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Abstract
Data center networks are inclined towards increasing line

rates to 200Gbps and beyond to satisfy the performance re-
quirements of applications such as NVMe and distributed ML.
With larger Bandwidth Delay Products (BDPs), an increasing
number of transfers fit within a few BDPs. These transfers
are not only more performance-sensitive to congestion, but
also bring more challenges to congestion control (CC) as they
leave little time for CC to make the right decisions. There-
fore, CC is under more pressure than ever before to achieve
minimal queuing and high link utilization, leaving no room
for imperfect control decisions.

We identify that for CC to make quick and accurate deci-
sions, the use of precise congestion signals and minimization
of the control loop delay are vital. We address these issues by
designing Bolt, an attempt to push congestion control to its
theoretical limits by harnessing the power of programmable
data planes. Bolt is founded on three core ideas, (i) Sub-RTT
Control (SRC) reacts to congestion faster than RTT control
loop delay, (ii) Proactive Ramp-up (PRU) foresees flow com-
pletions in the future to promptly occupy released bandwidth,
and (iii) Supply matching (SM) explicitly matches bandwidth
demand with supply to maximize utilization. Our experiments
in testbed and simulations demonstrate that Bolt reduces 99th-
p latency by 80% and improves 99th-p flow completion time
by up to 3× compared to Swift and HPCC while maintaining
near line-rate utilization even at 400Gbps.

1 Introduction

Data center workloads are evolving towards highly parallel,
lightweight applications that perform well when the network
can provide low tail latency with high bandwidth [5]. Accord-
ingly, the Service Level Objectives (SLOs) of applications are
becoming more stringent, putting increasing responsibility
on network performance. To support this trend, the industry
is inclined towards increasing line rates. 100Gbps links are
already abundant, 200Gbps is gaining adoption, and industry
standardization of 400Gbps ethernet is underway [24].
∗Work done as a student researcher at Google
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Figure 1: RPC size distribution for READ operations

With the increasing line rates, CC needs to make decisions
with higher quality and timeliness over a burstier workload.
We illustrate this based on a recent analysis of RPC sizes in
our data centers with respect to BDP sizes at 100Gbps and
400Gbps (calculated using a typical base delay/RTT in data
centers). Our findings are presented in Figure 1.

The fraction of RPCs that fit within 1 and 4 BDP increases
from 62% and 80% at 100Gbps to 80% and 89% at 400Gbps.
These RPCs are performance-sensitive to queuing and under-
utilization. Ultimately, even a single incorrect or slow CC
decision may end up creating tens of microseconds of tail
queuing [12], or cause under-utilization [53] which prolongs
the flow completion time by a few RTTs. Therefore, an
increasing fraction of such RPCs raises the bar for the quality
and timeliness of CC.

Concomitantly, at higher bandwidth, the workload becomes
burstier and thus harder to control. Figure 1 also reveals that a
400Gbps link with just 40% load sees an RPC arrival or com-
pletion roughly every RTT! Hence, it becomes more difficult
to control queuing and under-utilization as they arrive and
finish quickly at RTT timescales. We expect these numbers
to be even more challenging for upcoming workloads such as
disaggregated memory and ML.

We identify two key aspects of CC that are important to
address the challenges of achieving higher CC quality and
timeliness on burstier workloads:

First, granular feedback about the location and severity of
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congestion allows avoiding over/under-reaction [3]. A precise
CC algorithm would receive the exact state of the bottleneck
to correctly ramp down during congestion and ramp up during
under-utilization. This congestion information would intu-
itively involve telemetry such as the current queue occupancy
and a measure of link utilization [35]. Then, end-hosts would
be able to calculate the exact number of packets they can
inject into the network without creating congestion.

Second, the control loop delay is a determinant of how
sensitive a control algorithm can be. It is defined as the delay
between a congestion event and the reaction from the senders
arriving at the bottleneck. Smaller the control loop delay, the
more accurate and simpler decisions a control system can
make [41]. The state-of-the-art CC algorithms in production
are reported to work well to the extent their control loop delay
allows [30, 35, 60]. However, even a delay of one RTT will
be too long to tolerate for future networks because of the
increasing BDPs [58]. We conjecture that the inevitable next
step is to reduce the control loop delay to sub-RTT levels.

Fortunately, the flexibility and precision provided by pro-
grammable switches [7, 11, 22] allow designing new mecha-
nisms to reduce the control loop delay and increase the gran-
ularity of control algorithms. These state-of-the-art switches
can generate custom control signals to report fine-grained
telemetry so that flows don’t need to rely on end-to-end mea-
surements for detecting congestion at the bottleneck link.

In this work, we present Bolt, our effort of harnessing
the power of programmable data planes to design an ex-
tremely precise CC for ultra-low latency at very high line
rates. Bolt collects congestion feedback with absolute mini-
mum (sub-RTT) delay and ramps up flows proactively to oc-
cupy available bandwidth promptly. To achieve this, it applies
the "packet conservation" principle [25] onto the traffic with
accurate per-packet decisions in P4 [9]. Small per-packet
cwnd changes, combined with the fine-grained in-network
telemetry, help limit the effects of noise in the instantaneous
congestion signal. With Bolt, end-hosts do not make im-
plicit estimations about the severity and exact location of the
congestion or the number of competing flows, freeing them
from manually tuned hard coded parameters and inaccurate
reactions.

The main contributions of Bolt are:

1. A discussion for the fundamental limits of an optimal
CC algorithm with minimal control loop delay.

2. Description of 3 mechanisms that collectively form the
design of Bolt – an extremely precise CC algorithm with
the shortest control loop possible.

3. Implementation and evaluation of Bolt on P4 switches
in our lab which achieves 86% and 81% lower RTTs
compared to Swift [30] for median and tail respectively.

4. NS-3 [48] implementation for large scale scenarios
where Bolt achieves up to 3× better 99th-p flow comple-
tion times compared to Swift and HPCC [35].

The remainder of the paper describes the rationale behind
the design of Bolt in §2, design details in §3, and implemen-
tation insights in §4. Further evaluations and benchmarks
are provided in §5 followed by practical considerations in §6.
Finally, a survey of related work is presented in §7.

2 Towards Minimal Control Loop Delay

Timely feedback and reaction to congestion are well under-
stood to be valuable for CC [42]. With Bolt, we aim to push
the limits on minimizing the control loop delay that is com-
posed of two elements: (1) Feedback Delay (§2.1) is the time
to receive any feedback for a packet sent, and (2) Observa-
tion Period (§2.2) is the time interval over which feedback is
collected before cwnd is adjusted. Most CC algorithms send
a window of packets, observe the feedback reflected by the
receiver over another window, and finally adjust the cwnd,
having a total control loop delay that is even longer than an
RTT [1, 10, 19, 30, 35, 60]. In this section, we describe both
Feedback Delay and Observation Period in detail and discuss
how these elements can be reduced to their absolute minimum
motivating Bolt’s design in §3.

2.1 Feedback Delay
There are two main types of feedback to collect for congestion
control purposes: (i) Congestion Notification and (ii) Under-
utilization Feedback.

2.1.1 Congestion Notification

The earliest time a CC algorithm can react to drain a queue is
when it first receives the notification about it. Traditionally,
congestion notifications are reflected by the receivers with
acknowledgments [1, 8, 30, 35, 42, 47, 60]. We call this the
RTT-based feedback loop since the delay is exactly one RTT.

To demonstrate how notification delay affects performance,
we run an experiment where the congestion notification is
delivered to the sender after a constant configured delay (and
not via acknowledgments). Setting this delay to queuing delay
plus the propagation time in the experiment is equivalent to
RTT-based control loops described above. The experiment
runs two flows with Swift CC [30] on a dumbbell topology1

where the second flow joins while the first one is at a steady
state. The congestion signal is the RTT the packet will observe
with current congestion. Figure 2 (left) shows the time to
drain the congested queue for different notification delays.
Clearly, smaller notification delay helps mitigate congestion
faster as senders react sooner to it.

More importantly, in addition to traveling unnecessary
links, traditional RTT-based feedback loops suffer from the
congestion itself because the notification waits in the con-
gested queue before it is emitted. Adding the queuing delay

1RTT is 8 µs and all the links are 100Gbps.
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Figure 3: Under-utilization feedback

to the notification delay hinders tackling congestion even
more. During severe congestion events, this extra delay can
add multiples of the base RTT to the feedback delay [30].

To understand this more, we also measure the congestion
mitigation time of scenarios where the notification is gener-
ated at different locations in the network in Figure 2 (right).
"Rcvr" represents the RTT-based feedback loop where the
congestion notification is piggybacked by the receiver. "Egr"
is when the switch sends a notification directly to the sender
from the egress pipeline, after the packet waits in the con-
gested queue. "Ing" is when the notification is generated at
the ingress pipeline, as soon as a packet arrives at the switch.
As expected, generating the congestion notification as soon
as possible improves performance by more than 2×.

Correspondingly, we stress that in order to reduce the noti-
fication delay to its absolute minimum, the congestion notifi-
cation should travel directly from the bottleneck back to the
sender without waiting in the congested queue.

2.1.2 Under-utilization Feedback

While flow arrival events add to congestion in the network,
flow completion events open up capacity to be used by other
flows. When a flow completes on a fully utilized link with
zero queuing, the packets of the completing flow leave the
network and the link will suddenly become under-utilized
until the remaining flows ramp up (Figure 3a). As traffic gets
more dynamic, such under-utilization events become more
frequent, reducing the total network utilization. Therefore,
in addition to detecting congestion, a good control algorithm
should also be able to detect any under-utilization in order to
capture the available bandwidth quickly and efficiently [44].

In practice, CC schemes deliberately maintain a standing
queue under a steady state, so that when a flow completes,
the packets in the queue can occupy the bandwidth released
by the finished flow until the remaining flows ramp up [34,
40]. For example, while HPCC was designed to keep near-
zero standing queue, the authors followed up that in practice,
HPCC target utilization should be set to 150% to improve
network utilization [36], which implies half a BDP worth
of standing queue. Other CC schemes used in practice also
maintain standing queues by filling up the buffers to a certain
level before generating any congestion signal [1, 30, 60].

Figure 4 demonstrates how Swift behaves upon a flow com-

pletion when a long enough standing queue is not maintained.
There are two flows in the network2 and one of them com-
pletes at t = 200µs. The remaining flow’s cwnd takes about
25 RTTs to occupy the released bandwidth as per the addi-
tive increase mechanism in Swift. During this time interval,
under-utilization happens despite the non-zero queuing at a
steady state. This under-utilization can also be observed when
there are a larger number of flows if the standing queue size
is not adjusted appropriately [53].

Ideally, any remaining flow should immediately capture
the cwnd of the completing flow without under-utilizing the
link. Therefore we conclude that an optimal congestion con-
trol algorithm would detect flow completions early enough,
proactively, to ramp up as soon as the spare capacity becomes
available (Figure 3b).

2.2 Observation Period
In addition to the feedback delay, the total control loop delay
is usually one RTT longer for window-based data center CC
schemes. Namely, once the sender adjusts its cwnd, the next
adjustment happens only after an RTT to prevent reacting to
the same congestion event multiple times. We call this extra
delay the observation period and illustrate it in Figure 5.

Once-per-window semantics is very common among CC
schemes where the per-packet feedback is aggregated into
per-window observation. For example, DCTCP [1] counts the
number of ECN markings over a window and adjusts cwnd
based on this statistics once every RTT. Swift compares RTT
against the target every time it receives an ACK but decreases
cwnd only if it has not done so in the last RTT. Finally, HPCC
picks the link utilization observed by the first packet of a
window to calculate the reference cwnd which is updated
once per window. As a consequence, flows stick to their cwnd
decision for an RTT even if the feedback for a higher degree
of congestion arrives immediately after the decision.

Updating cwnd only once per window removes information
about how dynamic the instantaneous load was at any time
within the window. This effect, naturally, results in late and/or
incorrect congestion control decisions, causing oscillations
between under and over-utilized (or congested) links when
flows arrive and depart. Consider the scenario2 in Figure 6

2The dumbbell topology from Figure 2 (RTT: 8 µs, 100Gbps links).
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where a new flow joins the network at t = 100µs while another
flow is at its steady state. HPCC drains the initial queue built
up in a couple of RTTs, but immediately oscillates between
under-utilization and queuing for a few iterations. Moreover,
the completion of a flow at t = 650µs again causes oscillations.
Under highly dynamic traffic, such oscillations may increase
tail latency and reduce network utilization.

An alternative way to avoid oscillations would be to react
conservatively similar to Swift. It also reduces cwnd only
once in an RTT during congestion but uses manually tuned
parameters (i.e. ai and β) to make sure reactions are not impul-
sive. Although oscillations are prevented this way, Figure 6
shows that Swift takes a relatively long time to stabilize.

We conclude that once per RTT decisions can lead to either
non-robust oscillations or relatively slow convergence. This
is especially problematic in high-speed networks where flow
arrivals and completions are extremely frequent. Ideally, the
shortest observation period would be a packet’s serialization
time because it is the most granular decision unit for packet-
switched networks. Yet, the per-packet CC decisions should
only be incremental to deal with the noise from observations
over such a short time interval.

3 Design

Bolt is designed for ultra-low-latency even at very high line
rates by striving to achieve the ideal behavior shown in Fig-
ures 4 and 6. The design aims to reduce the control loop
delay to its absolute minimum as described in §2. First, the
congestion notification delay is minimized by generating no-
tifications at the switches and reflecting them directly to the
senders (§3.1). Second, the flow completion events are sig-
naled by the senders in advance to hide the latency of ramp-up
and avoid under-utilization (§3.2). Third, cwnd is updated
after each feedback for quick stabilization where the update
is at most one per packet to be resilient to noise. Together,
these three ideas allow for a precise CC that operates on a
per-packet basis minimizing incorrect CC decisions.

Prior works have separately proposed sub-RTT feedback
[17, 50, 57], flow completion signaling [18], and per-packet

cwnd adjustments [16, 27] which are discussed in §7. Bolt’s
main innovation is weaving these pieces into a harmonious
and precise sub-RTT congestion control that is feasible for
modern high-performance data centers. The key is to address
congestion based on the packet conservation principle [25]
visualized in Figure 7 where a network path is modeled as
a pipe with a certain capacity of packets in-flight at a time.
When the total cwnd is larger than the capacity by 1, there is
an excess packet in the pipe which is queued. If the total cwnd
is smaller than the capacity by 1, the bottleneck link will be
under-utilized by 1 packet per RTT. Therefore, as soon as a
packet worth queuing or under-utilization is observed, one of
the senders should immediately decrement or increment the
cwnd, without a long observation period.

Bolt’s fundamental way of minimizing feedback delay and
the observation period while generating precise feedback for
per-packet decisions is materialized with 3 main mechanisms:

1. SRC (Sub-RTT Control) reduces congestion notifica-
tion delay to its absolute minimum. (§3.1)

2. PRU (Proactive Ramp Up) hides any feedback delay
for foreseen under-utilization events. (§3.2)

3. SM (Supply Matching) quickly recovers from unavoid-
able under-utilization events. (§3.3)

To realize these 3 mechanisms, Bolt uses 9 bytes of
transport-layer header detailed in listing 1. We explain the
purpose of each field as we describe the design of Bolt whose
switching logic is summarized in Algorithm 1.

cwnd=4
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cwnd=4

cwnd=3

cwnd=4

Bottleneck

Queuing

Under
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Zero Queuing
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Figure 7: Pipe model of Packet Conservation Principle
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Algorithm 1: BOLT LOGIC AT THE SWITCH

1 BoltIngress (pkt):
2 if !pkt.data then ForwardAndReturn(pkt)
3 CalculateSupplyToken(pkt) . see Algorithm 3
4 if cur_q_size≥CCT HRESH then . Congested
5 if !pkt.dec then
6 pktsrc.queue_size← switch.q_size
7 pktsrc.link_rate← switch.link_rate
8 pktsrc.t_data_tx← pkt.tx_time
9 SendSRC(pktsrc)

10 pkt.dec, pkt.inc← 1,0
11 else if pkt.last then . Near flow completion
12 if !pkt. f irst then pru_token++
13 else if pkt.inc then . Pkt demands a token
14 if pru_token > 0 then
15 pru_token← pru_token−1
16 else if sm_token≥MTU then
17 sm_token← sm_token−MTU
18 else
19 pkt.inc← 0 . No token for cwnd inc.
20 ForwardAndReturn(pkt);

Listing 1: Bolt header structure

1 header bolt_h:
2 bit<24> q_size; // Occupancy at the switch
3 bit<8> link_rate; // Rate of congested link
4 bit<1> data; // Flags data packets
5 bit<1> ack; // Flags acknowledgements
6 bit<1> src; // Flags switch feedback
7 bit<1> last; // Flags last wnd of flow
8 bit<1> first; // Flags first wnd of flow
9 bit<1> inc; // Signals cwnd increment

10 bit<1> dec; // Signals cwnd decrement
11 bit<1> reserved; // Reserved
12 bit<32> t_data_tx; // TX timestamp for data pkt

3.1 SRC - Sub-RTT Control
As discussed in §2.1.1, a smaller feedback delay improves
the performance of CC. Therefore, Bolt minimizes the delay
of the feedback by generating control packets at the ingress
pipeline of the switches and sending them directly back to
the sender, a mechanism available in programmable switches
such as Intel-Tofino2 [32]. While in spirit, this is similar to
ICMP Source Quench messages [45] that have been depre-
cated due to feasibility issues in the Internet [33], Bolt’s SRC
mechanism exploits precise telemetry in a highly controlled
data center environment.

Figure 8 depicts the difference in the paths traversed by the
traditional ACK-based feedback versus the SRC-based feed-
back mechanism. As SRC packets are generated at ingress,
they establish the absolute minimum feedback loop possible
by traveling through the shortest path between a congested
switch and the sender. Moreover, to further minimize the

Sender Receiver

SRC ACK

Figure 8: Path of ACK-based vs. SRC-based feedback

feedback delay, Bolt prioritizes ACK and SRC packets over
data packets at the switches.

Bolt generates SRC packets for every data packet that ar-
rives when the queue occupancy is greater than or equal to the
CCT HRESH which is trivially set to a single MTU for minimal
queuing. Yet, if there are multiple congested switches along
the path of a flow, generating an SRC at each one of them
for the same data would flood the network with an excessive
amount of control packets. To prevent flooding switches mark
the DEC flag of the original data packet upon generation of
an SRC packet, such that no further SRC packets at other
hops can be generated due to this packet (lines 5 and 10 in
Algorithm 1). This implies that the number of SRC packets
is bounded by the number of data packets in the network at
any given time. In practice, however, we find that the actual
load of SRC packets is extremely lower (§5.2.1) and present
an approximation for the additional load of SRC packets in
Appendix A.

When there are multiple congested hops, and the flow re-
ceives SRC packets only from the first one, the cwnd decre-
ment still helps mitigate congestion at all of them. Conse-
quently, even if congestion at the first hop is not as severe
as the others, Bolt would drain the queue at the first hop and
quickly start working towards the subsequent hops.

Bolt stamps two vital pieces of information on the SRC
packets – the current queue occupancy and the capacity of the
link. In addition, it reflects the TX timestamp of the original
data packet (lines 6-8 in Algorithm 1). As the sender receives
this packet, it runs the decision logic shown in Algorithm 2.
First, rttsrc is calculated as the time between transmitting the
corresponding data packet and receiving an SRC packet for
it. This is the congestion notification delay for Bolt which
is always shorter than RTT and enables sub-RTT control.
The reflection of the TX timestamp enables this computation
without any state at the sender. Next, reaction_ f actor is cal-
culated as a measure of this flow’s contribution to congestion.
Multiplying this value with the reported queue occupancy
gives the amount of queuing this flow should aim to drain.
All the flows aiming to drain only what they are responsible
for organically help for a fair allocation.

Finally, rttsrc
targetq

gives the shortest time interval between two
consecutive cwnd decrements. This interval prevents over-
reaction because switches keep sending congestion notifica-
tions until the effect of the sender’s cwnd change propagates to
them. For example, if the target queue has a single packet, the
sender decrements its cwnd only if rttsrc has elapsed since the
last decrement. However, if the queue is larger, Bolt allows
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Algorithm 2: BOLT LOGIC AT THE SENDER HOST

1 HandleSrc (pktsrc):
2 rttsrc← now− pkt.t_tx_data
3 reaction_ f actor← f low.rate

/
pktsrc.link_rate

4 targetq← . in number of packets
5 pktsrc.queue_size× reaction_ f actor
6 if rttsrc

targetq
≤ now− last_dec_time then

7 cwnd← cwnd−1
8 last_dec_time← now
9 HandleAck (pktack):

10 if pktack.inc then . Capacity available
11 cwnd← cwnd +1
12 if pktack.seq_no≥ seq_no_at_last_ai then
13 cwnd← cwnd +1 . per-RTT add. inc.
14 seq_no_at_last_ai← snd_next

more frequent decrements to equalize the total cwnd change
to the target queue size in exactly one rttsrc. As the required
cwnd adjustments are scattered over rttsrc, Bolt becomes more
resilient to noise from any single congestion notification.

Events such as losses and timeouts do not happen in Bolt
as it starts reacting to congestion way in advance. However,
due to the possibility of such events occurring, say due to mis-
configuration or packet corruption, handling retransmission
timeouts, selective acknowledgments, and loss recovery are
kept the same as in Swift [30] for completeness.

3.2 PRU - Proactive Ramp Up
Bolt explicitly tracks flow completions to facilitate Proactive
Ramp Up (PRU). When a flow is nearing completion, it
marks outgoing packets to notify switches, which plan ahead
on distributing the bandwidth freed up by the flow to the
remaining ones competing on the link. This helps remaining
Bolt flows to proactively ramp up and eliminate the under-
utilization period after a flow completion (see Figure 3b).

When flows larger than one BDP are sending their last
cwnd worth of data, they set the LAST flag on packets to
mark that they will not have packets in the next RTT. Note
that this does not require knowing the application-level flow
size. In a typical transport like TCP, the application injects a
known amount of data to the connection at each send API call,
denoted by the len argument [29]. Therefore, the amount of
data waiting to be sent is calculable. LAST is marked only
when the remaining amount of data in the connection is within
cwnd size. Our detailed implementation is described in §4.2.

A switch receiving the LAST flag, if it is not congested,
increments the PRU token value for the associated egress port.
This value represents the amount of bandwidth that will be
freed in the next RTT. The switch distributes these tokens to
packets without the LAST flag, i.e. flows that have packets to
send in the next RTT, so that senders can ramp up proactively.

However, only flows that are not bottlenecked at other hops
should ramp up. To identify such flows, Bolt uses a greedy
approach. When transmitting a packet, senders mark the INC
flag on the packet. If a switch has PRU tokens (line 14 in
Algorithm 1) or has free bandwidth (line 16 in Algorithm 1,
explained in §3.3), it keeps the flag on the packet and con-
sumes a token (line 15 and 17, respectively). Else, the switch
resets the INC flag (line 19), preventing future switches on the
path to consume a token for this packet. Then, if no switch
resets the INC flag along the path, it is guaranteed that all the
links on the flow’s path have enough bandwidth to accommo-
date an extra packet. The receiver reflects this flag in the ACK
so that the sender simply increments the cwnd upon receiving
it (lines 10-11 in Algorithm 2). There are cases where the
greedy approach can result in wasted tokens and we discuss
the fallback mechanisms in §3.3.

Flows shorter than one BDP are not accounted for in PRU
calculations. When a new flow starts, its first cwnd worth of
packets are not expected by the network and contribute to the
extra load. Therefore, the switch shouldn’t replace these with
packets from other flows once they leave the network. Bolt
prevents this by setting the FIRST flag on packets that are in
the first cwnd of the flow. Switches check against the FIRST
flag on packets before they increment the PRU token value
(line 12 of Algorithm 1).

Note that PRU doesn’t need reduced feedback delay via
SRC packets, because it accounts for a flow completion in
the next RTT by design. A sender shouldn’t start ramping
up earlier as it can cause extra congestion before the flow
completes. Therefore, the traditional RTT-based feedback
loop is the right choice for correct PRU accounting.

3.3 SM - Supply Matching

Events like link and device failures or route changes can result
in under-utilized links without proactive signaling. In addi-
tion, PRU tokens may be wasted if assigned to a flow that can
not ramp up due to being already at line rate, or bottlenecked
by downstream switches. For such events, conventional CC
approaches rely on gradual additive increase to slowly probe
for the available bandwidth which can take several tens of
RTTs [1, 30, 42, 60]. Instead, Bolt is able to probe multiplica-
tively by explicitly matching utilization demand to supply
through Supply Matching (SM) described below.

Bolt leverages stateful operations in programmable
switches to measure the instantaneous utilization of a link.
Each switch keeps track of the mismatch between the supply
and demand for the link capacity for each port, where the
number of bytes the switch can serialize in unit time is the
supply amount for the link; and the number of bytes that arrive
in the same time interval is the demand for the link. Naturally,
the link is under-utilized when the supply is larger than the
demand, otherwise, the link is congested. Note the similarity
to HPCC [35] that also calculates link utilization, albeit from

224    20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Algorithm 3: Supply Token calculation at the ingress
pipeline for each egress port of the switch

1 CalculateSupplyToken (pkt):
2 inter_arrival_time← now− last_sm_time
3 last_sm_time← now
4 supply← BW × inter_arrival_time
5 demand← pkt.size
6 sm_token← sm_token+ supply−demand
7 sm_token←min(sm_token,MTU)

an end-to-end point of view which restricts it to make once per
RTT calculations. Bolt offloads this calculation to the switch
data plane so that it can capture the precise instantaneous
utilization instead of a coarse-grained measurement.

When a data packet arrives, the switch runs the logic in
Algorithm 3 to calculate the supply token value (sm_token
in the algorithms) associated with the egress port. The token
accumulates the mismatch between the supply and demand in
bytes on every packet arrival for a port. A negative value of
the token indicates queuing whereas a positive value means
under-utilization. When the token value exceeds one MTU,
Bolt keeps the INC flag on the packet and permits the sender
to inject an additional packet into the network (lines 16-17 in
Algorithm 1). The supply token value is then decremented by
an MTU to account for the inflicted future demand.

If a switch port doesn’t receive a packet for a long time, the
supply token value can get arbitrarily large, which prohibits
capturing the instantaneous utilization if a burst of packets
arrive after an idle period. To account for this, Bolt caps the
supply token value at a maximum of one MTU. Details on
how this feature is implemented in P4 are provided in §4.

As noted earlier, there are cases where there can be wasted
tokens, i.e. a switch consumes a token (either PRU or SM)
to keep INC bit, but is reset by downstream switches. In
such cases, SM will find the available bandwidth in the next
RTT. In the worst case, this happens for consecutive RTTs
and Bolt falls back to additive increase similar to Swift [30]
(lines 12-14 in Algorithm 2). Namely, cwnd is incremented
once every RTT to allow flows to probe for more bandwidth
and achieve fairness even if they do not receive any precise
feedback as a fail-safe mechanism.

4 Implementation

We implemented Bolt through Host (transport layer and NIC)
and Switch modifications in our lab. We used Snap [38] as our
user-space transport layer and added Bolt in 1340 LOC in ad-
dition to the existing Swift implementation. Plus, the switch-
side implementation consists of a P4 program – bolt.p4 – in
1120 LOC. Figure 9 shows the overview of our lab prototype
as a whole and we provide details below.
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Figure 9: Bolt system overview

4.1 Switch Prototype

We based our implementation on the programmable data plane
of Intel Tofino2 [11] switches in our lab as they can pro-
vide the queue occupancy of the egress ports in the ingress
pipelines and generate SRC packets [32]. This is crucial for
Bolt to minimize the feedback delay incurred by SRC packets
as they are not subject to queuing delay at congested hops.

When congestion is detected in the ingress pipeline, the
switch mirrors this packet to the input port while forwarding
the original one along its path. The mirroring configuration is
determined with a lookup table that matches the ingress port
of the packet and selects the associated mirroring session.

The mirrored packet is then trimmed to remove the payload
and the flow identifiers (i.e. source/destination addresses and
ports) are swapped. Finally, SRC flag is set on this packet to
complete its conversion into an SRC packet.

The entire bolt.p4 consists mainly of register array dec-
larations and simple if-else logic as shown in Algorithm 1.
There are 4 register arrays for storing queue occupancy, token
values, and the last packet arrival time. All of the register
arrays are as large as the number of queues on the switch
because the state is maintained per queue. In total, only 3.6%
and 0.6% of available SRAM and TCAM, respectively, are
used for the register arrays, tables, and counters.

The switch keeps the last packet arrival time for every
egress port to calculate the supply for the link. On each data
packet arrival, the difference between the current timestamp
and the last packet arrival time is calculated as the inter-arrival
time. This value should ideally be multiplied with the link
capacity (line 4 of Algorithm 3) to find the supply amount.
However, since floating point arithmetic is not available in
PISA pipelines, we use a lookup table indexed on inter-arrival
times to determine the supply amount. We set the size of this
lookup table as 65536 where each entry is for a different inter-
arrival time with a granularity of a nanosecond. Consequently,
if the inter-arrival time is larger than 65 microseconds, the
supply token value is directly set to its maximum value of 1
MTU which triggers INC flag to be set. We find that, at a
reasonably high load, 65 microseconds of inter-arrival time
is rare enough for links greater than 100Gbps such that any
longer value can be safely interpreted as under-utilization.

Our prototype is based on a single HW pipeline. Therefore,
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we implemented Bolt entirely at the ingress pipeline to make
it easier to understand and debug its logic. However, since
PRU and SM maintain state per egress port, they could also be
implemented at the egress pipeline with minor modifications.
This way, the state for packets from multiple ingress pipelines
would naturally be aggregated.

4.2 Host Prototype
Our transport layer uses the NIC hardware timestamps to
calculate rttsrc as described in Algorithm 2. When a sender is
emitting data, the TX timestamp is stamped onto the packet.
The switch reflects this value back to the sender, so that rttsrc
is the difference between the NIC time when the SRC packet
is received (RX timestamp) and the reflected TX timestamp.
This precisely measures the network delay to the bottleneck
without any non-deterministic software processing delays.

The transport layer also multiplexes RPCs meant for the
same server onto the same network connection. Then, the
first cwnd bytes of a new RPC isn’t necessarily detected as
the first window of the connection. To mitigate this issue,
our prototype keeps track of idle periods of connections and
resets the bytes-sent counter when a new RPC is sent after
such a period. Therefore the FIRST flag is set on a packet
when the counter value is smaller than cwnd.

Finally, the last window marking for PRU requires deter-
mining the size of the remaining data for each connection.
In our prototype, the connection increments pending bytes
counter by the size of data in each send API call from the
application. Every time the connection transmits a packet into
the network, the counter value is decremented by the size of
the packet. Therefore the LAST flag is set on a packet when
this counter value is smaller than cwnd.

4.3 Security and Authentication
Getting Bolt to work for encrypted and authenticated connec-
tions was a key challenge in our lab. Our prototype uses a
custom version of IPsec ESP [23, 28] for encryption atop the
IP Layer. However, switches need to read and modify CC in-
formation at the transport header without breaking end-to-end
security. The crypt_offset of the protocol allows packets to
be encrypted only beyond this offset. We set it such that the
transport header is not encrypted, but is still authenticated.

In addition, switches cannot generate encrypted packets
due to the lack of encryption and decryption capabilities.
To remedy this, we generate SRC packets on switches as
unreliable datagrams per RoCEv2 standard by adding IB BTH
and DETH headers while removing the encryption header.

The RoCEv2 packets have the invariant CRC calculated
over the packet and appended as a trailer. Fortunately, Tofino2
provides a CRC extern that is capable of this calculation over
small, constant-size packets [31]. As a result, NICs are able to
forward the SRC packets correctly to the upper layers based
on the queue pair numbers (QPN) on the datagrams.
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Figure 10: Bolt’s reaction to flow arrival versus the ideal behavior.

5 Evaluation

We evaluate Bolt on NS3 [48] micro-benchmarks to demon-
strate its fundamental capabilities in §5.1 followed by sensi-
tivity and fairness analysis in §5.2 and §5.3. Then, in §5.4,
we run large-scale experiments to measure the end-to-end
performance of the algorithm, i.e. flow completion time slow-
downs. Finally, we evaluate our lab prototype in §5.5.

5.1 Micro-Benchmarks

5.1.1 Significance of SRC

The only way for Bolt to decrease cwnd is through SRC whose
effectiveness is best observed during congestion. Therefore,
we repeat the same flow arrival scenario described in Figure 6
with Bolt.3 Typically, with conventional RTT-based conges-
tion control algorithms, a new flow starting at line rate emits
BDP worth of packets until it receives the first congestion
feedback after an RTT. If the network is already fully utilized
before this flow, all emitted packets end up creating a BDP
worth of queuing even for an RTT-based ideal scheme. Then,
the ideal scheme would stop sending any new packets to allow
draining the queue quickly which would take another RTT.
This behavior is depicted as red in Figure 10 where a new
flow joins at 100µs.

HPCC’s behavior in Figure 10 is close to the ideal given
that it is an RTT-based scheme with high precision congestion
signal. As the new flow arrives, the queue occupancy rises to
1 BDP. However, the queue is drained at a rate slower than
the link capacity because flows continue to occasionally send
new packets while the queue is not completely drained.

Bolt, on the other hand, detects congestion earlier than an
RTT. Therefore it starts decrementing cwnd before the queue
occupancy reaches BDP and completely drains it in less than
2 RTTs, even shorter than the RTT-based ideal scheme.

In addition, HPCC’s link utilization drops to as low as
75% after draining the queue and oscillates for some time,
which is due to the RTT-long observation period (§2.2). Bolt’s
per-packet decision avoids this under-utilization.

3The dumbbell topology with two flows (8 µs RTT at 100Gbps).
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Figure 11: cwnd of the remaining flow and
queue occupancy after a flow completion.
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Figure 12: cwnd of the remaining flow and queue occupancy after a flow is rerouted.

Utilization (%) PRU OFF PRU ON

SM OFF 90.46 97.38
ON 92.41 98.54

Table 1: Effectiveness of PRU and SM on the bottleneck utilization.

5.1.2 Significance of PRU

Flow completions cause under-utilization without proactive
ramp-up or standing queues because conventional conges-
tion control algorithms take at least an RTT to react to them
(§2.1.2). Moreover, as shown in Figure 4 for Swift, a standing
queue might not be enough to keep the link busy if the cwnd
of the completing flow is larger than the queue size

We repeat the same scenario with Bolt to test how effective
proactive ramp-up can be upon flow completions against Swift
and HPCC. Figure 11 shows the cwnd of the remaining flow
and the queue occupancy at the bottleneck link. When a
Bolt flow completes at t=200µs, the remaining one is able
to capture the available bandwidth in 1µs because it starts
increasing cwnd (by collecting PRU tokens) one RTT earlier
than the flow completion. Moreover, neither queuing nor
under-utilization is observed. HPCC, on the other hand, takes
20µs (> 2×RTT) to ramp up for full utilization because it
needs one RTT to detect under-utilization and another RTT
of observation period before ramping up. Finally, Swift takes
more than 370µs to reach the stable value due to the slow
additive increase approach which doesn’t fit into Figure 11.
The complete ramp-up of Swift is shown in Figure 4.

Although PRU and SM seem to overlap in the way they
quickly capture available bandwidth, PRU is a faster mech-
anism compared to SM because it detects under-utilization
proactively. To demonstrate that, we create a star topology
with 100Gbps links and a base RTT of 5µs, where 5 senders
send 500KB to the same receiver. Flows start 15µs apart
from each other to complete at different times so that PRU
and SM can kick in. We repeat while disabling PRU or SM
and measure the bottleneck utilization to observe how each
mechanism is effective at achieving high throughput.

Table 1 shows the link utilization between the first flow
completion and the last one. When only PRU is disabled, the

utilization drops by 6% despite having SM. On the other hand,
disabling SM alone causes only a 1% decrease. This indicates
that PRU is a more powerful mechanism compared to SM
when under-utilization is mainly due to flow completions in
the network. Together, they increase utilization by 8%.

5.1.3 Significance of SM

Unlike flow completions, events such as link failure or rerout-
ing are not hinted in advance. Then, PRU doesn’t kick in,
making Bolt completely reliant on SM for high utilization. To
demonstrate how SM quickly captures available bandwidth,
we use the same setup from Figures 4 and 11, but reroute the
second flow instead of letting it complete.

Figure 12 shows the cwnd of the remaining flow after the
other one leaves the bottleneck. Thanks to SM, cwnd quickly
ramps up to utilize the link in 23µs (12a). When SM is dis-
abled, the only way for Bolt to ramp up is through traditional
additive increase which increases cwnd by 1 every RTT (12b).
Therefore it takes more than 33 RTTs to fully utilize the link.

5.2 Sensitivity Analysis

5.2.1 Overhead of SRC

To mitigate congestion, Bolt generates SRC packets in an
already loaded network. In order to understand the extra
load created by SRC, we measure the bandwidth occupied by
SRC packets at different burstiness levels. For this purpose,
we use the same star topology from §5.1.2. The number of
senders changes between 1 and 63 to emulate different levels
of burstiness towards a single receiver at 80% load. The traffic
is based on the READ RPC workload from Figure 1.

Figure 13 shows the bandwidth occupied by the SRC pack-
ets (top) and the 99th-p queue occupancy at the bottleneck
(bottom) with a different number of senders. When there are
multiple senders, the SRC bandwidth is stable at 0.33Gbps
(0.33% of the capacity). Similarly, the tail queuing is also
bounded below 6.4µs for all the experiments. Therefore, we
conclude that Bolt is able to bound congestion with a negli-
gible amount of extra load in the network. In §5.5, we show
that the overhead is negligible for the lab prototype as well.
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Figure 15: Fair allocation by Bolt

Metric Swift HPCC Bolt

99th-p Queuing (msec) 23.543 23.066 13.720
99th-p FCT Slowdown 7017 5037 5000

Table 2: Tail queuing, and FCT slowdown for 5000-to-1 incast.

5.2.2 Robustness Against Higher Line Rates

One of the goals of Bolt is to be robust against ever-increasing
line rates in data centers. To evaluate the performance at
different line rates, we repeat the simulations from §5.2.1
with 63 senders where we increase the link capacity from
100Gbps to 200Gbps and 400Gbps. This way, the burstiness
of the senders increases, making it difficult to maintain small
queuing at the switches. Therefore, flow completion time
(FCT) slowdown [14]4 of small flows are affected the most,
whereas throughput oriented large flows would trivially be
better off with higher line rates.

Accordingly, we plot the 99th-p FCT slowdown for flows
that are smaller than BDP (at 100 Gbps) in Figure 14. Swift’s
performance monotonically decays with higher link rates due
to the increasing burstiness. Similarly, HPCC at 400Gbps
achieves 25% worse performance compared to the 100Gbps
scenario for flow sizes up to 0.7 BDP. For the rest of the
workload, HPCC makes a leap such that it performs worse
than other algorithms irrespective of the line rates. Bolt on the
other hand is able to maintain small and steady tail slowdowns
for all the small flows despite the increasing line rates.

5.3 Fairness Analysis

To test the fairness of Bolt, we run an experiment on a dumb-
bell topology with 100Gbps links. We add or remove a new
flow every 10 milliseconds and measure the throughput of
each flow which is shown in Figure 15. Our results indicate
that Bolt flows converge to the new fair share quickly when
the state of the network changes.

4FCT slowdown is flow’s actual FCT normalized by its ideal FCT when
the flow sends at line-rate (e.g., when it was the only flow in the network).

5.4 Large Scale Simulations

One of the most challenging cases for CC is a large-scale
incast. To evaluate Bolt’s performance in such a scenario, we
set up a 5000-to-1 incast on the star topology described earlier
where each one of 50 senders starts 100 same size flows at the
same time. Table 2 presents the 99th-p queue occupancy and
FCT slowdown for the incast. Since Bolt detects congestion
as early as possible, it bounds tail queuing to a 41% lower
level compared to Swift and HPCC. In addition, the tail FCT
slowdown for Bolt is 5000, indicating full link utilization.
Moreover, the bandwidth occupied by the SRC packets is as
low as 0.77Gbps throughout the incast. This is only twice the
overhead for 80% load in §5.2.1, despite the extreme bursty
arrival pattern of the incast.

We also evaluate the performance of Bolt on a cluster-scale
network where 64 servers are connected with 100Gbps links
to a fully subscribed fat-tree topology with 8 ToR switches.
All the other links are 400Gbps and the maximum unloaded
RTT is 5µs. We run traffic between servers based on two work-
loads at 80% load: (i) the READ RPC workload described
in Figure 1 represents traffic from our data center, (ii) the
Facebook Hadoop workload [49]. Figure 16 and 17 show the
median and 99th-p FCT slowdown for the workloads. Note
that the Hadoop workload is relatively more bursty where
82% of the flows/RPCs fit within a BDP in the given topology.
Hence a large fraction of the curves in Figure 17 is flat where
all the RPCs in this region are extremely small (i.e. single
packet).

For both of the workloads, Bolt performs well across all
flow sizes. Specifically, Bolt and HPCC achieve very low
FCT for short flows (<7KB) because of a few design choices:
First, they maintain zero standing queues. Plus, Bolt’s SRC
reduces the height of queue spikes after flow arrivals. HPCC,
on the other hand, tends to under-utilize the network upon
flow completions (§2.1.2), statistically reducing queue sizes.

FCT of median-size flows (a few BDPs) starts to degrade
for HPCC due to under-utilization described in §2.1.2 and
§2.2. Bolt performs up to 3× better in this regime by avoiding
under-utilization thanks to PRU and SM. Swift’s standing
queues prevent under-utilization, but FCTs are high because
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matches its simulator

median-size flows are also affected by the queuing delay.
The impact of queuing diminishes and utilization becomes

the dominant factor for long flows. Therefore Bolt and Swift
perform better than HPCC. In addition, Bolt is slightly better
at the tail compared to Swift, while Swift is slightly better at
the median, suggesting that Bolt is fairer.

5.5 Bolt in the Lab
Our lab testbed consists of 2 servers and 2 Intel Tofino2 [11]
switches. Each server runs 4 packet processing engines run-
ning Snap [38] that provide the transport layer with the Bolt
algorithm. Each engine is scheduled on a CPU core that in-
dependently processes packets so that we are able to create a
large number of connections between the servers. Links from
the servers to the switches are 100Gbps and the switches are
connected to each other with a 25Gbps link to guarantee that
congestion takes place within the network. The base-RTT
in this network is 14µs and we generate flows between the
servers based on the READ RPC workload.

We evaluate Bolt on two scenarios. First, we run 100%
(of 25Gbps) load to see if our prototype can saturate the bot-
tleneck. Then, we run 80% load to compare the congestion
mitigation performance of Bolt against Swift in a more realis-
tic scenario. Finally, we verify that our results from the lab
and the simulations match to verify our implementations.

The median and the 99th-p RTT at 100% load for Swift
are 189µs and 208µs respectively. These numbers are high
because Swift maintains a standing queue based on the con-
figured base delay to fully utilize the link even after flow
completions. Bolt on the other hand, attains 27µs and 40µs
of median and tail RTT, 86% and 81% shorter than Swift. In
the meantime, it achieves 24.7Gbps which is only 0.8% lower
compared to Swift despite the lack of a standing queue.

We repeat the same experiment with 80% load and observe
that both Swift and Bolt can sustain 80% (20Gbps) average
link utilization. Figure 18 shows the CDF of measured RTTs
throughout the experiment. Similar to the 100% load case,
the median and tail RTTs for Bolt are 25µs and 40µs, 86%
and 83% lower compared to Swift respectively5.

5For Swift we set 50µs base target delay as specified in the paper [30] and
200µs as flow scaling range. Swift’s average RTT in Figure 18 is higher than

Moreover, we measure that the bandwidth occupied by the
SRC packets in our lab is 0.13Gbps, 0.536% of the bottleneck
capacity. This is consistent with our observation in §5.2
despite the larger SRC packets with custom encapsulations.

Finally, we simulate the 80% load experiment in NS3 [48]
with the same settings to verify that our simulator matches
our observations in the lab. Figure 18 also shows the CDF
of RTTs measured throughout the simulation. The median
and tail RTTs from our simulations are 21µs and 39µs, within
15% and 0.025% of the lab results respectively.

6 Practical Considerations

Typically, new products are deployed incrementally in data
centers due to availability, security, or financial concerns. As
a consequence, the new product (i.e. the CC algorithm) lives
together with the old one for some time called brownfield
deployment. We identify three potential issues that Bolt could
face during this phase and address them below.

First, some switches in the network may not be capable of
generating SRC packets while new programmable switches
are being deployed. Unfortunately, the vanilla Bolt design
can not control the congestion at these switches. This can be
addressed by running an end-to-end algorithm on top of Bolt.
For example, imagine the Swift algorithm calculates a fabric
cwnd as usual in parallel with Bolt’s calculation of cwnd using
SRC packets. Then, the minimum of the two is selected as the
effective cwnd for the flow. When an older generation switch
is congested, SRC packets are not generated, but Swift adjusts
the cwnd. Consequently, flows benefit from ultra-low queuing
at the compatible switches while falling back to Swift when a
non-programmable switch becomes the bottleneck.

Second, hosts would also be migrated to Bolt incremen-
tally. Therefore, Bolt would need to coexist with the prior
algorithm. Studying the friendliness of algorithms with Bolt
through frameworks such as [26] and [56] remains a future
work. For example, TCP CUBIC would not coexist well with
Bolt as it tries to fill the queues until a packet is dropped
while Bolt would continuously decrement its cwnd due to

Swift paper’s value (∼50µs), because of two reasons. First, this workload is
burstier than the ones in Swift paper. Second, the 25Gbps bottleneck implies
a higher level of flow scaling than with 100Gbps links.
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queuing. Instead, we propose the use of QoS (Quality of Ser-
vice) queues to isolate Bolt traffic from the rest. Appendix B
describes a baseline approach for such deployment.

Finally, scenarios where packet transmissions are batched
(say by the NIC) even when the cwnd is smaller than BDP
can still trigger SRC generation, inhibiting flows to increase
cwnd to the right value. We find that transport offloading
on modern smart NICs uses batching to sustain high line
rates. Bolt alleviates such bursts with a higher CCT HRESH that
tolerates batch size worth of queuing at the switches.

7 Related Work

In addition to HPCC [35] and Swift [30] that serve as our pri-
mary comparison points, several other schemes have similar
ideas or goals.

FastTune [59] uses programmable switches for precise con-
gestion signal. Similar to HPCC, it calculates link utilization
over an RTT to multiplicatively increase or decrease cwnd.
For shorter feedback delay, it pads the INT header onto ACK
packets in the reverse direction instead of data packets. Ex-
pressPass [10] utilizes the control packets in the reverse di-
rection as well. Nonetheless, forward and reverse paths for a
flow are not always symmetrical due to ECMP-like load bal-
ancing or flow-reroutes. Therefore, Bolt chooses to explicitly
generate SRC packets with little overhead (§5.2).

FastLane [57] is one of the early proposals to send no-
tifications from switches directly to the senders. However,
notifications are generated only for buffer overflows which is
late for low latency CC in data centers. Annulus [50], on the
other hand, uses standard QCN [21] packets from switches
with queue occupancy information. Yet these packets are not
L3 routable, so Annulus limits its scope only to detecting
bottlenecks one hop away from senders. Bolt brings the best
of both worlds and controls congestion at every hop while
knowing the precise state of congestion.

XCP [27] and RCP [13] also propose congestion feedback
generated by the switch. Switches wait for an average RTT
before calculating CC responses that are piggybacked on the
data packet and reflected on the ACK. As discussed in §2.2,
this implies a control loop delay of two RTTs in total.

FCP [18] uses budgets and prices to balance the load and
the traffic demand. FCP switches calculate the price of the
link based on the demand while senders signal flow arrivals
or completions similar to SM and PRU in Bolt. However, the
required time series averaging and floating-point arithmetic
make the calculation infeasible for programmable switches
while consuming bytes on the header. In contrast, Bolt is
based on the packet conservation principle with a simple, yet
precise logic implementable in P4 and requires only 3 bits on
the header (FIRST , LAST , and INC) for SM and PRU.

Switch feedback has also been studied for wireless settings.
For instance, ABC [16] marks packets for cwnd increments
or decrements with an RTT-based control loop for congestion

mitigation. On the other hand, Zhuge [39] modifies the wire-
less AP to help senders detect congestion quicker. However,
since it is challenging to modify schemes in WAN, Zhuge
relies on the capabilities of existing schemes for the precision
of the congestion signals, i.e. delayed ACKs for TCP.

Receiver-driven approaches such as NDP [19], pHost [15],
and Homa [43] require receivers to allocate/schedule credits
based on the demand from senders. They work well for con-
gestion at the last hop because receivers have good visibility
into this link. For example, when an RPC is fully granted, the
Homa receiver starts sending grants for the next one without
the current RPC being finished to proactively utilize the link.
This is similar to PRU in Bolt despite being limited to the last
hop. Unfortunately, the last hop is not always the bottleneck
for a flow especially when the fabric is over-subscribed [52].

Schemes that use priority queues [2,4,20,43] are proposed
to improve the scheduling performance of the network to
approximate SRPT [51] like behavior. We find deploying such
schemes to be rather difficult because, typically, QoS queues
in data centers are reserved to separate different services.

On-Ramp [37] is an extension for CC which proposes to
pause flows at the senders when the one-way delay is high.
Bolt can also benefit from its flow control mechanism. We
leave evaluating Bolt with this extension as future work.

There are also per-hop flow control mechanisms such as
BFC [17] and PFFC [55] that pause queues at the upstream
switches via early notifications from the bottleneck. The
deadlock-like issues of PFC [54] are resolved by keeping the
per-flow state on switches, which we find challenging in our
data centers as switches have to implement other memory or
queue-intensive protocols, e.g., routing tables or QoS. There-
fore, we scope Bolt to be an end-to-end algorithm with a fixed
state similar to other algorithms in production [30, 35, 60].

8 Conclusion

Increasing line rates in data centers is inevitable due to the
stringent SLOs of applications. Yet, higher line rates increase
burstiness, putting more pressure on CC to minimize queuing
delays for short flows along with high link utilization for long
flows. We find that two key aspects of CC need to be pushed to
their boundaries to work well in such highly dynamic regimes
based on experience with our data centers.

Bolt addresses these aspects thanks to the flexibility and
precision provided by programmable switches. First, it uses
the most granular congestion signal, i.e. precise queue occu-
pancy, for a per-packet decision logic. Second, it minimizes
the control loop delay to its absolute minimum by generating
feedback at the congested switches and sending them directly
back to the senders. Third, it hides the control loop delay by
making proactive decisions about foreseeable flow comple-
tions. As a result, accurate cwnd is calculated as quickly as
possible, achieving more than 80% reduction in tail latency
and 3× improvement in tail FCT.
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Appendix

A Approximating SRC Overhead

Bolt switches generate SRC packets for every data packet
they receive as long as there is queuing, given that the data
packet is not marked with the DEC flag. Then the number of
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SRC packets depend on how long queuing persisted and how
many packet are received in this time interval.

At steady state where no new RPCs join the network, we
can estimate the fraction of time queuing persist on a bot-
tleneck. Congestion at this regime happens only due to the
once-per-RTT additive increase of 1 by each flow.

As described in §3.1, senders pace cwnd decrements such
that the total number of decrements equals the queue occu-
pancy after 1 rttsrc. This implies that any queuing will persist
for 1 rttsrc, but will be completely drained after. Since a new
congestion is not inflicted until the next RTT, we conjecture
that the fraction of time that the switch has non-zero queuing
is governed by the following golden ratio:

fraction of time switch is congested =
rttsrc

rtt
(1)

which is always less then 1.
Note that equation 1 is an approximation for congestion

interval since it doesn’t incorporate traffic load, new RPC
arrivals or multi bottleneck scenarios. Nonetheless, we can
calculate the number of SRC packets generated at a bottleneck
with it.

# of SRC pkts = # of DATA pkts× rttsrc

rtt
(2)

Finally, we map equation 2 to the bandwidth occupied by
the SRC packets by incorporating the link capacity and the
packet sizes:

SRC Bandwidth =C× psrc

pdata
× rttsrc

rtt
(3)

Where C is the rate at which the traffic is flowing through the
bottleneck link, psrc is the size of SRC packets and pdata is
the size of data packets, i.e. MTU.

When we calculate the bandwidth of SRC packets ac-
cording to equation 3 for the simulation in §5.2.1, we find
0.37Gbps which is within 12% of the simulation result of
0.33Gbps. Moreover, equation 3 gives 0.10Gbps for our lab
setup in §5.5 which is within 23% of the measured value of
0.13Gbps.

B Bolt with QoS

The relationship between congestion control algorithms and
QoS has always been contradictory. An ideal congestion
control algorithm aims to mitigate any queuing at the switch,
whereas a QoS mechanism always needs enough queuing to
be able to differentiate packet priorities and serve one before
the other. Put another way, QoS only takes effect when the
arrival rate at a link is greater than the capacity such that
it causes queue build-up. Yet, QoS is vital for commercial
networks in order to be able to differentiate applications or
tenants for business related reasons [6]. This is particularly
true for unavoidable transient congestion events, i.e. incast.

Algorithm 4: Supply Token calculated for QoS queue
i at the switch with n QoS levels serving the same
egress port

1 Function CalculateSupplyToken(pkt):
2 inter_arrival_time← now− last_sm_time
3 last_sm_time← now
4 we f f ective← 0
5 for j← 0 to n do
6 if i = j || q_size j 6= 0 then
7 we f f ective← we f f ective +w j

8 supply← BW × inter_arrival_time× ( wi
we f f ective

)

9 demand← pkt.size
10 sm_token← sm_token+ supply−demand
11 sm_token←min(sm_token,MTU)

Fortunately, the way Bolt reports queue occupancy is QoS-
agnostic such that it can generate SRC packets with the oc-
cupancy of the queue assigned by the QoS mechanism. Con-
sequently, it would try to minimize queuing at that particular
queue. Similarly, the way PRU token are calculated would
be queue specific instead of being egress port specific. For
example, if there are P ports on a switch and n QoS levels
per port, the size of the register array that maintains the token
values would be of P× n and flows would only be able to
proactively ramp-up if another flow with the same QoS level
is about to finish.

On the other hand, accounting for the supply token requires
the service rate for the associated queue (§3.3) which would
be a dynamic value depending on the current demand for dif-
ferent QoS levels. We identify two approaches for maintain-
ing supply tokens correctly and implementing a QoS aware
version of Bolt on programmable switches.

B.1 Ideal Approach
Imagine a scenario where weighted fair queuing [46] is ap-
plied for QoS purposes. Then, Bolt would need to be able
to increment the supply token value based on the weight as-
sociated to the QoS level (wi) and the link capacity (C) as
well as the demand for each QoS level. For example, when
all QoS levels have at least 1 packet in their queue, a packet
arriving at QoS level i should increment the token value by
C×wi× tinter−arr.

If a QoS queue is empty, its weight is distributed to other
QoS levels in proportion to each level’s own weight. There-
fore, Bolt should adjust the supply token value of QoS level i
based on the logic presented in Algorithm 4.

Note that in order to be able to determine the service rate
of each queue, queue occupancy of other queues would be
required. This requirement creates a challenge for P4 switches
since only one queue’s occupancy can be read at a time. A
workaround to this would be to create shadow register arrays
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for each priority queue where they get updated whenever a
value is not being read from them. Moreover the calculation
at the line 8 of Algorithm 4 requires floating point arithmetic
which could be address via lookup tables.

B.2 Heuristic Approach
A simpler mechanism to enable QoS on Bolt switches would
be to introduce probabilistic SRC generation where higher
priority traffic has lower probability to generate a SRC packet.
This would naturally keep the rates of high priority flows
high while throttling others. Yet, an extensive empirical study
would be required to determine the probabilities such that the
queuing for all the QoS levels are bounded to some extent.
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