Case Study
Norma has been used to test our pre-online devices for over
two years. We present three real usage experiences.

CDN load balancer stress test. In a CDN system, the load
balancer (LB) is responsible for distributing user requests to
backend servers and then returning the servers’ responses to
the user. The LB, therefore, needs to afford a large amount
of traffic. Its performance is critical to the CDN system. In
one of our production pre-deployment, the load balancer em-
ploys four 100 Gbps links to connect to the ISP network and
uses the other four 100 Gbps links to connect to the backend
servers. To test the LB, we used Norma to emulate the traf-
fic from both the ISP network and the backend servers. The

traffic of the emulated HTTP clients was sent to the ISP ports
of the LB, and the traffic of the emulated HTTP server was
sent to the backend server ports of the LB. Norma initiated
and maintained 4,000 HTTP connections. If one connection
ends normally, Norma re-initiates the connection; if one con-
nection ends abnormally, Norma shuts down the connection.
Therefore we changed the connection establishing frequency
by tuning the flow length to test whether there existed any
performance issue. As shown in Figure 7, we observed that
when the flow length was greater than 10 MB, the through-
put of each backend server was close to 100 Gbps; however,
when the flow length was less than 1 MB, the throughput
was lower than 80 Gbps due to the limitation of the HTTP
connection establishment capability of the LB. We therefore
successfully measured the performance specifications of the
LB under different types of loads.
Traffic manager burst traffic test. In another LB setup, our
switch should connect to the ISP network with two 100 Gbps
links and 32 backend servers with 25 Gbps links. Normally,
the throughput of the user requests from the ISP to the back-
end servers should be 50 Gbps. These requests trigger about
90 Gbps replying traffic, and 200 Mbps synchronization traf-
fic from each backend server to other servers. But long-term
operation in practice showed that there was packet loss on
the LB. In troubleshooting, we find that requests sometimes
generate bursts of 7 Gbps lasting 9-10 ms on one host, and
drive the burst of synchronization traffic. Even with the bursts,
this level of traffic should not cause a significant packet loss
on the DUT. However, the QAC (Queue Admission Control)
drop counters of backend servers increased irregularly.

The root cause is the improperly configured traffic manager.
The burst traffic can rapidly fill the queue up and then cause
packet loss. To tune the traffic manager configuration, we
set the burst mode to sending 3,000 packets at 2.5 times the
average throughput intermittently on the request traffic and
the synchronization traffic, which can reproduce the bursts
and packet loss. Figure 8 shows our result. There were about
197,000 packets dropped by the traffic manager every second.
And therefore, Norma assisted our operators to optimize the
traffic manager configuration.
ARP learning rate test. We have deployed many pro-
grammable switches in our network. We need to ensure the
correctness and speed of L2/L3 forwarding functions. To this
end, we used Norma to connect these DUTs (i.e., tested pro-
grammable switches) with two links. On one link, Norma
generated ARP-reply traffic at line rate. It announced the
MAC address of a segment of free IPs as the tester itself’s. On
another link, Norma generated UDP traffic at line rate, where
the destination IPs were the free IP addresses announced by
the ARP traffic. The DUTs must be able to learn ARP entries
correctly first. Second, the DUTs need to forward UDP traffic
according to the learned ARP entries. Finally, Norma judged
whether the DUTs had learned all ARP entries by measur-
ing the throughput of the forwarded UDP traffic, and then

1742 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 80 96 112 128 256 512 1518 9100
Packet size (byte)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ra
te

(T
bp

s)

Throughput
Goodput

(a) UDP traffic.

128 256 512 1024 1518
Packet size (byte)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ra
te

(T
bp

s)

(b) TCP traffic.

1K 10K100K1M 10M100M
Flow size (byte)

0.0
0.2
0.4
0.6
0.8
1.0

Ra
te

(T
bp

s)

(c) HTTP traffic.

Figure 9: Maximum throughput of Norma.

calculated the ARP learning rate.
In our testing, Norma showed that when the number of

tested IP addresses was 213, the learning rate was about 462
ARP entries per second. However, when the number of IP
addresses reached 214, the DUTs failed to learn all ARP en-
tries. After our troubleshooting, we found that the control
plane used a hash value of the entry to locate the ARP en-
try. If a hash conflict of ARP entries occurred, the control
plane returned an exception. In addition, the control plane
only supported up to 214 entries, which made our test trigger
hash collisions. These bugs were hard to find in unit tests
because the number of ARP entries in unit tests is limited. No
assertion can be triggered without hash collision.

9 Evaluation
All of our experiments were conducted in two programmable
switches with Tofino programmable switch ASICs, where one
was the tester, and the other was the DUT. Two switches were
connected via 32 100 Gbps optical fibers, which provided
3.2 Tbps bidirectional bandwidth in total.

The traffic quality of Tofino ASICs and software testers
has been well-learned in HyperTester [55] (see Appendix F).
So we omit these experiments in the evaluation. Norma gener-
ates traffic only via dedicated hardware, rather than software.
Therefore, the traffic generated is quite stable and very easy
to reproduce. We got exactly the same results from multiple
runs in our experiments.

9.1 Traffic Throughput
In this part, we evaluated the maximum throughput of three
typical traffic, including UDP, TCP, and HTTP. Packets or
flows with different sizes were required to generate to test
the performance limit of Norma. And loopback ports were
allocated by the algorithms in Appendix E. Unless otherwise
specified, the Ethernet header and frame check sequence are
taken into account when we describe packet or flow sizes,
while the inter-packet gap and preambles are not.

UDP traffic. We first evaluated Norma’s throughput of
UDP traffic with different packet sizes, including small
packets ranging from 64 to 512 bytes, MTU-sized packets
(1518 bytes), and jumbo packets (9100 bytes). The allocation
of loopback ports was straightforward for UDP, whose out-
going packets were directly multicast from template packets,
and did not need other packets to trigger. Therefore, only one
loopback port was occupied by template packets.

Figure 9a shows our results. Norma can generate traffic at
the rate of at least 1.6 Tbps and reaches 3.2 Tbps for packets
longer than 256 bytes. Two bottlenecks limit the performance
of Norma. For small packets, the throughput was bounded by
the operating frequency of the ASIC because there were more
headers for the pipelines to process. And for large packets,
however, the throughput was bounded by the 100 Gbps port
rate. We used goodput to represent the transmission rate of
the payload. As the packet size increased, the proportion
of the packet header decreased, so the goodput increased.
These results indicated that Norma’s performance reached
the limit of ASIC’s capability. In the meanwhile, HyperTester
can generate UDP traffic at the rate of 1.6 Tbps [55] and can
be simply extended to 3.2 Tbps for large packets, similar to
Norma.
TCP traffic. Next, we evaluated Norma’s throughput of TCP
traffic with state machine bypass. The TCP packet received
was forwarded to the loopback pipeline where packet informa-
tion was enqueued directly. Then the template packets looped
in the pipeline read the information from the queue and gen-
erated a replying packet based on TCP flags. For example,
when receiving a pure ACK packet, Norma would send back
a PUSH packet with the payload of a specified size. Since the
size of ACK packets was much smaller than that of PUSH
packets, one loopback port was enough to process the ACK
traffic received from multiple front-panel ports. For example,
one loopback port processing ACK packets can support three
front-panel ports that sent out 256-byte PUSH packets. That
means, every four loopback ports can support up to 300 Gbps
TCP traffic.

Figure 9b shows our results. According to the loopback port
allocation algorithm in Appendix E, the expected throughput
of PUSH packets sized by 128, 256, 512, 1024, and 1518 bytes
was 1.6, 2.4, 2.6, 2.8, and 3.0 Tbps, respectively. However, the
throughput of 128- and 256-byte packets was slightly lower
than expected due to pipeline throughput limitations. For the
rest of the PUSH packet sizes, each front-panel port generated
near-line-rate TCP traffic.
HTTP traffic. Finally, we evaluated Norma’s throughput of
HTTP traffic by emulating HTTP sessions with different flow
sizes, ranging from 1 KB to 100 MB. There were two types
of packets in one HTTP session. One was the packets with
HTTP content, and the other was the TCP control packets.
Norma generated the packets with HTTP content by dupli-
cating the template packets with the 1024-byte payload. For
other packets, Norma used the template packet with no pay-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1743

0.1 1 10 20 40 60 80
Expected rate (Gbps)

0.0
0.2
0.4
0.6
0.8
1.0

M
ea

su
red

 ra
te

(no
rm

ali
ze

d)

Norma 64B
HyperTester 64B
Norma 1518B
HyperTester 1518B

Figure 10: Comparison of rate control accuracy.

load. To achieve the maximum throughput, in each 16-port
internal pipeline, five ports were used for reading state reg-
isters, five ports were used for writing state registers, five
ports were used for generating PUSH packets, and one port
was used for generating TCP control packets. Therefore, we
expected that Norma should generate 1 Tbps HTTP traffic.

Figure 9c shows our results. Norma generated HTTP traffic
with over 950 Gbps throughput, which was slightly lower than
expected. This was because of the gap between the looping
frequency of large template packets (e.g., 11 Mpps) and the
arrival frequency of small packets (e.g., 150 Mpps), which
made the enqueue time and dequeue time unaligned. For
example, a small HTTP control packet may wait in the queue
for triggering a large data packet. This phenomenon was
obvious when small packets dominate in short HTTP sessions
and led to lower throughput.
Stability. We evaluated the stability of Norma by sending
UDP, TCP, and HTTP traffic continuously over 24 hours, at
the rate of 3.2, 3.0 and, 1.0 Tbps, respectively. We recorded
the throughput of Norma periodically and found that it kept
stable during the long-term run.

9.2 Traffic Control
In this part, we evaluated the traffic control capabilities in
Norma in terms of rate control accuracy and traffic bursts.
Rate control. We evaluated rate control on two types of UDP
traffic generated by Norma. One was composed of 64-byte
packets and the other was MTU-sized packets. We measured
the actual throughput of generated traffic and compared it
with the expected rate. For clarity, the actual throughput was
normalized by the expected rate. As shown in Figure 10,
Norma achieved nearly 100% accuracy in all cases. However,

Table 3: The rate error of our multi-stage rate control and pure
meter when generating packets of different sizes.

Rate
(Gbps)

64 Bytes 1518 Bytes
Multi-Stage Pure Meter Multi-Stage Pure Meter

0.1 6×10−6 3×10−3 2×10−5 1×10−3

1 9×10−7 2×10−3 4×10−6 5×10−4

10 8×10−8 4×10−3 1×10−6 3×10−3

20 5×10−8 4×10−3 4×10−8 3×10−3

40 3×10−8 4×10−3 2×10−7 3×10−3

60 5×10−5 3×10−3 2×10−6 8×10−4

80 2×10−4 4×10−3 1×10−7 3×10−3

0 2 4 6 8 10 12 14
Time (μs)

0

5

10

15

20

Se
qu

en
ce

 nu
mb

er 25G Small Burst
50G Small Burst
50G Large Burst

(a) Micro time scale

0 10 20 30 40 50 60
Time (s)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Th
rou

gh
pu

t (
Gb

ps
)

25G Small Burst
50G Small Burst
50G Large Burst

(b) Macro time scale

Figure 11: The traffic generated by Norma’s burst control.

the actual throughput of HyperTester became inaccurate as the
expected rate grew larger. For example, the rate error reached
38% when the expected rate was 80 Gbps.

HyperTester controlled the rate of generated traffic by com-
paring the timestamp gap with a dropping threshold, which
was calculated based on the expected rate. For any two suc-
cessive packets, if the packet gap was less than the threshold,
the second packet would be dropped. However, considering
the scenario when the expected rate was more than half of
the full rate, the dropping threshold would always be larger
than the transmission time of a single packet. It meant there
was always one packet being dropped for any two successive
packets, and the actual rate cannot exceed 50% of the full rate.
When the expected rate reached 80 Gbps, the actual rate of
HyperTester was 80 Gbps×62%≈ 50 Gbps, which was the
same as what we measured above.

We further evaluated the accuracy of our multi-stage rate
control. We used the meter-based rate limiter provided by the
programmable switch ASIC as a baseline. The actual rate is
measured by a counter that counts how many packets pass
through the egress pipeline in a range of time. The error is
the ratio of the difference between the actual rate and the
target rate to the target rate. For Norma, the rate control accu-
racy can be further guaranteed by our multi-stage rate control
design. As shown in Table 3, the error of the meter-based
rate limiter ranged between 0.1% and 1%, because the rate
to limit supported by the hardware meter was not continuous.
After applying the multi-stage rate control, the accuracy was
promoted by at least 10×, and the rate error was less than
0.01% in the worst cases.

Burst control. To test the burst control, we made the Norma
to generate three kinds of traffic with different burst patterns.
For traffic A, B, and C, we set the expected average rate to
10 Gbps, 20 Gbps, and 20 Gbps, and the burst scale (i.e., the
number of packets in a burst batch) to 4, 4, and 8, respectively.
In addition, the burst rate (i.e., peak rate) of all the traffic was
required to be 2.5× the average rate. The performance of burst
control was evaluated on two scales. The micro time scale
showed the packet-level burst pattern, while the macro time
scale showed the traffic-level throughput. For the micro time
scale, we gave each packet an increasing sequence number
and recorded their transmission time. The result was shown in
Figure 11a. In the two burst patterns with an average rate of

1744 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 50 100 500 1000
Packet count

102
103
104
105

De
lay

 (n
s)

Measured
Expected

0
1
2
3
4
5
6

Er
ror

 (%
)

Figure 12: The packet delay when DUT meets bursts.

50 Gbps, there were 8 packets sent continuously in each batch
under the large burst setting, and there were 4 packets under
the small burst setting at the same rate with half the batch
size. For the burst pattern with an average rate of 25 Gbps,
there were 4 packets sent continuously at half rate in the same
batch size as the 50 Gbps large burst pattern. At the macro
time scale shown in Figure 11b, they all stayed at the target
average rate.

9.3 Measurement
In this part, we combined traffic generation and burst con-
trol to evaluate the measurement function of Norma. First,
Norma was connected to the switch under test and generated
100 Gbps line-rate UDP background traffic. The switch then
forwarded background traffic back to one specified port of the
tester. Second, Norma generated burst traffic at 100 Gbps with
different burst scales. And burst traffic was also forwarded by
the switch back to the same port of the tester. The packet size
of burst traffic and background traffic was both 1024 bytes.
Finally, Norma measured the average delay of packets in the
burst traffic and compared it with the expected queuing time
to judge the error of Norma’s measurement.

Note that in this case, both burst traffic and background
traffic were queued at the same egress port of the switch.
We denoted the burst scale as n packets, and then the theo-
retical average packet queuing time was (1024+20) Bytes

100 Gbps × n
2

5.
In addition, the delay measured by Norma included the link
propagation time, which is about 1454 ns.

Results are shown in Figure 12, where the link delay has
been removed. For all of the burst scales, the queuing delay
measured by Norma was very close to the theoretical value.
When the burst scale was greater than 10 packets, the error of
the average delay was less than 4%. The larger the burst size,
the more accurate the measurement of average delay was.

10 Limitation & Discussion
Can Norma emulate full functions of stateful protocols? It
depends on the complexity of the protocol. Besides the hard-
ware limitations we detail in §4.1, the hardware resources
also constrain the implementation of the stateful protocol. A
stateful protocol in Norma consists of its state transitions, the
replying traffic types, and the state actions. The capacity of the
state table determines how many state transitions Norma can
support. The loopback ports determine how many template
packet types Norma can support and the maximum throughput

5The inter-packet gap and preambles (20 bytes) should be considered.

of replying traffic Norma can generate. And most importantly,
the state action may be too complex to implement into the
programmable switch ASIC, because the switch resource al-
location algorithms and related optimizations in compilers
are unknown to developers. Without trying to implement the
protocol and compile it, it is hard to know whether a stateful
protocol can be fully emulated. Therefore, for complex pro-
tocols, we need to simplify them under the premise of being
able to complete the test task.

Can Norma support testing customized protocols? Users
can customize the packet structure and the processing logic
of the protocol in most cases. For example, if we want to
measure the forwarding performance of the GPRS tunneling
protocol [3], we can modify the parser and deparser to support
it. If we want to measure the RDMA write-only throughput
of a host, things become complex. The process of exchanging
information, congestion control algorithm and packet loss
recovery are difficult to express with the EFSM. Even if pos-
sible, it is difficult to implement within limited instructions.
Our approach is to retain only the process of transferring con-
tent in RDMA and remove other logic such as congestion
control. However, Norma cannot support protocols with en-
cryption due to the limitation of programmable switch ASICs,
unless the encrypted data can be regarded as a fixed payload,
or special acceleration cards such as IPU [4] are available.

Can Norma localize the root cause of performance issues?
Norma cannot localize the root cause of performance issues
because the DUT is typically a black or gray box that cannot
be simply modeled. For example, a performance problem can
come from misconfigurations, ASIC capabilities, bottleneck
of switch CPUs, and even signal strength when wireless links
involve. It might be possible to extend Norma to root cause
localization if sufficient information is provided.

11 Conclusion
We present Norma, the first practical network load tester used
in production. Norma employs the programmable switch
ASIC to support stateful protocol generation and customiza-
tion and realistic traffic emulation such as high precise rate
control. Norma has been used in our operation for over two
years and successfully detected many performance issues.

Acknowledgments
We thank our shepherd, Muhammad Shahbaz, and NSDI re-
viewers for their insightful comments. We also thank Xiao-
liang Wang for his valuable feedback on earlier drafts of this
paper. This work is supported by Alibaba Group through Al-
ibaba Research Intern Program. Yanqing Chen, Chen Tian,
and Guihai Chen are also supported in part by the National
Key R&D Program of China (2022YFB2702803), the Na-
tional Natural Science Foundation of China under Grant Num-
bers 62072228, and the Fundamental Research Funds for
the Central Universities. Chen Tian and Ennan Zhai are co-
corresponding authors.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1745

References

[1] Alveo U200 Data Center Accelerator Card. https://www.xi
linx.com/products/boards-and-kits/alveo/u200.h
tml#buy-from-xilinx.

[2] DPDK. https://www.dpdk.org.

[3] GPRS tunnelling protocol. https://www.3gpp.org/DynaR
eport/29274.htm.

[4] Intel IPU. https://www.intel.com/content/www/us/en/
products/network-io/smartnic.html.

[5] Intel Tofino 3.2 Tbps, 4 pipelines. https://www.intel.co
m/content/www/us/en/products/sku/218642/intel-to
fino-3-2-tbps-4-pipelines/specifications.html.

[6] iPerf. https://iperf.fr.

[7] Keysight. https://www.keysight.com/us/en/products/
network-test/network-test-hardware.html.

[8] PF_RING ZC. https://www.ntop.org/products/packet
-capture/pf_ring/pf_ring-zc-zero-copy/.

[9] Pktgen. https://github.com/pktgen/Pktgen-DPDK.

[10] Programmable data plane at terabit speeds. https://confer
ences.sigcomm.org/sigcomm/2018/files/slides/p4/P
4Barefoot.pdf.

[11] Scapy. https://scapy.net/.

[12] SONiC. https://sonic-net.github.io/SONiC.

[13] Spirent. https://www.spirent.com/products/testcen
ter-ethernet-ip-cloud-test.

[14] Tofino native architecture - public version. https://github
.com/barefootnetworks/Open-Tofino/blob/master/PU
BLIC_Tofino-Native-Arch.pdf.

[15] Tofino product family brochure. https://www.intel.com/
content/dam/www/central-libraries/us/en/document
s/tofino-product-family-brochure.pdf.

[16] Tofino programmable Ethernet switch ASIC. https://www.
intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html.

[17] Trafgen. http://netsniff-ng.org.

[18] TRex. https://trex-tgn.cisco.com.

[19] Gianni Antichi, Charalampos Rotsos, and Andrew W. Moore.
Enabling performance evaluation beyond 10 gbps. SIGCOMM
Comput. Commun. Rev., 45(4):369–370, aug 2015.

[20] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and
Carmelo Cascone. Openstate: Programming platform-
independent stateful openflow applications inside the switch.
SIGCOMM Comput. Commun. Rev., 44(2):44–51, apr 2014.

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, jul 2014.

[22] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese,
Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. ACM SIGCOMM
Computer Communication Review, 43(4):99–110, 2013.

[23] Alessio Botta, Alberto Dainotti, and Antonio Pescapè. A tool
for the generation of realistic network workload for emerging
networking scenarios. Computer Networks, 56(15):3531–3547,
2012.

[24] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt
Mathis, Barath Raghavan, Nandita Dukkipati, Hsiao-keng Jerry
Chu, Andreas Terzis, and Tom Herbert. packetdrill: Script-
able network stack testing, from sockets to packets. In 2013
USENIX Annual Technical Conference (ATC), 2013.

[25] Kwang Ting Cheng and A. S. Krishnakumar. Automatic func-
tional test generation using the extended finite state machine
model. In Proceedings of the 30th International Design Au-
tomation Conference, 1993.

[26] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman,
Shay Vargaftik, Alon Berger, Gal Mendelson, Mohammad Al-
izadeh, Shang-Tse Chuang, Isaac Keslassy, Ariel Orda, and
Tom Edsall. Drmt: Disaggregated programmable switching.
In ACM SIGCOMM (SIGCOMM), 2017.

[27] G. Adam Covington, Glenn Gibb, John W. Lockwood, and
Nick Mckeown. A packet generator on the netfpga platform.
In 17th IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM), 2009.

[28] Quentin De Coninck and Olivier Bonaventure. Multipath quic:
Design and evaluation. In Proceedings of the 13th interna-
tional conference on emerging networking experiments and
technologies (CoNEXT), 2017.

[29] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In International conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2008.

[30] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca
Vassio, and Danilo Giordano. A network analysis on cloud
gaming: Stadia, geforce now and psnow. Network, 1(3):247–
260, 2021.

[31] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Flo-
rian Wohlfart, and Georg Carle. Moongen: A scriptable high-
speed packet generator. In Proceedings of the Internet Mea-
surement Conference (IMC), 2015.

[32] Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, An-
drew W. Moore, and Georg Carle. Mind the gap - a comparison
of software packet generators. In ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(ANCS), 2017.

[33] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghu-
nathan, Aatish Kishan Varma, Pravein Govindan Kannan,
Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta.
Switch code generation using program synthesis. In ACM
SIGCOMM (SIGCOMM), 2020.

[34] Nadeen Gebara, Alberto Lerner, Mingran Yang, Minlan Yu,
Paolo Costa, and Manya Ghobadi. Challenging the stateless
quo of programmable switches. In Proceedings of the 19th
ACM Workshop on Hot Topics in Networks (HotNets), 2020.

[35] Philippe Graff, Xavier Marchal, Thibault Cholez, Stéphane
Tuffin, Bertrand Mathieu, and Olivier Festor. An analysis
of cloud gaming platforms behavior under different network
constraints. In 17th International Conference on Network and
Service Management (CNSM). IEEE, 2021.

1746 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#buy-from-xilinx
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#buy-from-xilinx
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#buy-from-xilinx
https://www.dpdk.org
https://www.3gpp.org/DynaReport/29274.htm
https://www.3gpp.org/DynaReport/29274.htm
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/sku/218642/intel-tofino-3-2-tbps-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218642/intel-tofino-3-2-tbps-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218642/intel-tofino-3-2-tbps-4-pipelines/specifications.html
https://iperf.fr
https://www.keysight.com/us/en/products/network-test/network-test-hardware.html
https://www.keysight.com/us/en/products/network-test/network-test-hardware.html
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://github.com/pktgen/Pktgen-DPDK
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://scapy.net/
https://sonic-net.github.io/SONiC
https://www.spirent.com/products/testcenter-ethernet-ip-cloud-test
https://www.spirent.com/products/testcenter-ethernet-ip-cloud-test
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
http://netsniff-ng.org
https://trex-tgn.cisco.com

[36] J. Heinanen and R. Guerin. Rfc2698: A two rate three color
marker. Technical report, RFC Editor, USA, 1999. https:
//www.rfc-editor.org/rfc/rfc2698.html.

[37] Stephen Ibanez, Gianni Antichi, Gordon Brebner, and Nick
McKeown. Event-driven packet processing. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks (HotNets),
2019.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun
Lee, Robert Soulé, Changhoon Kim, and Ion Stoica. NetChain:
Scale-Free Sub-RTT coordination. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2018.

[39] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun
Lee, Nate Foster, Changhoon Kim, and Ion Stoica. Netcache:
Balancing key-value stores with fast in-network caching. In
Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017.

[40] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown.
Compiling packet programs to reconfigurable switches. In
12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[41] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim,
Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan. Tea:
Enabling state-intensive network functions on programmable
switches. In ACM SIGCOMM (SIGCOMM), 2020.

[42] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vi-
cente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov,
Ian Swett, Janardhan Iyengar, et al. The quic transport protocol:
Design and internet-scale deployment. In ACM SIGCOMM
(SIGCOMM), 2017.

[43] Guanyu Li, Menghao Zhang, Cheng Guo, Han Bao, Mingwei
Xu, Hongxin Hu, and Fenghua Li. IMap: Fast and scalable
in-network scanning with programmable switches. In 19th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2022.

[44] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu,
and Ramesh Govindan. Flow-level state transition as a new
switch primitive for sdn. In Proceedings of the Third Work-
shop on Hot Topics in Software Defined Networking (HotSDN),
2014.

[45] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu,
Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, et al.
Sailfish: Accelerating cloud-scale multi-tenant multi-service
gateways with programmable switches. In ACM SIGCOMM
(SIGCOMM), 2021.

[46] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo
Cascone, Marco Spaziani, Valerio Bruschi, Davide Sanvito,
Giuseppe Siracusano, Antonio Capone, Michio Honda, Felipe
Huici, and Giuseppe Siracusano. FlowBlaze: Stateful packet
processing in hardware. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2019.

[47] Luigi Rizzo. netmap: A novel framework for fast packet I/O.
In USENIX Annual Technical Conference (ATC), 2012.

[48] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood,
and Andrew W. Moore. Oflops: An open framework for open-
flow switch evaluation. In Passive and Active Measurement
(PAM), 2012.

[49] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon
Kim, Mohammad Alizadeh, Hari Balakrishnan, George Vargh-
ese, Nick McKeown, and Steve Licking. Packet transactions:
High-level programming for line-rate switches. In ACM SIG-
COMM (SIGCOMM), 2016.

[50] Junji Takemasa, Ryoma Yamada, Yuki Koizumi, and Toru
Hasegawa. Ccngen: A high-speed generator of bidirectional
ccn traffic using a programmable switch. In Proceedings of
the 8th ACM Conference on Information-Centric Networking
(ICN), 2021.

[51] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu.
Cheetah: Accelerating database queries with switch pruning.
In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2020.

[52] Michael D. Wong, Aatish Kishan Varma, and Anirudh Sivara-
man. Testing Compilers for Programmable Switches through
Switch Hardware Simulation. 2020.

[53] Zhaowei Xi, Yu Zhou, Dai Zhang, Jinqiu Wang, Sun Chen,
Yangyang Wang, Xinrui Li, HaoMing Wang, and Jianping Wu.
Hypergen: High-performance flexible packet generator using
programmable switching asic. In ACM SIGCOMM Posters
and Demos, 2019.

[54] Yiling Xu, Qiu Shen, Xin Li, and Zhan Ma. A cost-efficient
cloud gaming system at scale. IEEE Network, 32(1):42–47,
2018.

[55] Dai Zhang, Yu Zhou, Zhaowei Xi, Yangyang Wang, Mingwei
Xu, and Jianping Wu. Hypertester: High-performance net-
work testing driven by programmable switches. IEEE/ACM
Transactions on Networking, 29(5):2005–2018, 2021.

[56] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy.
Gallium: Automated software middlebox offloading to pro-
grammable switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols
for Computer Communication, 2020.

[57] Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling Xu,
Haojun Huang, Hao Yin, and Dapeng Oliver Wu. Improv-
ing cloud gaming experience through mobile edge computing.
IEEE Wireless Communications, 26(4):178–183, 2019.

[58] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu
Li, Yuanbo Zhang, Jiuhai Zhang, Wei Shi, Wentao Chen, Ding
Li, et al. Xlink: QoE-driven multi-path QUIC transport in
large-scale video services. In ACM SIGCOMM (SIGCOMM),
2021.

[59] Yu Zhou, Zhaowei Xi, Dai Zhang, Yangyang Wang, Jinqiu
Wang, Mingwei Xu, and Jianping Wu. HyperTester: high-
performance network testing driven by programmable switches.
In Proceedings of the 15th International Conference on Emerg-
ing Networking Experiments And Technologies (CoNEXT),
2019.

[60] Noa Zilberman, Yury Audzevich, Georgina Kalogeridou,
Neelakandan Manihatty-Bojan, Jingyun Zhang, and Andrew
Moore. NetFPGA: Rapid prototyping of networking devices
in open source. In ACM SIGCOMM (SIGCOMM), 2015.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1747

https://www.rfc-editor.org/rfc/rfc2698.html
https://www.rfc-editor.org/rfc/rfc2698.html

APPENDIX
Appendices are supporting material that has not been peer-
reviewed.

A Non-Atomic State Updating
The state updating we detailed in §4.2 is non-atomic, which
brings two drawbacks. First, this inevitably consumes an ex-
tra loopback port and increases the packet processing delay.
Second, because the updating of the state registers is done in
two passes, if the new state ID is too late to be written to the
state register, the next stateful packet may read the old one. In
this situation, the state register can be mistakenly written with
the wrong value. Because the programmable switch ASIC
does not provide the ability to schedule packets, this error
can only be avoided by locking the state register and delaying
the processing of the following stateful packets. This will
bring more problems like keeping following stateful packets
looping in the internal pipeline buffer and then handling them
in order, which makes it impractical. Therefore, a more ac-
ceptable solution is to take the continuously incoming packets
into account when designing the EFSM.

B Full-Speed Traffic Generation
How to elimate bandwidth consumption of bridged meta-
data? Norma generates traffic by multicasting the template
packets that loop inside the internal pipeline. However, there
is no extra bandwidth reserved for the bridged metadata when
the loopback port conveys the packet from the egress back to
the ingress, so all metadata must be packed into the packet,
which increases the length of the packet and forms a band-
width bottleneck. For example, consider the scenario when
we want to send outgoing traffic composed of 64-byte small
packets at the rate of 100 Gbps from one front panel port.
Assume the egress of the loopback port adds 12-byte meta-
data to the template packet, so the packet loops at the rate
of 100 Gbps

(64+20+12)×8 = 130 Mpps. Although the ingress will parse
and remove the metadata header, the packet rate could not in-
crease anymore. As a result, the throughput of outgoing traffic
is only 130 Mpps×(64+20)×8 = 87 Gbps. This is a severe
problem for the network tester, which makes it impossible to
test the DUT under 100% workload.

The key idea of Norma is to compress the packet header.
We noticed that the bandwidth bottleneck only exists in the
internal pipeline, instead of the external pipeline, because only
the internal pipeline has egress-to-ingress forwarding. This
enables Norma to borrow some header bits to temporally store
the metadata in the internal pipeline, and pay them back at
the egress of the external pipeline. The key point is to find the
“traffic/port-invariant” fields, whose value is determined once
the flow ID and outgoing port are given. Practically, Norma
compresses the Ethernet header and borrows 12 bytes in total.

• The 2-byte Ethernet Type field can be compressed to one
byte. This field indicates the type of the next header in the

packet. For example, 0x0800 represents the IPv4 header. In
cloud scenarios, there are no more than 10 possible values
for this field, which can be encoded in one byte.
• The Src MAC and Dst MAC fields can be compressed to-

gether to one byte, which occupy 12 bytes in the original
Ethernet header. MAC addresses are usually fixed given
the traffic ID and the outgoing port, so storing the 1-byte
traffic ID is enough. When the traffic arrives at the egress
of the external pipeline, these fields can be recovered.

How many template packets are needed in one loopback
port? In the RMT-based programmable switch ASIC, one
template packet is not enough to make full use of the hardware
pipeline of a loopback port. Multiple template packets are
required to guarantee the line-rate looping. But unfortunately,
the exact number of template packets we need depends on
many factors, including the packet size, the packet header
depth, and how the compiler arranges P4 tables, which makes
it hard to predict. Based on our experience, the number of
template packets can be represented as a function like y =
Ax−B +C, where A, B, and C are unknown constants, and x
is the packet size. When the packet type and the P4 program
are fixed, the function can be determined via curve fitting. In
general, 10 and 120 packets are enough when packet sizes are
1500 and 64 bytes, respectively.

C Implementation Details of Packet Editors
The major editor can apply step-based or random-based field
editing. There are five modes Norma supports:

1) The direct step mode simply adds a constant to the initial
value. If the value exceeds the bound provided by the user,
it will be subtracted by the bound.

2) The indirect step mode is similar to the direct step mode.
Differently, the value is not directly outputted but used as
an index to access a register array, which saves the real
value to the output provided by the user.

3) The cascaded step mode can be regarded as a combina-
tion of two editors working in the direct step mode. The
first one works as normal, but the second one is triggered
only when the bound excess happens in the first one.

4) The direct random mode simply fills some bits of a field
with random bits. For example, filling the rightmost 8 bits
of the source IP field means randomly choosing an IP
address under a /24 prefix.

5) The ranged random mode also relies on random bits.
Differently, Norma is required to choose a number from a
given range. For example, choose a number for the source
port field uniformly from the range 2000-3000.

Among all these modes, the ranged random is the most
complex one. It is the random bit instead of the random num-
ber that is provided by the programmable switch ASIC, which

1748 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

means the length of the range must be a power of 2. For ex-
ample, with 8 random bits, we can only get a uniform random
number from 0 to 255, instead of any other range. A straight-
forward way is to keep trying until a number in the required
range is acquired. However, it is not suitable for the ASIC,
because there is no cheap way to emulate the while-loop. So
we need a concise method that does not rely on loops. Norma
solves this problem by using the equation n := (n′+ r) mod l,
where n′ is the random number generated in the last execution,
stored in the corresponding field of the template packet. Here,
r is a k-bit random number generated by the ASIC satisfying
2k ≤ l, where l is the length of the range. Note that the mod
operator is not supported by the ASIC, but the restriction to
k makes it representable with no more than one subtraction
and thus can be implemented in the ASIC. We evaluated the
quality of generated random numbers as follows.

We applied the packet editor to UDP packets, whose source
ports were randomly chosen from the range 0-999, so the
length of the range was 1000, and k (i.e., the number of ran-
dom bits) should be set to a number no more than 9 to satisfy
the constraint 2k ≤ 1000. From Figure 13a and Figure 13b, we
can observe that the quality of the generated random number
improved as k becomes larger, benefiting from more random
bits provided. Figure 13c shows the frequency of each number
generated from 100,000 packets. Each number occurred at a
frequency of around 0.1% as expected, which indicated the
uniformity of the generated numbers.

D Analysis of Blind Measurement
We use the sets S and R to represent the packets sent by the
egress pipelines, and received from the ingress pipelines, so
we have R⊆ S, and drops= |S|−|R| is the number of packets
dropped by the DUT. The real average delay can be repre-
sented as delay= 1

|R| ∑i∈R(ri−si), where the dropped packets
are excluded due to incomplete information. However, the
blind average delay becomes delay′ = 1

|R| ∑i∈R ri− 1
|S| ∑i∈S si.

Now, we define the absolute measurement error e as the dif-
ference between delay and delay′, and we have

e =|delay′−delay|

=

∣∣∣∣∣ 1
|R| ∑i∈R

si−
1
|S| ∑i∈S

si

∣∣∣∣∣
=

∣∣∣∣∣ 1
|S|

(
∑
i∈R

si + ∑
i∈S\R

(
1
|R| ∑

j∈R
s j

))
− 1
|S|

(
∑
i∈R

si + ∑
i∈S\R

si

)∣∣∣∣∣
=

∣∣∣∣∣ 1
|S| ∑

i∈S\R

(
1
|R| ∑

j∈R
s j− si

)∣∣∣∣∣≤ 1
|S| ∑

i∈S\R

∣∣∣∣∣ 1
|R| ∑

j∈R
s j− si

∣∣∣∣∣
≤|S|− |R|

|S|

(
max
i∈S

si−min
i∈S

si

)
=

drops
ppstx

,

which means, the more the packets are dropped, or the slower
the packets are sent, the larger the error could be.

E Loopback Port Allocation
As shown in Figure 1, Norma uses two internal pipelines and
each of which contains 16 loopback ports. Each loopback port

(a) k = 6 (b) k = 9
0 200 400 600 800 1000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
eq

ue
nc

y
(%

)

(c) Frequency

Figure 13: Pseudo-random ports ranging in 0-999.

has a maximum BPS rate (e.g., 100 Gbps) while each pipeline
has a maximum PPS rate shared by all ports belonging to it.

Norma models the loopback port allocation as a satisfiabil-
ity problem, which can be solved efficiently by SMT solvers
such as Z3 [29]. Consider there are n flows using loopback
ports. We use zero-one variables xi, j,k to indicate whether flow
i should be placed to port k in pipeline j. The BPS rate and
PPS rate of flow i are represented as bi and pi, respectively.
The maximum BPS rate of a port and the maximum PPS rate
of a pipeline are represented as B and P, respectively. Then
loopback port allocation can be modeled as the following
integer linear satisfiability problem:

∑
i

∑
k

xi, j,k pi ≤ P for each j, (1)

∑
i

xi, j,kbi ≤ B for each pair of (j,k), (2)

∑
k

xi, j,k = ∑
k

xi′, j,k if i shares data with i′, (3)

∑
j
∑
k

xi, j,k = 1 for each i. (4)

Equations (1) and (2) describe the constraints of the PPS rate
and BPS rate, respectively. Equation (3) enforces flow i and
flow i′ in the same pipeline if they share data via registers,
such as the enqueuing flow and dequeuing flow in §4.3. Equa-
tion (4) guarantees that each flow will be placed to a port and
a port is allowed to be shared by more than one flow.

For all of the cases we met, the satisfiability problems were
solved by Z3 in less than 1 second. Then Norma can allocate
loopback ports according to the solved variables xi, j,k.

F Performance of Software Testers
Zhang et al. [55] evaluated software testers such as Moon-
Gen [31] and TRex [18]. Results are summarized as follows.
First, software testers cannot generate traffic at more than
300 Gbps due to PCIe bandwidth limitations. For small pack-
ets, even with 12 CPU cores, software testers can only gen-
erate traffic at about 40 Gbps. Second, the rate control of
MoonGen relies on NIC meters, which means not all target
rates can be precisely configured. TRex uses software times-
tamps for rate control, which leads to unstable inter-packet
gaps. These results show that software testers cannot generate
precisely-controlled high-speed traffic.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1749

	Introduction
	Background & Motivation
	Requirements for Production
	Related Work

	Norma Overview
	The Pipeline-Folded Switch ASIC
	Norma's Architecture

	Emulating Stateful Protocol
	The Stateful Protocol Abstraction
	Executing State Machine
	Generating Replying Packets
	Post-Processing

	Emulating Realistic Traffic
	Two-Stage Packet Editor
	Precise Rate & Burst Control

	More Practical Considerations
	High-Precision Real-Time Measurement
	Blind Measurement of Forwarding Delay

	Implementation
	Case Study
	Evaluation
	Traffic Throughput
	Traffic Control
	Measurement

	Limitation & Discussion
	Conclusion
	Non-Atomic State Updating
	Full-Speed Traffic Generation
	Implementation Details of Packet Editors
	Analysis of Blind Measurement
	Loopback Port Allocation
	Performance of Software Testers

