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Abstract– For security, isolation, metering and other pur-
poses, public clouds today implement complex network func-
tions at every server. Today’s implementations, in software
or on FPGAs and ASICs that are attached to each host, are
becoming increasingly complex, costly and bottlenecks to
scalability. We present a different design that disaggregates
network function processing off the host and into shared re-
source pools by making novel use of appliances which tightly
integrate general-purpose ARM cores with high-speed stateful
match processing ASICs. When work is skewed across VMs,
such disaggregation can offer better reliability and perfor-
mance over the state-of-art at a lower per-server cost. We de-
scribe our solutions to the consequent challenges and present
results from a production deployment at a large public cloud.

1 Introduction

All major cloud providers implement stateful network func-
tions at their servers. These network functions are essential for
network virtualization (e.g., private address spaces [75, 88]),
enhanced security (e.g., stateful firewalls [14, 15]), load bal-
ancing [56, 87], QoS [62, 68, 92] and cost metering [5, 9, 20].

The key challenges in implementing stateful network func-
tions in a virtualized context are three-fold:

• First, the state that must be maintained and accessed
at line-rate can be per flow (for stateful firewalls) or
per endpoint (to virtualize IP addresses) and can ex-
ceed 100MB for many virtual machines. Programmable
switches [24, 25] have small SRAMs and are hence
appropriate only in niche cases such as to only sup-
port a small subset of all flows [83, 85] or in bare-
metal settings where the cloud provider has no ac-
cess to the servers [41]. The most widely-used NF im-
plementations today combine software in host virtual
switches [52, 57, 88] with FPGAs or smart NICs that are
directly attached to the servers [6, 58].

• Next, attaching FPGAs and smart NICs to each server
is wasteful because these cards must be provisioned to
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Figure 1: Today, stateful network functions are implemented on-host in vir-
tual switches, NICs and FPGAs shown with a dark background. We propose
to disaggregate stateful NFs, i.e., also process them in shared resource pools
located elsewhere in the datacenter.

meet the peak anticipated usage at each server but the
actual usage is far below the peak most of the time, and
on most servers. Moreover, VMs that use networking
features which are only supported by the latest FPGA
or smartNIC cannot be deployed on older hardware; in
turn, this can lead to a sizable waste of non-networking
resources.

• Finally, the tail performance is limited today. For exam-
ple, in the three largest public clouds, we will show that
the number of new connections per second a VM can
support is well below the NIC capacity and is likely bot-
tlenecked on stateful NFs that are applied on each new
connection. Customers who deploy middleboxes in VMs
(such as the Palo Alto VM-series firewall [33]) to secure
access to their other VMs are forced to deploy many
more middleboxes to offset the performance limitations
in the provider’s NF processing [35].

We propose to disaggregate the processing of stateful net-
work functions into shared off-host resources pools as shown
in Figure 1. Similar to how a customer can pick the CPU or
memory for a VM, customers can also now pick a floating
network interface (fNIC) which explicitly specifies NF re-
quirements (e.g., # new flows per second, # concurrent flows)
as well as the network capacity in Gbps. When deploying a
VM, we allocate resources for the fNIC either on-host (that
is, on the vswitch and the FPGA), or at an off-host shared
resource pool or some combination at both locations.

We call out a few advantages from such a disaggregation
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Stateful NF State at each VM Computation
Private address
spaces [2, 10, 22]

A dictionary that maps customer’s private addresses to the provider’s physical addresses;
one entry per remote endpoint that the VM speaks with.

Lookups, adds and deletes into the
mapping dictionary

Stateful ACLs [32,
36]

Per ongoing flow that has passed the ACLs, a hashmap containing the flow’s five tuple
and the reverse five tuple

Lookups, adds and deletes into the
per-flow hash table

Billing [5, 9, 20] Total bytes, sliced by windows and per billable communicating entity such as a datacenter
or a cloud service; also, bursts and peak rates

Multiple counters and sketches

Stateful NATs, load
balancers

Per ongoing flow, the new flow to masquerade as. Lookups, adds and deletes into the
rewrite dictionary

Table 1: Some example stateful network functions that are implemented at cloud VMs and the associated state and computation. For more details, see [52,57,88].

of stateful NFs. First, we will show that for most of the time
most of the VMs require much fewer NF processing capacity
than the peak. We can thus reduce cost and power usage by
equipping servers with less capable FPGAs or smart NICs and
handling all of the spillover load at the shared resource pools.
Next, we can deploy VMs which require novel NF processing
on any server in the datacenter, including on older hardware,
as opposed to restricting to just servers that have the latest
FPGAs or smart NICs. As noted above, doing so reduces the
fragmentation of non-networking resources. Third, we show
how to increase the tail performance for VMs well beyond
what is achievable from using the single FPGA or smartNIC
that is attached to the host; for example, the number of new
connections-per-second a VM can accept may only be limited
by its NIC capacity. Doing so reduces cost and eases the
deployment of middlebox VMs.

There has been much work on resource disaggregation.
Disaggregating stateful NFs is similar in some ways to prior
works that disaggregate resources such as memory, storage or
GPU [45, 63, 74, 91] but there are a few key differences. One
challenge is with regards to implementing a high-performance
shared NF resource pool. The pool must simultaneously sup-
port large state and high-speed packet processing (e.g., 100s
of GBs of states at multi Tbps packet processing rates). Doing
so requires coherent access over a large memory at a high-
speed. Programmable switches [24, 25] can process at multi
Tbps but only have about 1GB of SRAM per switch. We
have implemented an appliance which can be thought of as a
bag-of-NICs wherein each NIC contains match-processing-
unit ASICs that are programmable in P4 as well as a large
coherently-accessible memory. Each appliance has 12 NIC
cards, each card has a power draw of 75W, 16GBs usable for
NF state and can process duplex packets at 100Gbps.

Another novel challenge from disaggregating stateful net-
work functions is that fault tolerance shifts from a fate-sharing
mode to a single point of failure. That is, when an FPGA or
a smart NIC fails, only the VMs on the corresponding host
fail but when an appliance (in the shared NF resource pool)
fails the impact is felt by any VM whose fNIC happens to be
allocated on that appliance. Naïvely replicating the state of
network functions is hard because both primary-backup style
replication [44, 51] and Paxos-like protocols [46, 48, 50, 81]
queue requests while the state is being replicated. In the case

of stateful NFs, requests can be any packet that changes state
and so holding requests at speeds of hundreds of Gbps will
require a very large packet buffer. We show how to replicate
state in-line by ping-ponging packets between the replicas
(pairs of programmable NICs) effectively buffering the state-
changing requests on the network wires.

To the best of our knowledge, we are not aware of any prior
work that disaggregates stateful NFs such as connection track-
ing firewalls or uses programmable bag-of-NICs appliances
or supports in-line state replication. Some works offload spe-
cific stateful NFs to top-of-the-rack switches [41, 83, 85, 95]
but do not support a rich class of NFs and the memory limit
on Tofinos restricts them to only speedup a small subset of
flows. Andromeda [52] deploys dedicated software middle-
boxes to process NFs but does not support stateful NFs citing
concerns such as “state loss during upgrade or failure” and
“transferring state when offloading”. We discuss other related
work in §7. To sum up, our key contributions are:

• We build a case to disaggregate stateful NFs by studying
the functions and telemetry at a large cloud provider (§2).

• We present Sirius which disaggregates a rich class
of stateful network functions onto pools of P4 pro-
grammable NIC cards. We show how to replicate state
inline between pairs of nearby cards such that individual
card failure does not adversely impact ongoing connec-
tions (§3.2). We discuss multiple disaggregation design-
points including those that split or migrate the load of
a VM across different NF processors (§3.3) and show a
programmable NIC implementation that achieves better
performance-over-cost than state-of-the-art (§4).

• We report results from a production deployment which,
in part, show that when VMs offload onto Sirius, their
stateful NF processing capacity improves by about 10×.

2 Background and Motivation

2.1 Stateful Network Functions
Table 1 lists some stateful network functions that are sup-
ported by public cloud providers. As the table notes, some
NFs must maintain per-flow state whereas others keep state at
coarser granularity. Counters and sketches are used to measure
network usage for billing and diagnostics [73]. Customers
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can also configure (add to) the stateful NFs on their VMs.
As exemplars, we discuss two kinds of stateful NFs that are
widely used in production but less well known academically.

First, virtual network peering [8, 12, 23] allows VMs in dif-
ferent virtual networks to communicate. Doing so requires
all VMs in participating vnets to know how to map a virtual
address belonging to any vnet into the corresponding physi-
cal address. This mapping must be kept up-to-date whenever
VMs are deployed or migrated. Today’s vnet peering imple-
mentations cache the map in a stateful layer at VMs [8,12,23].

Next, private links [7, 11, 29] let VMs communicate with
PaaS services that have public IPs on a more direct path. For
example, when a VM in AWS reads from an EBS volume
which has a public IP, naïvely, such traffic must go via the
cloud egress gateway similar to traffic to any public IP and
then turn back towards the cloud store. Private links are more
efficient and secure by having such traffic go directly to the
cloud storage; a stateful layer at each VM encapsulates the
outgoing traffic based on the VMs vnet id and the private IP
address of the PaaS service and, in the reverse direction, a
stateful layer at the PaaS service remembers which virtual
and physical addresses a flow comes from when decapsulat-
ing (so-called stateful decap) and uses that state to encapsulate
packets so that they go back to the appropriate VM.

To sum, associated with each VM in the public cloud,
providers implement numerous stateful network functions.
Among the NFs considered in this paper, the connection-
tracking firewalls, NATs and load balancers are the most
intensive – they all require per-connection state. The total
state to maintain per VM is often large since there can be
hundreds of distinct rules to apply: one per private link, state-
ful ACL or vnet peer. NF actions on new connections are
often implemented in software due to complexity and ease-of-
programmability [52, 57, 88] whereas the per-packet actions
are implemented in FPGAs or ASICs [6, 58].

2.2 NF workload at a public cloud

We characterize the usage of network functions at Azure. For
each VM and each minute, we obtain the number of newly
established flows, the number of active flows and the byte and
packet counts. Our results here summarize metrics from a
three month period. A typical minute has reports from O(108)
VMs and O(107) nodes. Our key findings are as follows.

Skew in load for NFs: Figure 2a shows that the load for
network functions is skewed; we measure load in terms of the
number of newly arriving flows which must be verified to be
policy compliant, the number of concurrently active flows for
which state has to be maintained and the number of packets
being exchanged. We see that the median load is multiple
orders of magnitude smaller than the peak load. The inset
zooms in on values further on the tail.

When the load is skewed, provisioning every host for the
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Figure 2: Characterizing the workload for stateful NFs at a large public
cloud; data collected across over 108 VMs in a three month period.

Metric Containers Nodes Racks
σ / µ 14.23 5.00 0.67
99th / µ 13.54 10.49 2.52

Table 2: Coefficient-of-variation (=stdev σ/ avg. µ) of the number of newly
arriving flows per minute at each VM compared to the same metric when
rolled up into the nodes or racks that contain the VMs.

peak (e.g., by adding FPGAs or smart NICs), can be costly
and most of the NF processing capability remains unused. We
aim to provision hosts for the average load and handle the
excess load using a disaggregated, logically shared, pool.

Containers with high NF load are spread throughout
the network: Figure 2b zooms in on VMs and timewin-
dows (minutes) which report high NF load; the x axes is a
logarithmic bin, that is x = 18 denotes that the numbers of
new flows in a (VM, minute) was in the range of [217.5,218.5).
The bottom-most line on the figure reports the fractions of dis-
tinct containers which exhibit high NF load. If the high-load
containers were concentrated into a few nodes and racks, then
the fraction of nodes and racks which show high load will be
no larger than the fraction of containers. However, the figure
shows that highly-loaded containers are spread across many
more nodes and racks. The case for other NF load metrics is
similar. About 10% of the racks have at least one container
which reported over 50000 new connections in a minute.

Variation in NF load: At the granularity of individual VMs,
we observe sizable temporal variations in NF load of up to
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one order of magnitude larger than the median (see Figure 15).
However, the variability appears uncorrelated spatially. That
is, the sum of the load of all the VMs in a server or a rack has
smaller coefficient-of-variation (see Table 2). Shared pools of
NF processing capability thus can be provisioned with smaller
peak to average ratios and will be more cost-efficient.

2.3 Characterizing NF Performance

To measure the state-of-art stateful NF performance of pub-
lic clouds today, we deploy pairs of VMs of different sizes,
add a stateful ACL to the client VM and initiate TCP con-
nections in an open loop to the other server VM. We pro-
gressively increase the connection initiation rate and mea-
sure the maximum rate that was achieved and the connec-
tion establishment latency. Our tool is multi-threaded and
asynchronous. We appropriately change various configura-
tion variables and achieve better results than listed in public
datasheets [13, 17–19, 34]. Figure 3a shows the maximum
number of new connections per second (CPS) achieved by
VMs of different sizes on the three largest public clouds today.
All VMs are identically configured Ubuntu Linux instances.
The variation is over experiment runs likely due to perfor-
mance interference on the VMs or on the network path; we
repeat each point at least ten times. The figure shows that
increasing the VM size tends to increase the CPS perhaps
because the per-VM networking limits improve [3, 21, 28].
However, the highest CPS across all public clouds and experi-
mented VMs is 0.3M. Figure 3b shows the latency between
sending a SYN and receiving a SYN-ACK. In the latency plot,
we only use trials where most of the connections succeed to
avoid latency cliffs. The figures show that processing the state-
ful NFs which are deployed in public clouds today represents
a sizable bottleneck– there is a sizable latency when establish-
ing new connections and VMs are limited in the number of
new connections per second that they can sustain.

3 Disaggregating NF processing in Sirius

Sirius offers a new API to offload network function processing
into pools of appliances that contain custom programmable
cards. Each VM or container can specify a floating NIC (fNIC)
with requirements on the following dimensions that relate to
processing network functions:

• The number of new flows per second (CPS)
• The maximal number of concurrent flows
• Network capacity
• Feature, capability selection and ruleset size

Values for some of these dimensions are already in cloud
provider and NVA vendor datasheets [3,13,17–19,21,28,34];
Sirius also allows off-the-shelf fNIC sizes that users can pick
from (e.g., a small fNIC) to help with configuration.

10-3

10-2

10-1

 1

 2  4  6  8  10  12  14  16

#
N

e
w

 C
o
n
n
s.

 (
x
1

0
6
/s

)

#vCPUs

Cloud1 Cloud2 Cloud3

(a) Maximum Connections Per Second achieved.

10-5

10-4

10-3

10-2

10-1

1

 2  4  6  8  10  12  14  16

S
Y
N

 R
T
T
 (

s)

#vCPUs

Cloud3 Cloud1 Cloud2

(b) Latency between sending a SYN and getting a SYN-ACK.

Figure 3: Benchmarking connection establishment rate and latency at dif-
ferent VM sizes on three public clouds. The lines connect the average value,
whiskers go from 1st to 99th and boxes go from 25th to 75th percentiles.

We extend our cloud VM allocator [65, 93] to provision
fNICs using either resources on the smartNICs that are at-
tached to servers or one or more Sirius appliances. Disag-
gregation lets VMs be placed on servers that may not lo-
cally satisfy fNIC requirements. Allocating fNICs to cards
is an instance of the multi-dimensional bin packing prob-
lem [61, 86]. A better packing will map more fNICs onto
fewer cards. We considered different heuristics and found that
heuristic choice improves efficiency only when the fraction of
large fNICs (whose resource needs are a substantial fraction
of the card capacity) is high. In the rest of this section, we
discuss the disaggregated datapath, inline state replication and
methods to split or move an fNIC’s load between multiple
cards. Our design is modular and can work with different
implementations of the shared processing pool; in §4, we dis-
cuss our P4 programmable cards which in our tests can serve
over 3M new connections per second and 16M concurrent
connections while processing a rich set of stateful NFs.

3.1 Connectivity and availability
The NF processing pool in Sirius is a collection of appliances.
In our prototype, an appliance is a pair of 3U servers with six
programmable cards each in PCIe slots. Each card has two
100Gbps QSFP+ connectors and 32GB DRAM.

Reliability, efficiency and flexibility were our key consider-
ations when deciding how to connect Sirius appliances within
a datacenter. Adding an appliance to each rack may lead to
under-utilization (and fragmentation) since not every rack
may have enough demand for NF processing. We also aim for
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Figure 4: Connectivity diagram. Please read the figures left to right with each subsequent figure fleshing out the portion that is highlighted in the preceding
figure. A Sirius appliance can be thought off as a pair of servers labeled S1 and S2 respectively that are connected as shown. Sirius assigns offloaded floating
NICs of VMs to the programmable cards in the servers. We deploy more appliances to keep up with the total NF load.

a high level of reliability since NF processing is crucial for
security and reachability in public clouds, e.g., for ACLs and
private address spaces. Our goal is to ensure that the failure
of any one server, card, link or switch must not degrade NF
processing capability by a substantial amount. We also aim
to independently scale out the NF processing capability as
demand increases, e.g., by adding more appliances. Finally,
we want VM placement to not be constrained by the availabil-
ity or lack thereof of NF processing capability; that is, VMs
located anywhere in a datacenter should be able to, when
needed, use NF processing from the Sirius pool.

We choose to connect Sirius appliances as shown in Fig-
ure 4. Our minimum deployment unit is one appliance beneath
two top-of-rack (ToR) equivalent switches that connect to the
rest of the datacenter network similarly to other ToR switches.
Such connectivity also ensures that any VM in any of the
racks connected underneath the same CLOS will have equiva-
lent access to Sirius’s appliances thus realizing a large shared
NF processing pool. In our experience with Sirius, the pri-
mary bottleneck is the NF processing capability and the state
on the cards. That is, the number of new flows arriving per
second which must be validated and the number of concur-
rent connections for whom state must be maintained (e.g., in
a stateful load balancer). Our measurements show that the
added latency incurred by traffic passing through an appliance
is small relatively because traffic between randomly placed
VMs in the public cloud almost always bounces off a switch
in the CLOS tier; in particular, the increase is negligible for
north-south traffic (which enters or leaves the datacenter). Fi-
nally, the connectivity diagram in Figure 4 preserves access to
the NF processing capability under the following conditions.

1. At most one of the two green switches in front of a Sirius
server fails.

2. At most one of the two links that connect a given card to
the switches fails.

3. At most half of the links that connect the green switches
to the red Tier-1 switches fail.

4. At most half of the red switches fail.

The last two conditions above ensure that other racks in the
CLOS will have at least one valid path to the green switches.
By preserving access to the bottleneck resource, NF process-
ing remains unimpeded and Sirius will still be able to support
high rates of new flows per second and concurrent flows.

2. change state & forward
Primary Secondary

1. First and last packets of conn.

3. change state & pong
4. onward

Figure 5: In-line replication of connection state in Sirius by ping-pong’ing
packets that change state to both the primary and secondary cards.

3.2 In-line Connection State Replication
To avoid individual card failures from affecting ongoing
connections, we duplicate connection state across two pro-
grammable cards. A key novel aspect here is that we do so
without buffering packets. Due to the very high packet rates
that these cards handle, holding packets in the primary card
until state is established on the secondary card, as is done
typically to replicate state [46, 48, 50, 81], will require very
large buffers. We discuss a method that replicates state with-
out any additional buffering by ping-pong’ing the packets
of each connection that change state. As shown in Figure 5,
for example, SYNs of a TCP connection which will establish
state on the primary card are also forwarded to the secondary
card. The secondary card also establishes state for this con-
nection in its local memory and forwards the packet back to
the primary. The primary card then transmits the packet to
the destination in the usual way. Both cards independently
delete the state of connections which remain idle beyond an
age out threshold. Besides avoiding additional buffering, such
inline state replication requires only a small code change to
send and process ping-pong messages since the code to check
rules and update state can be reused.

Each card pair (primary and secondary) exchanges heart-
beats and fails over independently. That is, if the primary
misses several heartbeats, the secondary card will receive
all of the traffic on fNICs that were assigned to the pair. To
achieve such failover, both cards announce BGP routes for
the fNICs’ virtual IPs; the primary card announces a shorter
AS path than the secondary.1 At a slower timescale, a differ-
ent software controller provisions new replicas (e.g., pairs
a newly promoted primary with a new secondary card) and
schedules bulk state replication (which we describe below).

1We discuss corner cases in failover in §A.1.
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The controller also reduces allocatable appliance capacity if
necessary based on the number of cards that are operational.
Two control loops at different timescales are commonly used
to react to faults [67, 80]; to our knowledge, we are not aware
of its use in replicating the state of network functions.

We observe that most of the connection state turns over
quickly. For example, a usage stream that has 4M new con-
nections per second and 32M concurrent connections has the
average connection lasting 8s. Thus, waiting a bit will allow
us to move much less state, which belongs to the long-lived
connections, with the trade-off being a small increase in the
period for which state is present on only one card.

The goal of our bulk synchronization is to replicate check-
pointed state from one card to another quickly. There are mul-
tiple ways to implement checkpoints; we append an epoch
value to each record in the state and atomically increment the
value of the current epoch to take a checkpoint since then all
records with a smaller epoch value will belong to the check-
point.2 To copy a checkpoint between paired cards, the ARM
cores on the cards move state in batches over a reliable trans-
port. We tradeoff the overhead of copying checkpoints with
an increase in the period wherein only one copy of the state
exists in the following additional ways: we prioritize moving
the state of long-lived connections since other connections
may close before needing to be moved and we pace the copy
messages so that resource contention (on the memory bus and
network) does not adversely affect normal activity.

To sum, replicating connection state between a pair of cards
has the following costs and benefits. On the costs, storing each
record at two cards halves the total available state that a Sirius
applicance can maintain. The NF capacity, say in terms of
connections per second that can be handled by an appliance,
also halves for the same reason. The connection setup latency
increases due to the ping-pong. Also, bulk synchronization,
when triggered, uses memory and network bandwidth. On
the benefits, the failure of a single card only impacts ongoing
connections for the period before traffic failovers onto the
secondary card. In-flight connections, that is, connections
whose state is not yet present on both cards may only have
to retransmit some SYNs (and FINs). To see why, observe
that at any of the four steps for a new connection in Figure 5,
the failure of either cards at best requires a retransmission.3

Finally, planned card failures can be handled without any
impact as so: (X1) promote the secondary and pick a third
card to be the new secondary, (X2) take a checkpoint and (X3)
initiate bulk synchronization. Upon completion of the bulk
synchronization, the old primary card can be taken offline.4

2We use a small circular counter to track epoch values.
3We use a poison bit on the record written to the primary card which will

be deleted only after the packet pongs back from the secondary to handle
failures that may happen after step 2 in Figure 5.

4As a proof sketch, note that any new connection that reaches the new
primary (old secondary) after X1 will reach the new secondary via the ping-
pong method. Furthermore, all state at the time of the checkpoint, X2, will
have been reliably copied to the new secondary.

3.3 Dividing NF load appropriately
So far, we have shown that the state for NFs can be maintained
in a disaggregated resource pool with high availability. Here,
we discuss different design points which divide the NF load
between smart NICs that are directly attached to servers and
one or more cards in the disaggregated Sirius pool.

3.3.1 Pin fNIC locally or to one card pair

Here, the load of each fNIC is assigned either to the on-server
smart NIC or to a pair of cards as discussed in §3.2.

To realize pinning to a card pair, the outgoing packets of
an fNIC are encapped in an NVGRE tunnel and sent to the
chosen primary card in the Sirius pool which applies NFs on
the packets and forwards them on to the destination. Traffic
in the reverse direction takes an analogous path, first reaching
the appliance/card which applies NFs and then forwarded to
the VM if appropriate. We implement the encap and decap
logic at the smart NICs on the servers.

3.3.2 Disaggregation Cost/ Benefit Analysis

The above design point already leads to substantial cost sav-
ings from disaggregation because one appliance can handle
the NF load of over 24000 VMs on average. We compute
this number as follows. In §6, we will show that each card
used by Sirius can process over 16M new connections per sec-
ond (CPS) with an extensive set of NFs. There are 12 cards per
appliance. We assume that each VM has an average CPS load
of 4K which is 400× the current median load per Figure 2a
and we halve the NF capacity to replicate state as discussed
in §3.2. Hence, the cost for the additional switches, cables and
the appliance in Figure 4 amortize well. Moreover, regard-
ing peak load and temporal variations, note that these 24000
VMs may be distributed over hundreds of racks and, as we
saw in Table 2, the total load over many rack has much lower
variability. Thus, Sirius can meet SLOs with much smaller
surplus capacity in its disaggregated pools.

3.3.3 Split the load of an fNIC across multiple cards

With the previous design point, the maximum size of an fNIC
is limited by the capacity of one card in the Sirius pool. More-
over, as we will show, packing VMs into appliances is less
efficient when the size of the balls (i.e., the fNIC size of a
VM) becomes close to the size of the bins (i.e., NF capacity
in one card). Sirius appliances can also be implemented using
diverse hardware and different NFs may be better suited to
different hardware. To this end, we aim to split the load of an
fNIC across multiple cards or appliances. That is, different
portions of the traffic entering or leaving one VM can receive
their NF processing at different cards.

Consider splitting the load using a hash function–
hash(local IP, remote IP) mod n, in the encapper, to pick
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Figure 6: When spilling over NF load, as discussed in §3.3.4, we hash packets
into bins and assign the bins to either local (L) or remote (R) NF processing.
The figure shows two assignments new and old where the proportion of
load that is processed locally is 50% and 75% respectively. When bins are
re-assigned, the figure shows how we reduce the state that must be moved by
using both bin assignments for a short duration.

from among n different cards. Such a symmetric hash ensures
that the traffic of a flow in both directions will be processed
at the same location which is required by some NFs (e.g.,
NATs [55]). While this requirement can be met in other ways,
symmetric hashing requires no additional state at the encap-
per and decappers and we use hash functions that are easily
implementable in NICs. Next, some NFs require groups of
flows to be analyzed at one location. For example, a usage
meter or a DDoS detector may want to count all bytes from a
VM that leave the datacenter. Our experience is that most such
NFs have mergeable actions [39], for example, to compute
the total byte count, we can add up the partial sums from dif-
ferent processors. Many sketches (such as hyperloglog [54],
count-min [49]) are mergeable with small reduction in accu-
racy [39, 40]. Finally, when an fNICs traffic is split across
multiple NF processors, the ruleset corresponding to the fNIC
must be installed at all of the corresponding processors; in
practice, doing so adds overhead but is tenable because the
total state at the NF processors is dominated by the per-flow
state, counters and sketches rather than ruleset size; similarly
processing the ruleset dominates the computation at the NF
processor over the one-off installation of the ruleset.

3.3.4 Use Sirius as a load spillover

Thus far, all our load allocations have been static. That is, the
whole or a portion of an fNICs traffic was allocated statically
to the server’s smart NIC or to a Sirius pool. An alternative is
to move NF load that cannot be processed locally dynamically
into a Sirius pool. For example, we may start processing all
of the NF load locally on the server’s smart NIC and when
the total load nears smart NIC capacity, shed the excess load
into the Sirius pool. Doing so will allow cloud providers to
offer burstable SLOs on NF processing.5 One Sirius appliance
can scale to even more VMs compared to the pinned design-
point above because only the excess the load of fNICs will be
steered to the appliance.

Naïvely supporting such dynamism would require moving
the state of NFs. For example, if a portion of the traffic that
was to be processed on the smart NIC must now spill over

5Burstable allocations are already available for CPU and memory. They
allow short-duration bursts or price differently the average and peak usage.

into a Sirius pool then the corresponding state of all NFs must
move. Intuitively, doing so is complex and our key contribu-
tion is to do so efficiently and correctly. First, our design aims
to reduce the amount of state that must move to the extent
possible. We hash packet headers, partition the resulting hash
value into a fixed number of buckets (say 32), and assign dif-
ferent buckets to be processed for NFs at different locations.
To move load, we change the bucket assignments; that is, to
move 25% of the load from the smart NIC to a Sirius pool, we
would reassign a quarter of the buckets that were being pro-
cessed at the former location to the latter. Instead of moving
all of the NF state that corresponds to a moving bucket we
move lazily as shown in Figure 6. Effectively, newly created
state (e.g., state for new connections) immediately reflects the
current bucket assignment but for the previously established
state, we delay movement by a short period (τ). Connections
with duration below τ will not move and we observe that
long-lived connections comprise a small fraction of all con-
nections. The trade-off here is that we can rebalance load less
frequently (once per τ). Our second idea is that many kinds
of state can be re-created at the new NF processing location
by just processing packets. For example, stateful ACLs insert
the five tuples into a dictionary. The necessary information to
create such state – the five tuple – is present in every packet
of a flow and so, instead of moving state, we mark and steer
packets to their new NF processing location. For state that
cannot be recreated in this way, we craft new packets that
include the packet header of the original flow and the state
and transmit these packet to the new NF processing location.
When the new location acknowledges creating the requisite
state, the previous processing location deletes its state and
load steering will exclusively use the new bucket assignment.

4 Efficient and high-rate NF processing

Thus far, we have discussed how to disaggregate the process-
ing of stateful network functions in public clouds by using
cards that (1) support inline replication of state (§3.2), (2)
support various disaggregation design points including load
splits and state movement (§3.3), and (3) implement a rich set
of network functions (Table 1 and §2.1). Any implementation
that satisfies these requirements can be used in this design
including, for example, software-only or switch-only imple-
mentations. Here, we discuss our implementation which uses
a specific kind of programmable NIC and compares favorably
on functionality, performance and cost.

To process stateful network functions efficiently and at a
high rate, we use the P4 programmable card shown in Figure 7
which has two 100 (or 200)GbE QSPF+ connectors, multiple
pipelines that are programmable in P4, coherent shared mem-
ory, ARM cores for the more complex data plane processing
and specialized logic for encryption and compression.

Relative to FPGA-based smart NICs [58], conjoining
match-process-units (MPUs) that are programmable in P4
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(a) Architecture diagram of our programmable ASIC.
(b) Card functional diagram (above) and an actual pic-
ture (below).

Figure 7: Hardware used to enable efficient and high-rate NF processing.

Metric Sirius Other Packet Processors
DSC-200 Tofino Tofino2

Bandwidth (Tbps) 0.4 6.5 12.8
Memory 32GB 0.48GB 0.8GB
# Match Action
Pipelines

5 4 4

# Stages/ pipeline 4 12 20
Packet Buffer up to mem. 22MB 64MB
Integrated general-
purpose cores

16 0 0

Table 3: Salient differences between packet processing hard-
ware; Sirius uses the DSC-200 card [4] to support stateful
network functions at a high scale and performance.
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Figure 8: Stateful Load Balancer with NAT as implemented by Sirius.

with general purpose ARM cores gives us better programma-
bility and performance at a lower power cost. Intuitively,
power usage decreases because unlike FPGAs which expose
general gate-level programmability, our card only exposes
programmability in P4 that is needed to process protocols and
stateful NFs efficiently. We use the ARM cores to handle pro-
grams that may be challenging to implement in P4 [72] such
as reliably exchanging state migration messages (see §3.2).

Packets flow through one or more ingress and egress P4
pipelines and go through ARM cores only if needed. Each
pipeline operates at 400Gbps (over 50M packets per second)
thus ensuring line rate on both interfaces. We parse a packet
once and populate a packet header vector (PHV) which is used
by later stages. Each pipeline has local SRAM and TCAM
to store high bandwidth tables and can also access the shared
DRAM through a coherent shared memory which hides mem-
ory latency. A table engine at the beginning of each stage
protects against stalls by processing multiple PHVs, issuing
high latency reads in advance (e.g., to the DRAM), and mov-
ing to an MPU the next PHV for which all data is available.
Each stage has multiple match-process-units (MPUs) which
never stall and have dedicated write paths to the stage data
buffer wherein writes are merged at a bit level to allow mul-

tiple MPUs to update different fields of a PHV. The MPUs
implement a novel domain-specific instruction set architecture
with an emphasis on bit field manipulations and fast header up-
dates. We also use wide instructions (e.g., 64bit wide) which
lets us use richer encoding and fewer instructions.

Coupling ARM cores and MPUs: Our card connects the P4
pipelines via a high speed network-on-chip (NOC) to a full
system-on-chip (SOC) subsystem with multicore ARM A-72
CPUs. P4 programming determines which portions of packet
data, headers, or metadata should be delivered to the DRAM
and ARM on a per-application, per-packet basis. To support
chained operations which may combine a P4 control operation
with non-P4 operations, such as encryption or data integrity
checksum verification, we attach a chaining buffer directly to
the NOC to support high-bandwidth multi-hop chaining.

Illustrative Example: Using the case of a stateful load-
balancer, we call out key aspects of how our hardware imple-
mentation improves upon the state of the art. Figure 8 shows
a functional view of our stateful load balancer implementa-
tion. The relevant state (table shown with light background) is
stored in DDR memory on the card. The logic boxes (shown
in dark background) are implemented in the MPU pipelines
and the exception path (for a new flow which does not have a
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hit in the flow table) is handled by ARM cores. When load
balancers are implemented without per-flow state (e.g., using
a stateless hash function), any change to the pool of targets
will disrupt ongoing flows; for example, a failure in one of
the targets will cause the hash function to change from mod-n
to mod-n−1 and all flows whose targets change will be dis-
rupted [83]. Recognizing this issue, several large enterprises
deploy stateful load balancers which remember per flow the
target that the flow was assigned to [56,83,85,87]. Prior work
that proposes to accelerate stateful load balancers is limited by
on-switch memory, for example, Sailfish [85] uses the Tofino
chipset to support a few thousand stateful connections per
switch, while the other flows are processed in software and re-
ceive no benefits. In our tests, one card can support over 16M
concurrent connections and 3M new connections per second.
We note a few aspects that help us achieve such performance:

• Although the flow table (in grey on the left in Figure 8)
has one entry per ongoing connection, the rewrite table
uses indirection and can be significantly smaller in size.

• Our table datastructures allow for more expressive
rewrites including changes to the MAC addresses. Thus,
we can use a single rewrite table for multiple NFs beyond
load balancing (e.g., NVGRE encap [30]).

• We allow partitioning the MPU programs (shown in dark
in Figure 8) among multiple pipelines so as to leverage
data proximity.

• We divide the table ownership between ARM cores and
MPUs to avoid coordinating multiple writers.

• When a new flow arrives for load balance, an ARM core
installs entries in the flow and rewrite tables and reinjects
the first packet of that flow into the MPU pipelines.

Comparing with recent works [42, 47, 79, 94], two of the
P4 pipelines in the DSC (the Ingress and Egress pipelines
at the bottom of Figure 7a) resemble reconfigurable match
tables (RMT) [42] except that the DSC also has pipeline-local
SRAM and not just stage-local SRAM. However, unlike RMT,
all of the DSC pipelines can access shared DRAM through co-
herent caches. The DMA pipelines ({Tx-, Rx-, Sx-}DMA in Fig-
ure 7a) are novel and are triggered by timers and doorbells
from a programmable scheduler. PANIC [79] addresses chain-
ing offloads and is similar to the DSC which also uses spe-
cialized offloads (for crypto, compression and others, see Of-
floads in Figure 7a). However, while the DSC chains offloads,
offloads are not central to the use of DSC in Sirius. Flex-
Core [94] discusses runtime re-programmability of switches;
they add and remove P4 functions on an SN3000 [31] switch
with minimal disruption to ongoing activity. We do not dis-
cuss re-programmability of the DSC cards in this paper.
dRMT [47] pools all of the per-stage memory into shared
memory that is accessible to any stage and uses a run-to-
completion model wherein a packet is fully handled at one
processor (and not in a sequence of match-action stages as in
RMT). Our card offers larger shared DRAM instead. While it

is unclear how dRMT’s scheduler, which calculates a static
schedule at compile time to guarantee deterministic through-
put and latency, generalizes to the case of stateful NFs, the
DSC supports stateful NFs more simply by dividing the work
between P4 pipelines and ARM cores.

5 Implementation

We have implemented several stateful network functions (in-
cluding those in Table 1) on the programmable NIC shown
in Figure 7 from AMD Pensando. We have also added new
code to the smartNICs attached to the hosts in Azure to steer
traffic to and from the disaggregated Sirius pool. The result-
ing system, alongside software controllers to provision and
monitor the fNICs, is in public preview at Azure [1] .

6 Evaluation

First, in a lab setting using full line-rate traffic generators,
we show results for how the programmable NICs used in
Sirius handle stateful network functions. We also evaluate key
failure scenarios. Next, we report results from Azure wherein
fNICs of virtual machines and network virtual appliances are
offloaded to Sirius.

6.1 Methodology
Figure 9 shows our three experimental setups. On the left,
in a lab, we use a traffic generator that sends and receives
packets at hundreds of Gbps. We also mimic failures of the
ToR switches, links, and cards to evaluate our state replication.

The other two setups use Sirius’s production deployment in
Azure. Figure 9b measures the performance between virtual
machines (VMs) and Figure 9c measures the performance of
network virtual appliances (NVAs) [13,18,33] when deployed
on VMs. Here, we compare the default method that the public
cloud uses to process stateful NFs versus offloading those
NFs onto Sirius. In Figure 9b, we offload the floating NICs of
both the VMs onto Sirius. In Figure 9c, we offload the floating
NICs of the middlebox VM onto Sirius.

Stateful NFs: For the setup in Figure 9a, each card enforces
a large prioritized set of stateful ACLs. As shown in Table 4,
each ACL rule is a conjunction of predicates on sets or ranges
of source and destination addresses, ports and protocol. Rules
apply in priority order and may either accept or deny a con-
nection. Some rules are specific to individual VMs whereas
others apply to all VMs in a vnet or subscription. Recall
from §2.1 that stateful firewalls maintain per-flow state of all
ongoing connections so as to admit traffic in the reverse di-
rection. As discussed in §3.3, the cards also encap and decap
the packets to intercede on traffic transparently. For the VM-
to-VM setup in Figure 9b, VMs in the public cloud already
run many stateful NFs by default, for example, to virtualize
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(a) Testbed (b) VM to VM: Default vs. offloading to Sirius (c) NVAs with fNICs offloaded to Sirius

Figure 9: Evaluation setups. On the left is a testbed where we use iXIA breakingpoint [27] to generate traffic of up to 100Gbps. The other two figures depict our
experiment setups in Azure. We deploy VMs of different sizes and compare the performance when the Azure-specific stateful NFs are offloaded onto Sirius. On
the right we measure the performance of network virtual appliances (such as the Palo Alto VM-series firewall) when using floating NICs that offload onto Sirius.

Granularity of #Rules Total #Conjuncts (prefixes or ranges)
ACL set Src IP Dest. IP Src port Dest port
fNIC level 202 5102 5102 1021 1021
Subnet level 26 1168 1168 141 141
Subscription 8 394 394 57 57

Table 4: The ACLs for a stateful firewall deployed on the cards in Figure 9a;
note: some ACLs are unique per floating NIC whereas others are common
across all fNICs in a subnet or an entire subscription.

Resource type Resource Capacity
#Cores 2 4 8 16 32 64
Mem. (GB) 8 16 32 64 128 256
NIC Capacity (Gbps) 1 2 4 8 16 30

Table 5: The capacity of various resources for the SKUs used in Figure 9.

their network [2, 10, 22] or to estimate traffic bills [5, 9, 20].
In addition, we insert 1000 prioritized stateful ACLs on the
client VM; these ACLs are similar to those in the testbed
experiment. For the middlebox experiment in Figure 9c, we
configure each middlebox with the reference load specified
by the middlebox vendor.

VMs: We evaluate popularly-used Linux Ubuntu SKUs at
various public clouds as shown in Table 5. We choose VMs
with varying numbers of cores, from 2 to 64 vcpus; the other
resources vary roughly proportionally as shown.

Traffic: In Figure 9a, we generate UDP and TCP flows of
different sizes at different rates in an open loop using a syn-
thetic traffic generator [27]. This appliance must be physically
connected to switches and so, in the public cloud experiments,
we use VM-based traffic generators. The Linux network stack
cannot generate small TCP connections at high rates, e.g.,
fewer than 50K zero-byte flows per core [82]. We use the
TREX tool instead which, using DPDK, can generate TCP-
like connections at much higher rates [37].

6.2 Processing Stateful NFs in Sirius

To sum, the experiment here will show that when supporting
a rich set of stateful ACLs (Table 4) the programmable NIC
used by Sirius can support up to 3M new TCP connections
per second (Figure 10b) and over 50M UDP packets-per-
second (Figure 10a). The latency to ping-pong state messages
between a card pair is less than 40µs (Figure 10c).

In more detail, Figure 10 shows the thruput and latency
when the two cards in Figure 9a are set up as a state replicating
pair; that is, all state changes for SYNs and FINs are ping-

ponged between the cards as discussed in §3.2. Each datapoint
is a several minute experiment and the errorbars show the
range of measured values.

Since some stateful NFs are evaluated on every packet, we
first measure the maximum number of packets per second
(PPS) that our card can support by having the traffic generator
send the smallest possible UDP packets at the highest possible
rate.6 Figure 10a shows that our card supports over 50M
packets per second.7 Typical packets are larger, e.g., many
are MTU-sized, and so our card can process complex stateful
NFs at line-rate with a fair amount of headroom.

The end-to-end latency through the card for 64B and 1500B
packets is 2.36µs and 3.14µs respectively.

We also vary the number of concurrent flows which in-
creases the state on the card and can make NF processing
more challenging. Figure 10a shows only a modest decrease
in PPS up to 64M concurrent flows; state for these many flows
uses up most of the 32GB of DRAM on each card.

Finally, Figure 10a shows results for low power states of our
card wherein we decrease the frequency of the MPU pipelines
from their baseline value of 1.5GHz. Observe that we achieve
33% lower power draw with only a 25% drop in PPS. Thus,
dynamic power cycling appears viable.

Next, when new connections arrive (or old connections
finish) the state maintained in a stateful NF processor must
change. To measure the maximum number of new connections
per second (CPS) that one card pair can support, we have the
traffic generator issue TCP connections in an open-loop with
no payload.8 Figure 10b shows the packet drop probability (y
axes is in log scale) near our desired operating point of 3M
CPS. Lower values to the right are better. Since SYN and FIN
packets ping-pong between the cards, each card effectively
processes twice as many state changes. The remaining packets
of the connection, however, only go through the primary card.
Also, recall from §4 that only the ARM cores change state and
SYNs are reinjected into the MPUs after the ARM cores apply
the ruleset. Figure 10b shows that while the 68W power state
has very little effect on CPS, the lowest power state (52W)
reduces the CPS to about 2.5M. We are not yet sure why and

6Each packet is 118B due to VxLAN tunneling with an interframe gap
of 12B and the ethernet preamble of 8B [38]. Thus, on a 100Gbps link, the
generator issues roughly 90M packets/s.

7Per previous calculation, this amounts to 60Gbps.
86 packets per connection: SYN, SYN-ACK, ACK, FIN, FIN-ACK, ACK
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Figure 10: Card measurements in the lab setup shown in Figure 9a: when applying per connection the thousands of stateful ACLs shown in Table 4, the figures
show the thruput in PPS, packet drop probability and latency at different card power levels.

are looking into this issue.

For the CPS test above, Figure 10c measures the latency be-
tween sending a TCP SYN and receiving a SYN-ACK and the
latency portion that is attributed to ping-pong between cards.
The latency is flat at lower CPS load but grows super-linearly
at higher demands likely due to queuing at the ARM cores
or at reinjection. We note that RPCs can achieve a smaller
latency [70, 84] by reusing connections and the latency here
is better than that measured at the three clouds in Figure 3b.

6.3 Stateful NFs under faults
For the setup in Figure 9a, we have the traffic generator issue
small TCP flows open-loop at the rate of 3M per second. The
flows are spread over 16 floating NICs evenly allocated to the
two Sirius cards. We examine the impact of three changes:

(a) planned switchover from Card1 to Card2,
(b) links between ToR1 and both cards go down and
(c) Card1 goes down.

For each scenario, we conduct three different experiments
each lasting 60s and report average values. Each experiment
comprises roughly 180M TCP connections and 1.08B packets.
Table 6 shows that none of the flows broke as in there were
no RSTs or connection time-outs in all three scenarios.

During planned switchover of load, as discussed in §3.2,
Card2 advertises itself as the new destination for all of the
floating NICs that were mapped to Card1. During the ensuing
route reconvergence, the ToR switches drop 0.00316% of
the packets and there are no drops at either of the cards. A
naïve switchover would cause RSTs on half of the ongoing
connections (all conns with state on Card1).

In scenario (b), where ToR1’s links to both cards are down,
the net available network capacity in/out of the cards halves
but the CPS remains unaffected because, as noted in §3.1,
Sirius retains large network capacity to the cards even when
half of the connecting links fail. Table 6 shows that recovery
here is slower and there are more drops because more routes
must reconverge. The cards also see transient drops while
their paths move over to ToR2.

Change #Flow % of pkts dropped Recovery
breaks All At Cards Latency

(a) Planned switchover 0 0.00316% 0 1.89ms
(b) ToR1’s links to
both cards are down

0 0.00929% 0.0000227% 5.75ms

(c) Card1’s links to
both ToRs are down

0 0.00835% 0.0000201% 5.01ms

Table 6: Testing state replication under different fault scenarios in Figure 9a
with 3M new TCP flows/s. Note, recovery in milliseconds and the extremely
small fraction of packets that were dropped most of which are due to route
reconvergence at the ToR switches. The drops at the Sirius cards are all
packets that cannot be transmitted because the link to the next hop is down.

Scenario (c) mimics the failure of Card1. Here, the ToRs
detect Card1 as being down and route all fNIC traffic on the
backup BGP route to Card2. Contemporaneously, Card2 rec-
ognizes the failing peer, promotes itself to be the primary, and
notifies the Sirius controller asking for a new secondary card.
If card state was not replicated, half of all ongoing connec-
tions will receive RSTs in this scenario. Table 6 shows that no
connections break. Instead, only a few packets are dropped
most of which are at the ToRs. A few flows retransmit SYNs
and FINs9 which may have been lost without completing the
pingpong in Figure 5 but none of the connections timeout.

6.4 VM-to-VM: Offloading fNICs to Sirius

Figure 11 shows the maximum connections per second
achieved between pairs of VMs for the scenario in Figure 9b.
Recall from §6.1 that we use TREX, a DPDK based generator
on the VMs to create small TCP connections as many and
as quickly as possible. These VMs have the default stateful
NFs from public cloud and we add roughly 1000 randomly
generated stateful ACLs (see §6.1). The figure shows that
most of the VM SKUs, when onboarded on to Sirius, are only
limited by the NIC capacity. That is, our tool makes as many
connections as possible given the capacity limit of the NIC.10

The figure shows that with Sirius, one VM pair can achieve

90.0062% and 0.0126% of the TCP flows respectively
106 packets per TCP connection each of which is 118 bytes after VxLan

encapsulation which translates to 176.5K CPS per Gbps of NIC capacity.
NIC capacities of the VMs are as shown in Table 5.
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Figure 11: When the floating NIC of a VM is mapped onto the Sirius pool,
showing the maximum CPS achieved between pairs of VMs.

over 1.5M connections per second. This value is below the
maximum value per card – 3M CPS from Figure 10b– due to
inefficiencies we believe in the code that steers fNIC traffic
in the Azure smartNIC [58]. The figure also shows the CPS
achieved using c5n series instances at EC2 using the same
tool, the same configuration and the same guest OS. The lower
CPS could be because EC2 employs different stateful NFs at
each VM, uses a different NF processing system [6], applies
explicit rate limits or some combination of all of the above.
Comparing also with Figure 3a, we show that using Sirius
a VM can achieve roughly 5× to 10× higher CPS. Further,
recall from §3.3 that Sirius can split the load of a VM between
multiple cards and so even higher CPS may be achievable.

6.5 Measuring the Sirius datapath in Azure
To compare the datapath offered by the Sirius fNICs with
the default datapath in Azure, we randomly and repeatedly
deploy VMs and measure the latency and thruput on the two
datapaths. Each VM in this experiment is equipped with three
virtual NICs, one of which is used as the management inter-
face and the other two are configured to use Sirius or AccelNet
(the default in Azure) [58] respectively. The results shown are
over millions of packets and tens of unique VM pairs.

Figure 12a shows that the thruput achieved is nearly identi-
cal; with a small number of TCP flows, iPerf [26] can reach
the NIC capacity on both of the datapaths.11

Figure 12b shows the latency for three kinds of applications.
On the left are applications such as ping, tcping and hping3
which use the traditional in-kernel network stack. Such apps
do not see any change in their RTT when using Sirius. Notice
that with Sirius the datapath between a VM pair traverses up
to two programmable NICs corresponding to the VMs’ float-
ing NICs. However, any increase in the physical length of the
network path appears to be masked by the latency added by
the guest kernel network stacks. In the middle of Figure 12b
is the latency for the custom tool that we used in §2.3 which

11As noted in Table 5, the NIC capacity limits for the 16 and 64 core VMs
that we used here are 8Gbps and 30Gbps respectively.
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Figure 12: Comparing the datapath of AccelNet [58] with the disaggregated
path through Sirius in Azure.

establishes TCP connections on raw sockets. As the figure
shows, for such apps Sirius offers a better RTT than AccelNet
because although Sirius may have a longer physical path, Ac-
celNet takes much longer to process the stateful NFs for each
new TCP connection. A third set of applications, on the right
in Figure 12b, achieve very small latency by bypassing both
the kernel network stacks (using an optimized DPDK app that
we built) as well as the cloud’s stateful NFs (by using UDP
packets). As the figure shows, the typical latency for such
apps is 15µs and 50µs respectively on the AccelNet [58] and
Sirius datapaths. Note also the values on the tail. We conclude
that any additional latency due to Sirius will only be visible
to a small subset of applications and that for the vast majority
of TCP-like traffic Sirius represents a clear improvement.

6.6 Offloading fNICs of middlebox NVAs

For the experiment setup shown in Figure 9c, Figure 13 shows
the CPS achieved by traffic through different middlebox VMs.
We generate results for Sirius using 32 core VMs as clients
and servers of the traffic and offload the floating NIC of
the middlebox VM onto Sirius. For all of the public clouds,
we pick the best possible CPS numbers from datasheets re-
leased by the middlebox vendors [13, 17–19, 34]. The figure
shows that using Sirius substantially improves the achievable
throughput because the stateful network functions that cloud
providers apply by default on the middlebox VM are often
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the limiting factor to middlebox performance.

7 Related Work

The key focus of Sirius is to disaggregate stateful network
functions onto pools of programmable NICs which tightly
integrate P4-programmable MPUs and general purpose ARM
cores with a large coherent memory system. With Sirius, we
show how to replicate connection state inline so that indi-
vidual card failure does not adversely impact ongoing con-
nections (§3.2), discuss multiple design-points which split or
migrate the load of a VM across different NF processors (§3.3)
and offer an implementation that achieves better performance-
over-cost than state-of-the-art (§4).

We are unaware of any prior characterization of the NF
load at a large public cloud (§2.2). However, the case for dis-
aggregation based on NF load being skewed across VMs and
decorrelated (that is, having smaller variance when consid-
ered in aggregates such as at rack-level) is similar to the cases
made to disaggregate other resources [59,66,74,78,89,91,96].

The state-of-the-art in processing stateful network func-
tions is either in vswitch software or on programmable FP-
GAs that are directly connected to the host [6, 57, 58]. An-
dromeda [52] processes NFs at dedicated software middle-
boxes but explicitly states that they do not support stateful
functions listing concerns such as ‘state loss during upgrade
or failure’, ‘transferring state when offloading’ and ‘ensuring
that flows are ‘sticky’ to the hoverboard that has the correct
state’ [52]. We address some of these challenges in §3 and to
the best of our knowledge are the first to disaggregate the rich
class of stateful NFs listed in Table 1 and §2.1.

Offloading stateful network functions is non-trivial since
a large amount of memory to maintain state must be accessi-
ble at high speeds. SRAMs support switch linerates but are
expensive and so we use a bag of NICs architecture with
memory coherence. Some prior works offload specific state-
ful NFs into programmable hardware [41, 83, 85]; however,
they use switches and can only offload only a small subset

of all flows, e.g., top-k by rate [41, 83, 85]. To compensate,
TEA [73] pairs Tofinos with memory on remote servers and
uses RPCs to access the remote state. When state is remote,
it is challenging to achieve high performance and reliability.
Also, Tofinos lack integrated general-purpose cores which
forces TEA to build, in P4, a new RPC and a new reliable
transport. With Sirius, each card has much larger memory. We
replicate state between NICs on nearby servers in one pool
and our general-purpose ARM cores simplify the logic. We
believe that pairing cards which have tightly-integrated MPUs
and ARM cores facilitates richer forms of disaggregation.

Another alternative is to use custom FPGAs with large
memory (e.g., Xilinx and Altera). We are unaware of any
works that match the performance and power draw of our
cards using FPGAs. We believe that (1) P4 programmable
MPUs are fundamentally more efficient than FPGAs [43, 76,
77], and (2) carefully dividing work between MPUs and ARM
cores is key for high performance.

We discuss other related work in §C.

8 Conclusion

Stateful network functions are a key cog in today’s public
cloud architectures. We disaggregate their processing into
a shared pool. Doing so avoids paying for smart-NICs at
each server that are provisioned to support peak load, reduces
constraints in VM placement and increases performance on
the tail. Moreover, we attach this shared pool to the data-
center network at the layer off which most packets bounce
off in the CLOS and so the latency and bandwidth overhead
from packets taking a detour to the shared pool is small. We
show a novel and simple solution that replicates connection
state between pairs of cards without buffering packets while
replicating state. We use NICs that have large memory, P4-
programmable match-action pipelines and integrated general-
purpose ARM cores. Our results from deployment at Azure
show that network usage at VMs can reach NIC capacity
even when complex stateful NFs are executed on each new
connection and every packet.
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A Discussion

A.1 Complications in failover
It is possible for the ToR switches (shown in green in Fig-
ure 4), which probe the cards for liveness, to reach different
liveness estimates for a card pair. That is, one of the switches
can conclude a card is down while the other switch concludes
otherwise. Similarly, even though we use multiple heartbeats
and there are multiple network paths between a card pair, it is
possible that so many consecutive heartbeats are lost allowing
one of the cards in a card pair to conclude that the peer is
down even though the peer is alive. A split-brain happens
when different parts of the network assume that different cards
(in a card pair) are responsible for an fNIC. Recall that the
primary card announces a BGP route with a smaller AS path
which helps resolve some of these complications. In addition,

we notify all card role changes to a logically centralized Sirius
controller which helps to ensure that split-brain cases, were
they to happen, do not persist for very long.

A.2 fNIC abstraction guarantees

We statically partition each card’s capacity, on the dimensions
listed in §3, among the fNICs that are mapped to a card. The
capacity values that we use for apportioning (e.g., the last row
of Table 7) are slightly smaller than the maximum values that
we see in experiments using iXIA traffic generators and a rich
variety of network functions in subsection 6.2 and so we do
not anticipate performance interference issues at the card.

A.3 Encryption, Traffic QoS

Some aspects such as end-to-end encryption and traffic pri-
oritization can require on-host support. With Sirius, we are
exploring how to divide such functions between the disaggre-
gated pool and the smart NIC that is directly attached to the
host. For example, the disaggregated pool can perform the
more stateful processing such as exchanging keys or determin-
ing which queue to assign a flow to so as to meet its priority
class or bandwidth limit while the on-host FPGA performs
tasks that require less state such as marking or rate limiting
queues [90].

B Additional Results

B.1 Packing floating NICs into Sirius cards

Table 7 shows the sizes of the floating NICs that Sirius offers
and the card capacity. A Sirius appliance has 12 cards. We
evaluate several vector bin packing heuristics [61, 86] to pack
fNICs onto Sirius cards. Our results in Figure 14 show that:

• The optimal choice of a packing heuristic, in terms of
packing efficiency, depends on the size distribution of
the fNICs and whether or not we split load of an fNIC
across multiple cards.

• In some cases, such as when small fNICs dominate the
workload, any heuristic can achieve the average capacity
bound12 which assumes that there are no card boundaries
and that all resources are in one large pool.

• Splitting the load of an fNIC across cards substantially
improves efficiency but also increases state that must
be maintained on cards since rulesets belonging to split
fNICs must now be deployed on multiple cards. The per
flow and per endpoint state substantially dominates the
ruleset size however. Nevertheless, we aim to split only
fNICs that have large resource needs.

12bound = minresourcer
total capacity on r
avg. FNI load on r
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(a) Packing efficiency when the fNICs listed in Table 7
arrive as per the production distribution from §2.2.
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(b) Comparing the packing efficiency when the fNICs
listed in Table 7 arrive with an equal probability.
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(c) The case of Figure 14b except with the load from
each fNIC split evenly across two cards.

Figure 14: Comparing different vector bin packing strategies when mapping floating NICs (granularity of resource allocation for network functions supported by
Sirius as listed in Table 7) to a Sirius appliance with 12 cards.

Term Resource Sizing
#New Flows (Mil-
lions Per Sec.)

# Concurrent
Flows (M)

Throughput
(Gbps)

FNI_XXS 0.05 1 5.0
FNI_XS 0.10 1 10.0
FNI_S 0.25 2 12.5
FNI_M 1.00 2 12.5
FNI_L 2.00 4 12.5

FNI_XL 3.00 16 50.0

Sirius card 3.00 16 200.0

Table 7: The resource sizes, along multiple dimensions, that Sirius associates
with different kinds of floating NICs. Cloud customers can choose which
floating NIC to associate with their VM.

B.2 Variation in the load for NFs at Azure
We analyze load variability across all containers in Azure
using the same dataset described in §2.2.

Figure 15a shows the temporal variation in the cumulative
NF load. The figure shows many short-lived spikes, some
of which are larger than 4×; note y axes is in log-scale. We
also see some innate variability in the steady-state load across
these nodes.

Figure 15b is a 2D matrix where each entry represents
the number of containers that have the corresponding (x, y)
value. The x axes is the average numbers of new flows in each
minute. The y axes is the coefficient of variation in the same
metric (=stdev./ avg.). Both axes are in log-scale. As well, the
number of containers which is shown as a heat plot on the
right is also in log scale. The figure shows that most of the
containers have between 10 to 1000 new flows per minute
and the coefficient of variation is typically between 0.1 and 1.
While the variability is high for many containers, containers
with more average load appear to only have slightly higher
variability and there are no unexpected patterns.

C Additional Related Work

State replication for fault tolerance has received much atten-
tion; see [53, 64] for a review. Our method in §3.2 is different
from the primary-backup style replication [44, 51] wherein
the primary processes requests, forwards state changes to the
backup and emits responses after receiving an acknowledge-
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(a) Temporal changes in NF load; showing the total load at three randomly
chosen nodes; note: y axes is in log scale.
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(b) Clustering containers based on their average NF load and the coefficient of
variability (=stdev/ avg) of their NF load.

Figure 15: Additional characterization results from the dataset in §2.2.

ment from the backup. Our method is also different from
Paxos-like protocols [46, 48, 50, 81] where replicas first agree
on an order in which to process requests and then process
the requests. The key difference is that both alternatives hold
requests while replication is underway. In the case of stateful
NFs, requests are packets that change state and so holding re-
quests at speeds of hundreds of Gbps will require a very large
packet buffer. To our knowledge, we are unaware of any prior
work that ping-pong’s packets between replicas which effec-
tively holds the requests on the network wire. Redplane [72]
replicates the state between programmable switches and a
server-based remote state store but must cope in P4 with route
changes that happen between the switches and the server-
based store. Our method is simpler and more performant.
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For the case of moving state on-the-fly between multiple
NF processors, OpenNF [60] is perhaps the first to describe
in detail the multiple issues that arise. Their solution how-
ever buffers all the packets that arrive while the state is being
moved at an SDN controller (e.g., Floodlight [16]) which
becomes a scaling bottleneck. OpenNF [60] reports results
for O(100) flows (e.g., “a loss-free move involving state for
500 flows takes only 215ms”) whereas each fNIC in Sirius
can have many millions of ongoing flows. Similar to Red-
Plane [72], StatelessNF [69] and [71] store relevant NF state
in an external state store (e.g., in a RAMCloud [69]). As
noted above, relative to Sirius (which stores state in a nearby
secondary card), we believe that storing state in an external
state store has higher intrinsic overheads.
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