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Abstract
Monitoring where traffic enters and leaves a network is a

routine task for network operators. In order to scale with Tbps
of traffic, large Internet Service Providers (ISPs) mainly use
traffic sampling for such global monitoring. Sampling either
provides a sparse view or generates unreasonable overhead.
While sampling can be tailored and optimized to specific
contexts, this coverage–overhead trade-off is unavoidable.

Rather than optimizing sampling, we propose to “magnify”
the sampling coverage by complementing it with mirroring.
Magnifier enhances the global network view using a two-step
approach: based on sampling data, it first infers traffic ingress
and egress points using a heuristic, then it uses mirroring
to validate these inferences efficiently. The key idea behind
Magnifier is to use negative mirroring rules; i.e., monitor where
traffic should not go. We implement Magnifier on commercial
routers and demonstrate that it indeed enhances the global
network view with negligible traffic overhead. Finally, we
observe that monitoring based on our heuristics also allows to
detect other events, such as certain failures and DDoS attacks.

1 Introduction

Monitoring transit traffic in Internet Service Provider (ISP)
networks is difficult: most operators do not know precisely
where traffic enters or leaves their infrastructure. This inabil-
ity to correlate traffic network-wide makes it hard—if not
downright impossible—to detect network-wide problems. As
a consequence, operators occasionally learn about routing
issues in their own network only via customers calling or
opening up tickets.

Operators could use control-plane data to identify where
traffic enters and leaves an ISP network; however, that is
insufficient. Traffic towards the same destination is often load-
balanced between multiple egresses; traffic from the same
source prefix often enters via multiple ingresses; importantly,
in case of failures or attacks, traffic may not follow the control

∗The CRediT statement for this work is available in Appendix A.

plane. Data-plane measurements are thus necessary for accu-
rate flow-level information. Unfortunately, such measurements
are hard to scale with the Tbps of traffic crossing ISP networks
nowadays.1 Two common techniques to collect data-plane
measurements are packet sampling and traffic mirroring. Both
have advantages and disadvantages, making them suboptimal
for detecting traffic ingresses and egresses.

Sampling-based approaches such as NetFlow [12] or
sFlow [30] provide good coverage at the expense of precision
and correctness. Often only a few flows are sampled, and
even fewer are sampled at both the ingress and egress. We
confirmed this by analyzing a 5-minute slice of NetFlow data
(1/1024 sampling rate) extracted from all border routers of a
Tier-1 ISP in Europe. The slice contains around 40 million
flows, where a flow corresponds to packets sharing the same
source and destination subnet as well as the same source and
destination port. After discarding flows from/to the ISP-owned
prefixes, we found that over all sampled transit flows, only
22% are sampled at both their ingress and egress, while 41%
(resp. 37%) of flows are sampled only at the network ingress
(resp. egress). Hence, a traffic matrix such as shown in Fig. 1a
locates only 22% of sampled flows; we waste the information
from all other sampled flows.

Mirroring-based approaches [33,39] provide high precision
and correctness at the expense of scalability. Suppose we
would mirror all traffic at network border routers. In that case,
we could easily enhance packets sharing the same source and
destination subnet with their ingresses and egresses, but that
would double the network’s traffic. Besides packet mirroring,
techniques based on sketches [22] or in-band telemetry [25,26]
also excel at gathering precise information but can only do so
for a specific share of the traffic.

In this work, we ask ourselves whether we can combine the
benefits of sampling and mirroring to mitigate their respective
drawbacks. We answer this question positively and present

1For example, Deutsche Telekom’s IP network has a transit capacity
exceeding 30 Tbps and reports up to 10 Tbps of IP traffic on average (3500
PB/month). Source: https://globalcarrier.telekom.com/business-
areas/internet-content/ip-transit
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Magnifier, a system that enhances the global network view
obtained via sampling using a two-step approach. First, we
infer the ingress and egress of flows using a heuristic: packets
that are “close” in the IP space tend to be routed similarly.
This intuition has already been used successfully in other con-
texts, e.g., to scale heavy-hitter detection using counters [25].
Assuming this holds, we search for the largest IP subnets for
which packets appear to enter the network via the same ingress
(resp. exit via the same egress) according to the sampling data
available. We call these subnets sentinels. Fig. 1b shows the
sentinel heuristic applied to our Tier-1 NetFlow data, which
immediately magnifies the view: not only do we observe more
flows for certain ingress–egress pairs (red to green), but we also
reveal pairs which were not visible at all in the NetFlow-based
matrix (Fig. 1a).

Naturally, this heuristic is not perfect; as sampling is sparse,
we may lack important information to correctly identify ingress
or egress points, or traffic may simply be rerouted over time.
Thus, in a second step, we use mirroring to validate the
inferred ingresses and egresses. To avoid mirroring a lot of
traffic, the key idea is to install mirroring rules where we do
not expect traffic; i.e., if we infer that subnet s always enters
via router R, we install a mirroring rule for s in all ingress
routers, except R. In practice, this leads to little mirrored traffic
because sentinels are most often correct. Thanks to mirroring,
Magnifier’s ingress/egress inferences are guaranteed correct,
which is a key feature of our design and an essential difference
from other monitoring tools. Mirrored traffic reveals inference
errors or traffic shifts in sub-seconds, which allows Magnifier
to maintain a correct network view.

The main limitation of Magnifier is the number of mirroring
rules to install, which, naively, is about one mirroring rule per
sentinel on all border routers. For networks forwarding traffic
which covers most of the IP space, this vastly exceeds the
mirroring capabilities of today’s routers. We thus investigate
different strategies to cap the number of rules installed while
harnessing most of Magnifier’s benefits.
Contributions

• We design Magnifier , a network monitoring system that
combines sampling with mirroring to enhance the global
view on traffic ingresses/egresses (e.g., Fig. 1) while
providing correctness guarantees.

• We implement Magnifier [3], run it on Cisco Nexus 9300
switches, and demonstrate that Magnifier increases the
network view coverage with only limited traffic overhead
and inference errors using real traffic traces (§ 6).

• We discuss (§ 4.2) and evaluate (§ 6.2.2) different strate-
gies to scale Magnifier to large ISP networks by capping
the number of mirroring rules required to e.g., the top 1k
sentinels while maintaining most of Magnifier’s benefits.

• We observe that, even without mirroring, changes in the
number of found sentinels create an interesting signal for
other monitoring applications, such as failure detection
or DDoS protection (§ 6.4).

(a) NetFlow-based matrix. (b) Magnifier’s matrix.

Figure 1: By inferring ingress or egress points of sampled
flows, Magnifier significantly improves the network-wide
coverage (Fig. 1b) compared to using sampling only (Fig. 1a).
These inferences are guaranteed correct by (the absence of)
mirrored packets. Dots represent the number of flows observed
from an ingress router (x-axis) to an egress router (y-axis). Grey
indicates no flow, red one flow, orange up to 4 flows, and green 5 or
more flows. Data source: NetFlow samples from a large Tier-1 ISP.

2 Overview

This section introduces the problem statement (§ 2.1) and
Magnifier’s main building blocks (§ 2.2). Finally, we illustrate
Magnifier’s behavior on a simple example (§ 2.3).

2.1 Problem statement
Can we combine the benefits of sampling and mirroring to
design an easy-to-deploy system that produces accurate, com-
plete and timely ingress/egress observations in ISP networks,
where an “observation” consists of an IP subnet for which we
know the correct ingress and egress points?

Ease of deployment The system should be usable in today’s
networks with no need for new or specialized hardware.

Accuracy The system should correctly infer subnets’ ingress
and egress points.

Completeness The system should generate observations for
the largest possible portion of the IP space.

Timeliness The system should update observations in real-
time based on newly-collected information; that is, infor-
mation is processed quicker than it is collected.

2.2 Building blocks
Magnifier extends the coverage of ingress/egress observations
using a two-step approach (Fig. 2): based on sampled data, it
first infers the missing traffic ingress and egress points, then it
validates these inferences using mirroring.

Inference Magnifier cross-correlates the sampled flows to
identify IP subnets that are consistently routed via the same
ingress or egress routers. For example, suppose we observe all
sampled flows for a source prefix p enter via ingress router A.
Magnifier learns that p is an implicit tag for “ingress A”, which
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Figure 2: Magnifier uses sampled data to infer sentinels that
predict IP subnets’ ingress or egress points. Magnifier then
validates sentinels at runtime using packet mirroring. This way,
we can greatly extend the coverage of traffic ingress/egress
observations usable by many applications.

enables to map any sampled flow sourced by p as entering via
A—even if observed on a different router.

In addition, Magnifier leverages the hierarchical nature of
the IP space: packets that are “close” in the IP space tend to
be routed similarly. Thus, Magnifier searches for the largest
IP subnets that share the same tags and postulates that all
the IPs in these subnets are routed via the same ingresses or
egresses. We call these largest subnets sentinels. Sentinels
significantly extend the coverage of ingress/egress observation
(compare Fig. 1). However, these sentinels may be incorrect;
sampling may have missed important information, or traffic
may simply be re-routed over time. Therefore, Magnifier uses
mirroring to validate them at runtime.

Validation The key idea behind Magnifier is to validate the
sentinel inferences using negative mirroring; i.e., to deploy
mirroring rules where we expect traffic not to go. Negative
mirroring is efficient because sentinels are often correct in
practice; therefore, we mirror only a little traffic. Fundamen-
tally, this guarantees that Magnifier’s outputs are correct; all
prefixes covered by sentinels either have correctly identified
ingress/egress or carry no traffic. Otherwise, traffic is mirrored,
which provides additional observations and allows Magnifier
to maintain and improve its accuracy over time.

Optimization The main limitation of Magnifier lies in the
number of mirroring rules that can be activated simultane-
ously on one router. By aggregating subnets together, sentinels
effectively limit the number of mirroring rules that must be
deployed, but this remains a constraint for large ISP networks.
Magnifier supports multiple rule deployment strategies to
respect a given rule budget per router while optimizing for
different properties (e.g., IP space coverage).

2.3 Illustrative example
While mirroring rules generate additional traffic, they are
essential to Magnifier, illustrated with an example (Fig. 3):
p0 to p7 are eight /24 prefixes belonging to the same /21; most
of the traffic comes from p0, with sporadic traffic from other
prefixes. Let’s assume that we only sample traffic from p0,

p0 p4 p7

Sampling only ✓ E E E E E E E

Sentinels ✓ ? ? ? p ? ? ?

Mirroring ✓ ( ✓ )( ✓ )( ✓ ) ✓ ( ✓ )( ✓ )( ✓ )

Correct✓ Probably correct( ✓ ) Uncertain?

Wrongp No informationE

Figure 3: Sampling provides information about the sampled
prefixes only. The sentinel inference extends the coverage, but
it is uncertain and can make wrong assumptions without any
means to detect them. With mirroring, these inferences can
be validated, leading to either correct or probable inferences.

which enters at ingress A. One can hypothesize that all p0
traffic enters via A, but nothing can be said about p1 to p7.

Since no sampled packet contradicts this hypothesis, we
infer that all eight /24 enter via A; the whole /21 is a sentinel
for ingress A. This inference is, however, uncertain for seven
/24 prefixes without any data. Some traffic from p4 enters via
another ingress, but as long as we do not sample p4 traffic, we
will not detect the wrong inference.

We now use mirroring to validate the sentinel: all routers
except A mirror packets for the /21. At first, no packet is
mirrored: this indicates either that the sentinel is indeed correct
or that there is no traffic at all on prefixes that would enter via
another ingress. Thus, for the seven prefixes without sampling
data, Magnifier concludes that the ingress is “probably A”.

Finally, ingress router B mirrors packets coming from p4.
Magnifier now learns that the /21 sentinel was incorrect. We
recompute sentinels, which leads to two /22 sentinels, one for
A and one for B. Once the corresponding mirroring rules are
installed, Magnifier confirms that p0 and p4 enter via A and
B respectively, and that p1 to p3 (p5 to p7) probably enter via
A (resp. B) as we would otherwise observe mirrored packets.

Conclusion The mirroring rules are essential to validate the
sampling-based inferences. Once active, Magnifier guarantees
that the inferences are either correct or that prefixes for which
they are wrong do not carry any traffic at all.

3 Ingress & egress identification

In this section, we define the notion of “sentinels” and present
an efficient algorithm to find them (§ 3.1). We then discuss
sentinel subnet size tradeoffs (§ 3.2) and finally show how
Magnifier uses these sentinels to match ingress and egress
observations in sparsely sampled data (§ 3.3).

3.1 Sentinel search and definition

Definition A sentinel is an IP subnet which always enters
or leaves the network via one network device. Therefore, a
sentinel identifies this device whenever a flow from/towards
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Algorithm 1 Sentinel search algorithm

start← starting subnet size
end← ending subnet size
table[IP,device]← search IPs and network devices
sentinels←{}
for start ⩽ S ⩽ end do

table[IPnew]← ((IP >> (32−S))<< (32−S))
aggregated← table.groupby(IPnew)[device]
result[n]← nunique(aggregated[device])
sentinels += (result[n] == 1)
table−= sentinels

end for
return sentinels

the IP subnet is observed somewhere in the network. As an
example, if flows towards 1.2.3.0/24 only leave the network
via egress router R, we say that 1.2.3.0/24 is an egress sentinel
for R. Note that a single sentinel can cover numerous flows.

Types We can distinguish four types of sentinels depending
on which IP address we look at (source or destination) and
which traffic direction is identified by them (ingress or egress).
For example, we can speak about ingress source sentinels.
However, unlike specified differently, the remaining sections
will only focus on two types of sentinels (i) ingress source
sentinels (abbreviated as ingress sentinels); and (ii) egress des-
tination sentinels (abbreviated as egress sentinels). Currently,
Magnifier only considers IPv4 sentinels, but Magnifier can
be applied to the IPv6 address space as well.2

Search algorithm Magnifier’s sentinel search algorithm takes
flow samples as input. They contain, among others, the identi-
fier of their origin router and the packet source and destination
IP addresses. In addition, we define a start and end subnet size
over which the algorithm searches for unique subnets to reveal
sentinels. Algorithm 1 highlights the main sentinel search
steps. The for loop iterates from the start to the end subnet
size. In each iteration, we extract the corresponding subnets
from the IP addresses of the collected flow samples. All flows
belonging to the same subnet are aggregated. If one aggregate
only contains samples from the same device, Magnifier has
found a sentinel, removes the samples from further search
iterations, and eventually returns the sentinels.

3.2 Sentinel subnet sizes

Algorithm 1 returns a subnet as a sentinel as soon as it only
contains flow samples from one device. However, it is also
possible that a smaller subnet would cover all these samples.
Fig. 4 shows a simple example. The network forwards traffic
from three different /24 subnets. We collect samples from the

2Current IPv6 allocation strategies (e.g., https://www.ripe.net/
publications/docs/ripe-738#5) are favorable for Magnifier . The same
AS tends to be allocated large IP blocks that we can use as sentinels.

/24

/23

/22Sampled flows 
from router X

Not-sampled flow 
from router Y

Two /24 sentinels (valid)

One /23 sentinel (valid)

One /22 sentinel (invalid)

Figure 4: The sentinel amount and coverage depend on the
subnet size. The “largest” /22 sentinel is invalid, whereas one
/23 sentinel or two /24 sentinels are valid.

two green /24 subnets (ingress router X). Unfortunately, we do
not sample a packet from the orange /24 subnet (ingress router
Y ). Algorithm 1 would return the corresponding /22 subnet as
an ingress sentinel. After installing corresponding mirroring
rules (§ 4.1), Magnifier will detect that this sentinel is invalid
as it contains flows from two different ingress routers (X and
Y ). If we would search for smaller subnets, we could either
return one valid /23 sentinel or two valid /24 sentinels.

This simple example shows a fundamental tradeoff between
the subnet size of found sentinels, the number of sentinels, and
their validity. In general, sentinels based on smaller subnets
are more likely to be valid but require more mirroring rules to
be validated. Experimentally, we find that starting at /16 and
ending at /24 yields good performance; starting at bigger sizes
does not help as we rarely see such big prefixes in BGP, and
it is unlikely that they are unique to a single ingress/egress,
while /24 is the smallest globally routed prefix size [35]. As
a consequence, the search sizes also influence the number of
required validation mirroring rules (§ 4.1) and, therefore, the
required router resources.

3.3 Sentinel-based ingress & egress detection
Magnifier uses the found sentinels in two ways. First, for
each sentinel type, it tracks the number of sentinels found
per device in the network. § 6.4 shows that the number of
sentinels is rather stable and changes can reveal unexpected
network behavior. The second use case exploits the uniqueness
property of sentinels. Let’s assume we have found a (valid)
egress sentinel for router X . For each flow towards the sentinel’s
subnet—no matter if we observe a corresponding packet on
an ingress or another device—we instantaneously know that
it will leave the network over X . Similarly, we can identify
flow ingresses based on ingress sentinels. Magnifier uses this
information as input for its ingress/egress observations.

4 Mirroring-based validation

In this section, we explain how Magnifier uses traffic mirroring
to validate the ingress and egress sentinels produced by the
sentinel search algorithm (§ 4.1). To ensure that Magnifier
can adhere to an operator-given budget of mirroring rules, we
introduce two different rule deployment strategies and discuss
additional optimization possibilities (§ 4.2).
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4.1 Validating found sentinels with mirroring

Magnifier uses negative rules to validate the sentinels it finds.
Negative rules are placed on devices that are not expected to
see matching traffic. For instance, to validate that an ingress
sentinel belongs to ingress I, Magnifier places negative mir-
roring rules mirroring traffic for the sentinel’s source subnet at
all ingress routers except I. The negative mirroring rules will
never generate any packets if the sentinel is valid. For invalid
sentinels or sentinels which become invalid over time (e.g., a
forwarding change), the mirrored packets inform Magnifier
immediately, and we can update our inferred ingress or egress
observations. Magnifier then includes the mirrored data in the
next sentinel search to find better sentinels.

ACL-based mirroring Magnifier relies on existing features
such as ERSPAN [9] to mirror traffic from a router. Depending
on the router model and capabilities, there are different ways
to define the mirrored traffic. We can temporarily mark packets
(i.e., [39]) or directly assign a list of subnets to the mirroring
session. We use so-called Access Control Lists (ACLs) in
all these cases. An ACL is a list of subnets that matches on
the forwarded traffic and defines the mirrored traffic. Our
“mirroring rules” are entries in an ACL.

Deployment and activation of mirroring rules To deploy
its mirroring rules, Magnifier interacts with a Python script
that runs directly on the router CPU. Via its arguments, Mag-
nifier tells the script the mirroring rules to add to the ACL.
The script uses e.g., Cisco’s Python API [6] to perform the
changes. However, naively adding entries to an ACL that is
already connected with an active ERSPAN session can result
in unexpected mirroring behavior for at least two reasons:
(i) adding new entries takes some time and Magnifier cannot
predict at which point in time a new mirroring rule is active;
(ii) the Ternary Content Addressable Memory (TCAM) region
which handles the ACLs/mirroring rules is limited. Magni-
fier handles (i) by pre-deploying inactive mirroring rules and
(ii) with techniques explained in § 4.2.

To pre-deploy mirroring rules, Magnifier first adds entries to
an ACL that is not yet active, i.e., connected with an ERSPAN
session. The ACL entries do not yet take space in the TCAM.
Once the ACL contains all mirroring rules, another script
activates the entire ACL, simultaneously enabling all mirroring
rules. In practice, Magnifier always iterates between two ACLs.
One is currently actively mirroring traffic while the other
one is populated. Once the second ACL is ready, we switch
between them. Due to this deployment strategy, Magnifier is
not negatively influenced by frequently changing mirroring
rules/sentinels (see § D.4) as we always activate a new pre-
deployed ACL. Furthermore, this only affects the mirrored
traffic; Magnifier does not impact the production traffic.

Magnifier can also add a parameter to the scripts which
defines how long an ACL should be active. The script will then
automatically, i.e., without any external interaction, deactivate
the mirroring rules once the defined timeout expires.

4.2 Limiting the amount of mirroring rules
The amount of mirroring rules which a single router can support
is limited. Not only is the entire TCAM limited, other features
(e.g., traffic engineering) use the same memory space and
compete with Magnifier’s mirroring rules. For this reason,
Magnifier supports multiple deployment strategies to adhere
to an operator-given budget of mirroring rules. In the following
paragraphs, we describe two strategies, but network operators
can easily define their own sorting algorithm to control which
mirroring rules they deploy first.

Deployment based on sentinel size The first strategy max-
imizes the sentinel IP space covered by mirroring rules. As
each mirroring rule is connected to a sentinel with a specific
subnet size, Magnifier first orders all sentinels of an ingress
or egress based on their subnet size. Magnifier then iterates
through all network border routers in a round-robin fashion
and deploys mirroring rules for the sentinel with the biggest
subnet (i.e., the subnet which covers the most IP space). This
process ends if either the mirroring rule budget is reached or
every mirroring rule is deployed.

Deployment based on sentinel activity The second strategy
prioritizes the most active (amount of sampled packets) sub-
nets/sentinels. In other words, we make sure that the inferred
ingress or egress points for the most active subnets are validated
by mirroring. To this end, Magnifier iterates through all border
routers in a round-robin fashion and first deploys mirroring
rules for the sentinels that are based on the largest number of
sampled packets. Random packet sampling–by design–favors
large, active flows. Therefore Magnifier indirectly deploys
mirroring rules for the most active subnets. We evaluate both
deployment strategies in § 6.2.2 and § D.3.

Network-specific optimizations Magnifier further reduces
the amount of mirroring rules using network-specific knowl-
edge. For example, some ISP border routers only connect to
customers, and the operator knows exactly which IP addresses
belong to them. That limits the possible source addresses en-
tering the ISP over these ingresses (assuming no IP spoofing).
On these devices, Magnifier does not need to install mirroring
rules which belong to IP subnets outside of the customer’s
prefixes as we should never receive contradicting traffic.

5 Magnifier’s controller

Magnifier’s controller collects and combines the sampled and
mirrored packets, finds new sentinels, deploys and activates
the corresponding mirroring rules, and uses the newest data
to generate accurate and up-to-date ingress/egress observa-
tions. This section first explains how the different pieces work
together before introducing Magnifier’s API. § B contains
details about Magnifier’s controller placement.

Controller design Magnifier’s control flow works in iterations
that align to the system component with the longest runtime.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    1525



As various tests on real hardware show, this is usually the time
it takes to deploy mirroring rules on the routers. Fig. 5 shows
the entire process. Magnifier uses the collected sampled and
mirrored data in iteration N-2 (and optionally N-3 or older
iterations) to compute sentinels and theirmirroring rules. Based
on the operator given rule budget, Magnifier sorts the sentinels
according to the deployment strategies in § 4.2. While iteration
N-1 is running, Magnifier pre-deploys the newly computed
mirroring rules on the routers. As soon as Magnifier deploys
the last rule (or once we reach the defined iteration time), it
switches to iteration N and activates the pre-deployed mirroring
rules after deactivating the old ones. Finally, Magnifier uses the
collected sampled and mirrored data and the inferred ingress
and egress points from the newest sentinels to compute accurate
and up-to-date ingress/egress observations.

Magnifier’s API Magnifier’s API supports four distinct
primitives. First, enhance_subnet(S) returns the available
ingress and/or egress data related to subnet S. Second
get_interfaces() returns the relationship between sentinels
and their interfaces. Magnifier can infer the corresponding
interfaces based on sampling data and/or the observed MAC ad-
dresses in mirrored packets. Third, get_matrix() generates
the most up-to-date ingress/egress matrix. Each cell contains
the number of observed packets and bytes (reported by sam-
pled packets) for an ingress/egress observation. In addition,
a validity bit indicates inferences that are currently validated
with mirroring rules. Finally, get_counts() outputs the num-
ber of found sentinels per device grouped by sentinel type. In
§ 6.4 we use this API call to detect network problems based
on data from a real Tier-1 ISP.

6 Evaluation

This section evaluates Magnifier in detail. After introducing
the evaluation setup (§ 6.1), we first focus on Magnifier’s
performance in simulation and on real hardware devices in our
lab (§ 6.2). Afterward, we perform a detailed comparison with
the Everflow system (§ 6.3) before we highlight that Magnifier
also works with data from a real ISP (§ 6.4).

6.1 Evaluation setups, datasets, and metrics

Setups We evaluate Magnifier in a simulation setup without
any resource constraints and a lab setup on real hardware with
its corresponding limitations. Our lab setup contains two Cisco
Nexus 9300 switches (C93108TC-FX) [10], and a larger Nexus
7009 switch (N7K-C7009) [8]: an older3 but more resourceful
model that we use for benchmark experiments.

We illustrate the lab setup in Appendix § D.1. We estab-
lish four parallel connections between the two Nexus 9300
switches, each emulating a network ingress. The first switch
receives and samples the traffic using sFlow (sampling rate

3Released in 2011 and no longer sold.

Sampling 
data

Iteration N-2 N-1 N

Mirrored 
packets

Rule 
deployment

Sentinel 
computation

Figure 5: Magnifier’s control flow works in iterations based
on the mirroring rule deployment time. Rules for sentinels
based on N-2 are deployed in N-1 and active in iteration N.

1/40964). It then forwards to the second switch, which mirrors
the traffic according to the configured rules. Magnifier’s con-
troller runs on a server and collects sampling and mirroring
data. As these switches are limited to 512 mirroring rules, we
used a fixed budget of 500 rules per emulated ingress point.5

Unless otherwise specified, Magnifier prioritizes sentinels
according to the activity ordering (§ 4.2).

Our simulation setup is an idealized version of the lab
setup. It instantaneously starts mirroring for any prefixes, has
unlimited memory space for mirroring rules, and removes rules
after their first mirrored packet. The simulator is written in
Python and publicly available [3]. Unless specified differently,
we always consider Magnifier’s iterations to be 60s long. For
the N-th sentinel computations, we take sampling and mirroring
data from iterations N-1 and N-2 (see Fig. 5).

We focus on ingress sentinels in the evaluation, i.e., source
IP prefixes unique to one ingress. However, the results also
apply to egress sentinels. For example, BGP selects the best
route for each prefix that is assigned to a single egress. Magni-
fier identifies (part of) these prefixes as egress sentinels (§ 6.4).
As a result, one major problem is how to split traffic over dif-
ferent ingress points: Magnifier’s performance depends on the
assumption that prefixes close in the IP space get routed simi-
larly. We study this dependency using three IP space to ingress
mappings: random (least favorable for Magnifier), static,
and permuted (most favorable). The random approach splits
the destination IP space into n6 equal slices and assigns one
destination IP slice to each ingress point; as a result, source
IPs are randomly assigned to one ingress, and this assignment
changes frequently. The static approach assigns each source
/24 prefix statically to one random ingress point; however,
close IP space is still distributed over different ingresses. Fi-
nally, permuted splits the source IP space into n equal slices
and permanently assigns each slice to one of the n ingresses.
Then we permute a fixed percentage of /24 source prefixes
by moving them to different ingresses. This way, we preserve
most of the existing IP structure. A permuted 0% assignment
results in a perfect mapping for Magnifier .

4The highest configurable rate on this model; we get the most samples.
5The four emulated ingresses share the budget. We use TCAM carving [7]

to increase the space for our mirroring rules to 2048 (by taking it from other
features) to enable the original budget (512) per ingress.

6Lab: 1st: 0.0.0.0/2; 2nd: 64.0.0.0/2; 3rd: 128.0.0.0/2; 4th: 192.0.0.0/2
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Datasets We use two datasets: one actual packet trace based
on CAIDA data and NetFlow samples from a Tier-1 ISP.

The packet trace is based on a 2018 CAIDA trace [4] (1.5
billion packets; one hour long), adjusted to be used in both our
setups: (i) We modified the packet MAC addresses to match
the lab setup. (ii) We added random payload bytes (removed
from CAIDA traces) to match the specified packet sizes. (iii)
We moved all destination IPs from 224.0.0.0/4 to a different
/4 prefix as this prefix is reserved for IP multicast and led
to unexpected packet forwarding on the switches. Replaying
the trace at normal speed using tcpreplay [16] exhibited
anomalies (packet loss and delays). Therefore, we slowed
the replay by 10x, resulting in an average of 45k packets per
second. Our simulations also use normal and faster speeds to
emulate increasing traffic load.

The second dataset contains sampled (rate 1/1024) NetFlow
data from all border routers (more than 100) belonging to a
large Tier-1 ISP in Europe. The dataset spans over one hour
of peak time in the evening of a weekday in 2018. The IP
addresses are anonymized by replacing source and destination
IPs with the best matching prefix from the full BGP table or
the corresponding /24 prefix, whichever is more specific.

Metrics We use the following performance metrics and report
the mean over 60 iterations (30 for 2× replay speed).
Coverage Quantifies the amount of traffic for which the

ingress point is correctly identified. We consider both
per-prefix coverage—i.e., the number of /24 covered—
and per-packet coverage—i.e., the percentage of covered
packets from the input trace.

Mirrored traffic volume Quantifies the overhead in terms
of mirrored traffic, as a percentage of the total traffic.

Mirroring rule space Quantifies the number of mirroring
rules (ACL entries).

Deployment speed Quantifies how long it takes to either add
new mirroring rules or deactivate an installed rule.

6.2 Magnifier’s performance
This section details Magnifier’s performance. We first show
that Magnifier greatly enhances the prefix coverage compared
to sampling only (up to 80×) and that the ingress points are
validated with mirroring rules. This is achieved while mirroring
less than 0.3% of traffic. We then analyze methods to limit the
number of mirroring rules required. Finally, we confirm that
Magnifier runs and performs well on real hardware.

6.2.1 Coverage and mirrored traffic volume

We first use our simulation setup to evaluate Magnifier’s cov-
erage in different scenarios.

Setup We use our simulation setup and the CAIDA dataset.
We vary the trace replay speed (traffic load) and compare
the coverage achieved by Magnifier by using sampling only.
We compute sentinels, install mirroring rules at the start of

6.4 k

Sampling 3.18% 201 k

Active prefixes

Magnifier – random 4.28% 315 k

Magnifier – static 11.9% 373 k

Magnifier – permuted 20% 14.6% 519 k

Magnifier – permuted 5% 21.8%

Figure 6: Amount of covered /24 source prefixes by Magnifier
and sampled data assuming unlimited mirroring resources. 32
border routers, 1/1024 sampling rate, and real replay speed.

each iteration, and compute their coverage values at the end
unless mirrored traffic invalidated them. Only these count to
the shown coverage values (mean over all iterations).

Per-prefix results Fig. 6 shows the per-prefix coverage with
32 border routers, 1/1024 sampling rate, and real-time replay
speed. Sampling covers≈ 6.4k of the active /24 prefixes in the
trace, for which we could consider the corresponding ingress
point as identified, although without any confirmation that it
is valid for all packets belonging to the /24 prefix.

By contrast, we immediately see that Magnifier enhances
these inferences for all different prefix-to-ingress mappings
in at least two ways. First the number of covered /24 pre-
fixes increases to ≈200k (random), ≈315k (static), ≈370k
(permuted 20%) and ≈520k (permuted 5%) respectively.
Second, Magnifier covers prefixes that are currently active in
the CAIDA traces (dashed boxes). The active prefixes increase
from ≈4% (random) up to ≈20% (permuted 5%).

These observations highlight two principles of Magnifier:
(i) our sentinel heuristic greatly enhances the prefix coverage
around sampled data; and (ii) Magnifier remains a data-driven
system. It has difficulties covering active prefix space that is
not sampled using sentinels of reasonable sizes—hence the
small % of active prefix coverage (Fig. 6, stripes).

Even more important, for every sentinel validated by mirror-
ing rules, Magnifier immediately reports if an ingress inference
is no longer valid or enhances new flows (which get active
over time) with ingress information. These results are more
visible in the per-packet coverage analysis.

Per-packet results Fig. 7 shows the per-packet coverage (left)
and mirrored traffic volume (right) with 32 border routers
and a 1/1024 sampling rate for varying replay speeds and
traffic-to-ingress assignment strategies.

The left plot shows that Magnifier achieves an increasing per-
packet coverage from≈20% (random) up to≈80% (permuted
5%) which can be surprising given the lower active prefix
coverage (Fig. 6). This is explained by the nature of the CAIDA
trace, which contains a small number of heavy-hitters and a
lot of /24 source prefixes that only carry a few packets. 10%
of source /24 IP prefixes account for more than 90% of the
packets in 60s trace data (§ D.2). Hence, Magnifier often
samples and covers these prefixes with sentinels.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    1527



These results nicely show the different trade-offs of our
assignment strategies. For random, the ingress of packets is
constantly moving, which makes it difficult to find valid sen-
tinels, while at permuted 5%, the assignments are static and
Magnifier can often find large sentinels which cover a lot of
packets. The “real” coverage value is somewhere in between.

To compare, Fig. 7 also contains two sampling-based in-
ferences (without Magnifier’s enhancements). The violet line
near zero represents a lower bound. We only infer the ingress
for the sampled packets. As an upper bound, we consider
all the sampled packets in the permuted 5% assignment and
naively assume that a single sampled packet immediately re-
veals the ingress point for all other packets belonging to the
same source /24 prefix. Note that we can only plot these values
because we have the full ground truth data from the CAIDA
trace. An operator would not know if these inferences are
correct. For bigger traffic loads, the upper bound is better than
Magnifier’s per-packet coverage. This is due to invalidated
sentinels: Magnifier searches for large sentinels based on sam-
pled packets, likely to come from heavy-hitter flows. Suppose
a non-sampled /24 prefix covered by that sentinel is mapped
to a different ingress and carries even only one packet. In
that case, it triggers a mirroring rule and invalidates the entire
sentinel, and Magnifier loses all its coverage.

The right plot in Fig. 7 shows a low percentage of mir-
rored traffic for all assignment strategies (between 0.3% and
0.01%). As expected, a random assignment often leads to
invalid sentinels and thus more mirrored packets.

Finally, we observe that larger traffic loads yield better per-
formance. With more traffic, Magnifier collects more samples
per iteration, computes more accurate sentinels, and achieves
better coverage and less mirrored traffic. We show additional
results in § D.3: Performance decreases with the number of
routers in the random case—as the previously discussed map-
ping strategy gets worse—but remains nearly unaffected in
the static and permuted cases (Fig. 15). Moreover, more
sampled packets (higher sampling rate) result in better input
data and thus performance improvements (Fig. 16).
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Figure 7: Amount of covered packets and mirrored traffic
for different assignment strategies and inferences based on
sampled packets only. 32 border routers and 1/1024 sampling rate.

Conclusion Magnifier greatly increases the per-prefix cover-
age compared to sampling (up to 80×) while validating all
ingress points with mirroring rules. Magnifier achieves this
while mirroring less than 0.3% of traffic and translates into a
per-packet coverage of up to 80%.

6.2.2 Impact of limited mirroring budget

We now show that Magnifier also performs well when limiting
the number of mirroring rules installed per router.
Setup We use the same setup as before and compare the cov-
erage achieved by Magnifier with different bounds on the
number of validated sentinels for two sentinel selection strate-
gies (§ 4.2): activity (covering most sampled packets) &
size (largest subnet sizes). The number of validated sentinels
is an upper bound for the number of mirroring rules required
per router; in the worst case, all sentinels belong to one router,
resulting in one rule per sentinel on all the other routers.
Results Fig. 8 compares Magnifier’s per-packet coverage
achieved with different numbers of validated sentinels: 500,
1k, 5k and unlimited; using the same settings as in Fig. 7. We
show results for the permuted 5% (left) and static (right)
assignment strategy, additional plots can be found in § D.3.

More validated sentinels achieve a higher coverage and
generate more mirrored traffic. The top size sentinels have
the highest chance of being invalidated by un-sampled prefixes
and generate more traffic than their activity counterparts.

The activity selection achieves much better per-packet
coverage than size, which is expected since activity prior-
itizes sentinels covering the most active prefixes. As the trace
contains many heavy-hitters (previous discussion), even as
few as 500 sentinels are enough to yield good packet coverage.
Note that for 0.1× traffic load in the top left plot, the number of
sentinels is smaller than 5000, resulting in the same coverage
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Figure 8: Coverage and mirrored traffic amount for different
top sentinels ordered by activity or size.
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Technique Covered /24 prefixes

Sampling 6.4k

[activity] top 500 static 4.1k
[activity] top 500 permuted 5% 29.4k

[size] top 500 static 9k
[size] top 500 permuted 5% 47.3k

Table 1: Covered /24 source prefixes by Magnifier and sam-
pling only considering the top 500 sentinels (activity and
size ordering) in the static and permuted 5% assignments.

values for activity and size. We also see that the activity
coverage values remain more or less constant even if the traffic
load increases which is not the case for size.

The size selection favors sentinels centered around sparse
samples in a relatively empty prefix space; this results in a low
per-packet coverage (Fig. 8), but in a large per-prefix coverage
(Table 1). As we can see, activity really prioritizes sentinels
around a few selected prefixes resulting in fewer covered
prefixes than sampling (static assignment). However, a size
ordering can easily exceed the number of covered prefixes by
up to seven times, even if we only take the top 500.
Conclusion Magnifier’s performance is maintained when
limiting the deployed mirroring rules. The top 1k activity
sentinels are sufficient to achieve up to≈ 50% packet coverage
while mirroring less than 0.05% of traffic (static case).

6.2.3 Comparison with the lab setup

We now show that our hardware-based results match the sim-
ulation ones, validating Magnifier’s performance in practice.
Setup We use our lab setup (Nexus 9300 switches), which has
two main differences from the simulation: we only have 500
mirroring rules per router, and there are delays to install and
delete rules. We use the random assignment strategy and fill the
500 mirroring rules with the top 500 activity sentinels. For
a fair comparison with the simulation, we consider iteration
times of 60s. Magnifier needs ≈20s to install all mirroring
rules and then activate them. Afterward, we start to delete
the rules which mirror packets. We compare this with the
corresponding simulation results i.e., 4 border routers, 1/4096
sampling rate, and 0.1× replay speed.
Results Fig. 9 shows the amount of covered /24 prefixes for
sampled data only and the validated sentinels. We first notice
that the coverage for sampled packets in our simulation (297)
is slightly higher than on the switches (268). This can be
explained by the different setups. All four ingress routers run
on one Nexus 9300 (§ 6.1), which is not transparent to the
sFlow-based sampling unit. Therefore, we get random packet
sampling over all the traffic while the simulation performs
packet sampling for each ingress device independently. This
also shows in the achieved coverage values using the top
500 activity sentinels: ≈10.4k prefixes in the simulation,
≈8.7k prefixes on the hardware. We also have to consider that

297Sim Sampling

268Hw Sampling

10.4 kSim Top 500 – activity

8.7 kHw Top 500 – activity

Figure 9: Covered /24 source prefixes by Magnifier and
sampled data in simulations and on Nexus 9300 switches.
random assignment, 1/4096 sampling rate, and 0.1× replay speed.

we need additional time to deploy the mirroring rules on the
switch. Thus, a few more sentinels get invalidated compared
to the simulations; and no longer count to the coverage values.
The packet coverage values (not shown) are also comparable
between the simulation (17.0%) and the hardware (16.1%).

Finally, we evaluate the percentage of mirrored traffic. We
notice that the deactivation of active mirroring rules works
well. In the worst case (active rules mirror for the entire 60s),
Magnifier would mirror 2.3% of the overall traffic. This value
is reduced to 1.4% if we start to deactivate rules. However, we
are still above the optimal simulation results (less than 0.1%),
where we can deactivate mirroring instantaneously.

Conclusion The hardware results closely follow our simula-
tions regarding achieved coverage. However, Magnifier needs
more time to install and deactivate mirroring rules, resulting
in additional mirrored packets. To reduce the amount of mir-
rored traffic, operators can use existing hardware features to
rate-limit the mirrored traffic on the switch [11].

6.2.4 Micro-benchmarks

We now perform micro-benchmarks on the hardware switches
to assess (i) how many mirroring rules each device supports,
how long it takes to (ii) deploy them, and (iii) deactivate them.

Results–Mirroring rule space With the default configuration
of the Nexus 9300 switch, we can deploy 512 rules and up
to 2048 in the current lab setup (TCAM carving [7]). On the
Nexus 7009, we can deploy≈32k rules using one TCAM bank
and ≈128k rules if we chain all four TCAM banks together.

Results–Rule deployment time We measure how long it
takes to deploy a set of mirroring rules on our two devices.
During our tests, we realized that deploying the rules over
multiple parallel sessions between Magnifier and the switches
is beneficial. Four parallel sessions worked well for us. Table 2
shows the mean deployment times over ten measurements each.
They include the session setup and round-trip time between
Magnifier and switch. We see that the deployment time is not
strictly linear in the number of rules. We conjecture that caches
and buffers allow deploying a small number of rules quickly,
but this no longer works for larger number of rules. We also
see that the (newer) Nexus 9300 switch needs less time than
the Nexus 7009. We can deploy 2000 rules in ≈18s, which
matches our observations in § 6.2.3 (500 rules for 4 ingresses
on one device). We expect that the rule deployment time will
continue to decrease with more powerful/newer devices.
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Number of rules 100 500 1000 2000 5000

Nexus 9300 3.5s 5.5s 8.4s 17.8s 112s
Nexus 7009 2.6s 7.5s 21.7s 74.9s 475s

Table 2: Mirroring rule deployment times.

Note that even if we cannot activate 5k+ rules on the Nexus
9300 switch with the current TCAM carving (§ 6.1),we can still
deploy them. Overall, these results confirm Magnifier’s design
(Fig. 5) which aligns the iterations to the rule deployment time.
Especially as the sentinel computation time is negligible (≈ 1s
on the CAIDA trace.)
Results–Rule deactivation time We finally measure the rule
deactivation time on the Nexus 9300 switch. We generate 100
ping probes per second and deactivate a matching mirroring
rule as soon as we receive the first mirrored probe. The deacti-
vation time is the difference between the timestamp of the first
and last mirrored probe, including the round-trip (≈ 0.5ms)
and session setup time between switch and controller. This
setup is representative of an ISP deployment where close,
dedicated control servers could quickly deactivate rules (§ B).
We repeated the experiment ten times. The mean deactivation
time is 1.65s (min: 1.62s, max: 1.73s). In the worst case,
we would receive a burst of traffic for ≈1.7s. The amount of
mirrored packets can be further reduced by rate-limiting the
mirrored traffic directly on the switch; we expect this would
not affect Magnifier’s performance, as a single mirrored packet
is enough to invalidate a given sentinel.
Conclusion Our tests show that hardware switches can contain
thousands to tens of thousands of mirroring rules, which is
more than sufficient for Magnifier. Mirroring rules can be
deactivated quickly (≈ 1.7s), which limits the risk of bursts
of mirrored traffic. The rule deployment is the most time-
consuming operation (≈ 20s for 2k rules). As a result, we can
adjust the number of deployable mirroring rules (number of
validated sentinels) by changing Magnifier’s iteration time.

6.3 Comparison with Everflow
We compare Magnifier with Everflow [45] which is a moni-
toring tool designed for debugging datacenter networks. Like
Magnifier, Everflow randomly samples packets (using mir-
roring rules). In addition, it also mirrors all TCP SYN, FIN,
and RST packets. As far as we know, the Everflow code is not
available. Therefore, we reimplemented the relevant features
and integrated them into our simulation framework (see § C).
Setup We use our simulation setup and the CAIDA dataset, 32
border routers,a sampling rate of 1/1024 (forboth systems),and
we vary the trace replay speed. We compare the performance
of Magnifier , and Everflow on the static and permuted 5%
traffic-to-ingress mappings.
Results Fig. 10 shows the per-packet coverage and mirrored
traffic of both systems. We consider three different approaches:
(i) “Everflow sampling only”,where we rely only on Everflow’s
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Figure 10: Comparison of coverage and mirrored traffic for
Magnifier and Everflow under different traffic loads.

sampled packets to compute the ingress points; (ii) “Everflow
sentinel”, where we use the sentinel idea on top of Everflow’s
sampled packets; and (iii) “Magnifier unlimited” and “top 1k
activity”, where we report Magnifier’s coverage for all and
the 1k most active sentinels.

We first look at the coverage values (top plots in Fig. 10).
Everflow’s sentinel approach shows the best—although not
validated—coverage values with up to 88% in the permuted
5% case. This is due to Everflow’s sampled TCP flag packets.
We do not reach 100% as traffic in some /24 prefixes is neither
randomly sampled nor does it contain any TCP flags. These
prefixes can invalidate found sentinels. Note again that the
ground-truth data from the CAIDA trace allows us to compute
these values. Everflow does not deploy any validation mir-
roring rules and does not know about the sentinel’s validity.
Magnifier follows closely with ≈80% (unlimited) and ≈60%
(top 1k) coverage as we only have randomly sampled pack-
ets as input. Despite that, Magnifier manages to reach good
coverage values, with validation from mirroring. Both sys-
tems’ coverage values decrease in the more difficult static
approach. For completeness, we also show Everflow’s cover-
age if we only consider the sampled packets. This results in
a poor packet coverage, although on a higher level than the
“sampling only” line in Fig. 7 given that Everflow additionally
also samples all TCP packets with SYN, FIN, and RST flags.
These coverage values are constant between both assignment
strategies as we observe the same TCP flag packets and roughly
the same random samples.

Everflow’s increased coverage has a high cost in the amount
of mirrored traffic (lower plots in Fig. 10). Everflow generates
the randomly sampled and TCP flag packets as mirrored traffic
by design. Magnifier however, only generates targeted mir-
rored packets to validate found sentinels. If a sentinel is valid, it
does not mirror any traffic. This is visible in the corresponding
fraction of mirrored traffic.
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Everflow constantly mirrors ≈5% of all traffic while Mag-
nifier is more than one magnitude lower (≈0.1% of all traffic
at real-time replay speed in the static case). This value
decreases even further if we only consider the most active
sentinels. We again observe that Everflow mirrors roughly the
same amount of packets for both assignment strategies.
Conclusion Everflow yields better coverage but generates
more mirrored traffic, which is more than one order of mag-
nitude higher than Magnifier. Unlike Everflow, Magnifier
validates the inferred ingress points, informing the controller
as soon as a sentinel is no longer valid. In contrast, Everflow
might need to wait a long time before receiving a mirrored
packet indicative of an ingress point change, especially for
long-running flows that do not often have TCP flags. In terms
of mirroring rules, Everflow only needs around 20 of them [45].
Magnifier needs more mirroring rules but also uses them for
validation—something that Everflow cannot achieve.

6.4 Sentinels in Tier-1 dataset
We now validate the practicality and benefits of sentinel-based
monitoring by evaluating Magnifier on Tier-1 ISP data.

6.4.1 Existence of sentinels

Setup We divide our Tier-1 dataset into 30s slices over which
we compute sentinels and report the number of found ingress
and egress sentinels. We only have sampling data available.
Thus, we can only approximate the number of sentinels that
would be found if Magnifier was deployed with mirroring.
Results We find a median of 145k egress sentinels and a median
of 174k ingress sentinels. The lower and upper quartiles are
within 1.4k around the median values in both cases.

We observe that we find more ingress than egress sentinels.
This results from the typical forwarding behavior observed
in an ISP: traffic from each of the ISP customers, which own
specific prefixes, tends to enter via a single ingress point, which
leads to a high number of ingress sentinels. At the same time,
most ingress traffic goes to few popular destinations, which
leads to few egress sentinels. We also see that the number of
(ingress and egress) sentinels is stable over time, as shown by
the small quartile ranges.
Conclusion We confirm that we find sentinels based on real
sampling data from a Tier-1 ISP network. Furthermore, the
number of sentinels is stable over time; this suggests that large
changes in sentinel numbers can be used as a signal to detect
various network events, which we discuss next.

6.4.2 Per-device sentinel changes

Setup We divide our Tier-1 dataset into 30s slices over which
we compute sentinels using Magnifier , focus on the number of
sentinels found per border router, and search for large changes
in the number of sentinels over consecutive slices.
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Figure 11: A temporary router outage (gray block) decreases
the number of found sentinels (left) while we see similar
increases on a close router (right).
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Results Fig. 11 shows the number of sentinels found following
a single border router outage. As expected, Magnifier finds
no more sentinels for the affected router. More interestingly,
Magnifier also detects where the affected traffic was re-routed
during the outage, as shown on the right: the number of egress
sentinels of a geographically-close router increases shortly
after and closely matches the number of lost sentinels.

Fig. 12 (left) shows a router with a burst of egress source
sentinels (traffic from a given subnet exiting via a unique egress
point) while no other router shows a matching decrease. Thus,
we observe a sudden burst of packets from “new” source IPs
towards a few destinations (table, right), indicating a possible
Distributed Denial of Service (DDoS) attack. During this
event, the egress traffic volume increased by less than 8%,
which is less pronounced than the clear increase in sentinels.
Magnifier also identifies the ingress of more than 75% of the
“attack” flows via their ingress sentinels. Existing volumetric
DDoS detection systems could use this information to block
the DDoS traffic at the network ingress.
Conclusion Changes in the number of found sentinels reveal
interesting network events. Operators could analyze the col-
lected sampling data this way, even if they do not have the
resources to deploy mirroring. With mirroring, Magnifier de-
tects such changes in sub-seconds, long before similar events
are visible in sampled flow data or SNMP counters.

7 Related work

Sampling-based network monitoring Many systems use
NetFlow [12], J-Flow [27], sFlow [30] or related flow extraction
tools for network measurements. Sampling suffers from a
fundamental trade-off between coverage and accuracy. For
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example, Teixeira et al. [37] use NetFlow data to detect egress
changes due to BGP hot-potato routing but are limited by
the collected ten-minute bins. In addition, Cunha et al. [13]
uncover measurement artifacts in two J-Flow implementations.

Consequently, several works aim to improve sampling by
optimizing the collection process. Estan et al. [14] propose
router software updates to dynamically adapt the NetFlow
sampling rate depending on the available traffic and memory
amount. FlowRadar [21] uses flow sets to count flow obser-
vations in multiple array cells, then combines and decodes
these counters centrally. Similarly, Flowyager [34] introduces
Flowtrees, an efficient data structure to store flow information.
These approaches are all limited by the sampling information.
A key difference of Magnifier is to further improve the network
visibility by leveraging mirrored traffic.

Mirroring-based systems Several monitoring systems use
mirroring, which provides accurate visibility over a subset of
the traffic, flows, or devices. Stroboscope [39] supports query-
based monitoring under a strict budget of mirrored traffic.
Everflow [45] provides the possibility to mirror some packets
of every flow, e.g., by mirroring packets with special TCP flags
or debug header bits. Planck [33] takes a radical approach and
mirrors all traffic over a single router port, which provides
detailed insights but can also overload the network devices.
Mirroring has also been used for troubleshooting [41], SDN
monitoring [1], on in-network analysis [38, 42].

Mirroring suffers from three problems: (i) the flows of
interest must be known in advance; (ii) it is limited by the
routers’ mirroring capacity, and (iii) it generates a potentially
high volume of traffic. Magnifier mitigates these problems by
leveraging sampling to derive the mirroring rules to deploy
and uses negative mirroring to limit the traffic overhead.

In-network monitoring There has been many recent proposals
forperforming in-network monitoring based on in-band teleme-
try (e.g., [2,18,25,26,31]) or sketches (e.g., [5,19,22,43,44]).
Both approaches boil down to implementing highly effi-
cient data structures to gather traffic statistics, e.g., packet
counts. The main limitation is that these approaches depend
on software-defined or P4-programmable hardware, which is
not commonly deployed in ISP networks nowadays. More-
over, these approaches provide precise information, but over
specific queries only; setting and collecting counters to track
ingress and egress points of an arbitrarily large number of
IP prefixes is hard to scale. Negative mirroring addresses
this: while Magnifier’s inferences are correct, there is no traf-
fic nor compute overhead—only TCAM usage. Packets that
do get mirrored provide exact information—i.e., source and
destination IP—which allows for quick and precise reactions.

Detection of ingress/egress Magnifier is designed to detect
traffic ingress/egress points, which has been previously studied:
Feldmann et al. [15] provide foundation work for detecting
different flow types in ISP networks as well as the ingress
and egress of observed flows. To achieve good results, they

need per-flow measurements on the ingress and up-to-date
forwarding tables of the routers in the network, which are both
costly to obtain. Mahajan et al. [23] use algorithms similar to
our sentinel idea to build so-called “aggregates”, a collection
of packets with a common property, to free congested links.
However, it is unclear how they extract the traffic to build the
aggregates or validate their assumptions. Peng et al. [29] run
a change point detection algorithm to detect changes in the
number of new IP addresses, which is a good metric to detect
(the ingress) of DDoS attacks. Most of these systems lack the
global ingress/egress view that Magnifier provides.
Traffic matrix estimation Soule et al. [36] compare different
techniques based on bias and variance properties. They show
that direct measurements are required to reduce bias, which is
an expensive process. Papagiannaki et al. [28] observe that
the node fanout, e.g., how traffic from an ingress is distributed
towards different egresses, is stable over time. Magnifier con-
firms and leverages this behavior: sentinels are stable over
time, which creates a valuable monitoring signal (§ 6.4). With
mirroring, Magnifier also quickly detects changes and updates
its traffic matrix estimation. OpenTM [40] uses a different
approach, based on active polling of every source-destination
pair, which is very precise but does not scale to large networks.
Malboubi et al. [24] addresses the special case of SDN net-
works, which limits the system’s applicability. Pingmesh [17]
frequently generates pings to compute latency matrices. By
contrast, Magnifier does not require active measurements and
runs on traditional routers, which makes it easy to deploy.
Monitoring frameworks Several monitoring frameworks
support rich sets of queries, e.g., [20, 32, 42]. In particular,
Flowyager [34] is similar to Magnifier as it builds primar-
ily on sampling. The downside of these frameworks is their
complexity and extensive storage and computational resource
requirements. By contrast, Magnifier focuses on performing
ingress/egress monitoring with little overhead.

8 Conclusion

Precise observations of traffic ingress and egress points are
difficult to generate in large ISP networks. In this paper, we
show how Magnifier combines the global view of sparsely-
sampled flow observations with precise, targeted information
from mirrored traffic. Magnifier enhances observed flows with
validated ingress and egress points and scales to the largest ISP
networks while only generating a small amount of mirrored
traffic. Magnifier’s outputs can also help monitor outages or
detect volumetric DDoS attacks.
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B Magnifier’s controller placement

Magnifier needs a central controller to build its network-wide
ingress/egress view. As we heavily depend on sampled flow
observations, it makes sense to co-locate Magnifier with the
e.g., already existing, central collector of the sampling data. In
large ISP networks, with routers around the globe, we can de-
ploy additional sub-controllers that start and stop the mirroring
rules and collect mirrored packets. More precisely, the main
controller is needed to compute new sentinels and builds the
final ingress/egress observations. It delegates mirroring to the
sub-controllers which autonomously handle the deployment,
activation and deactivation of rules while reporting back any
mirroring-based observations.

C Everflow implementation

Following a few more details to our Everflow reimplemen-
tation in our simulation setup.

Everflow uses packet mirroring to produce its random packet
samples. The paper [45] explains that Everflow mirrors based
on a fixed number of bits in the IP identification header field
(IPID). As an example, selecting 10 random bits in the IPID
field will result in random packet sampling of 1 out of 210 =
1024 packets. However, this assumption is only true if the
values in the IPID fields are more-or-less uniformly distributed.
Taking our CAIDA trace as an example, we see that we have
a huge number of packets which set the IPID field to zero.
Depending on how we select the bits in the IPID field, we
might get way more or less sampled packets than expected.
For this reason, we implemented the random packet sampling
aspect of Everflow in our simulation code by taking every n-th
packet observed on a device, e.g., every 1024th packet in the
previous example.

Additional to the implemented mirroring techniques (ran-
dom packet sampling and TCP flag packets), Everflow also
supports mirroring of packets with a special debug bit. As this
was not relevant for a direct comparison with Magnifier , we
did not implement this feature in our simulation code. The
same holds for Everflow’s controller, storage and reshuffler
components.

D Additional evaluation results

This appendix section first illustrates the lab setup used to
evaluate Magnifier. We then analyze the used CAIDA trace
in more detail. Afterward, we show additional evaluation
results focused on Magnifier’s performance. We conclude
with additional plots comparing Magnifier with Everflow.

D.1 Magnifier lab setup
Fig. 13 illustates the lab setup we used to evaluate Magnifier .
We establish four parallel connections between the two Nexus
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Figure 13: Two Nexus 9300 switches emulate four network
ingress points. The traffic is replayed and sampled on the first
switch, then forwarded to the second, which mirrors packets.

9300 switches, each emulating a network ingress. The first
switch receives and samples the traffic using sFlow (sampling
rate 1/40967). It then forwards to the second switch, which
mirrors the traffic according to the configured rules. Magni-
fier’s controller runs on a server and collects sampling and
mirroring data. As these switches are limited to 512 mirroring
rules, we used a fixed budget of 500 rules per emulated ingress
point.8

D.2 CAIDA data analysis
Fig. 14 shows a CDF of the amount of packets observed per
source /24 in 60s of our CAIDA trace used in the evaluation.
60s represent one iteration at real-time replay speed. As we
can see we have a very small number of heavy hitters which
carry most traffic as well as a huge number of /24 prefixes
which only contain a few packets. Roughly 10% of all /24
prefixes contain more than 90% of all the packets.

A lot of the /24 prefixes with very low packet counts are
most likely DDoS attack traffic (e.g., TCP SYN packets). We
decided to keep these packets in the trace as a real ISP network
could also observe similar packet distributions in their transit
traffic.

D.3 Additional Magnifier plots
This section contains additional plots which evaluate Magnifier
in terms of packet coverage and mirrored traffic.

Fig. 15 shows the performance results if we consider an
increasing number of border routers (from 4 to 64). Forrandom
and static traffic assignment we notice that the coverage
slightly drops while we see an increased amount of mirrored
traffic. However, this is not true for the permuted assignment
strategies. random and static distribute the packets to their
ingress points based on equal slices of the destination IP space.
If we have more border routers, we also have additional slices

7The highest configurable rate on this model; we get the most samples.
8The four emulated ingresses share the budget. We use TCAM carving [7]

to increase the space for our mirroring rules to 2048 (by taking it from other
features), to enable the original budget (512) per ingress.
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Figure 14: A CDF plot of the amount of packets observed per
source /24 prefix in 60s (one iteration at real speed) in our
CAIDA trace.
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Figure 15: Simulation results for coverage and mirrored traffic
when Magnifier runs with different amounts of border routers.
CAIDA traces replayed at real speed, sampling rate 1/1024.

and close IP space is distributed over multiple ingresses which
leads to the observed drop in coverage. This is not true for the
permuted cases, where we always permute a fixed number of
source /24 prefixes to different ingresses.

Fig. 16 considers different sampling rates. As expected, if
we have fewer samples as input Magnifier can cover fewer
packets and also produces fewer mirrored packets as it finds
fewer sentinels to begin with. We observe this behavior for all
traffic assignments.

Finally, Fig. 17 shows the missing assignment strategies
(random and permuted 20%) if we consider different amounts
of top sentinels (activity and size ordering). Following
the results in Fig. 8, the activity strategy provides better
coverage than size and a lower amount of mirrored traffic.

D.4 Stability of sentinels
Following, we evaluate how many sentinels change between
simulation iterations.
Setup We use the results from our simulations with 32 border
routers, real traffic speed and various traffic-to-ingress assign-
ments (sampling rate 1/1024). The results show mean values
over 60 iterations.
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Figure 16: Simulation results for coverage and mirrored traffic
when Magnifier runs with different sampling rates. CAIDA
trace replayed at real speed, 32 border routers.

Results Table 3 shows the amount of changed sentinels for
different amounts of deployed sentinels (based on activity
and size ordering) for random, static and permuted 5%
traffic assignment. We first observe that we have to change
fewer sentinels if we base the ordering on sentinel activity.
More active sentinels are often also stable over longer periods
of time which means that we find them consistently. We see a
different behavior for the ordering based on size. Here nearly
all sentinels change between iterations. The largest sentinels
are often based on sparse samples located in empty prefix
space. That means, we might not be able to find the same big
sentinel between multiple iterations if the covered flows are
no longer visible (e.g., in the sampled data).

As expected, the number of changed sentinels also depends
on the difficulty of the traffic assignment. In the random case,
ingress assignment changes frequently even during a single
iteration. That means we often find new sentinels in the follow-
ing iteration. For permuted 5%, the assignment is much more
stable and we can always keep around 50% of all sentinels
between iterations.

# sentinels random static permuted 5%

activity Top 100 84 50 35
ordering Top 500 406 292 220

Top 1000 836 610 466
Top 5000 4487 3662 2769

size Top 100 94 87 45
ordering Top 500 472 453 224

Top 1000 950 918 461
Top 5000 4817 4698 2776

Table 3: Number of changed sentinels between iterations for
different assignment and sentinel ordering strategies.

Conclusion The top sentinels often change between iterations,
however Magnifier is not really impacted by that. As we
describe in § 4.1, Magnifier works with two ACLs and switches
between them. While one is active, the other one gets populated.
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Figure 17: Simulation results for coverage and mirrored using
different amount of top sentinels according to a activity
and size ordering. We show the random and permuted 20%
traffic assignment strategies (compare with Fig. 8). The plots
show values for different traffic replay speeds of the CAIDA
trace with 32 border routers and sampling rate of 1/1024.

The frequent sentinel changes between iterations are therefore
not a big problem as we anyway need to build a completely
new ACL.

D.5 Additional comparison with Everflow
In this section we show additional comparison plots between
Magnifier and Everflow. Fig. 18 shows different number of
ingress routers while Fig. 19 considers varying sampling rates.
For both figures we show the results for permuted 5% and
static traffic assignments. Everflow’s packet coverage and
amount of mirrored packets show only small reactions to the
different ingress routers and/or sampling rates. Everflow’s
mirrored packets mainly contain packets due to TCP SYN,
FIN or RST flags. The randomly sampled ones contribute only
in a small amount. As a result, changes in the sampling rate
(Fig. 19) have more impact on Magnifier than on Everflow.
Magnifier’s performance is tightly related to the amount and
distribution of the randomly sampled packets.
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Figure 18: Comparison of coverage and mirrored traffic for
Magnifier and Everflow for different amounts of border routers.
We show the static and permuted 5% traffic assignment.
We replay the CAIDA trace at real speed and use a sampling
rate of 1/1024.
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Figure 19: Comparison of coverage and mirrored traffic for
Magnifier and Everflow for different sampling rates. We show
the static and permuted 5% traffic assignment. We replay
the CAIDA trace at real speed and distribute traffic over 32
simulated ingresses.
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