YuZu: Neural-Enhanced Volumetric Video Streaming

Anlan Zhang1 Chendong Wang1 * Bo Han2 Feng Qian1

1University of Minnesota, Twin Cities 2George Mason University

April, 2022
Volumetric Video

- Volumetric video - immersive: 6-DoF (degree of freedom) movement
- Telepresence
- VR/AR/MR headsets or desktops

Video source: https://www.youtube.com/watch?v=aO3TAke7_MI
Volumetric Video

Point Cloud: un-sorted set of 3D points with attributes, e.g., color

3D Mesh: 3D model consisting of polygons (vertices, edges, and faces)

• Representation
 – Point Cloud
 – 3D Mesh

• Streaming over the Internet: high bandwidth consumption
 – Example: 720Mbps = 200K points * 15 bytes * 30 FPS * 8 / 1000 / 1000
Leveraging 3D SR (Super Resolution)

- Improve QoE (quality-of-experience)
- SR for static point cloud
 - SR model (DNN): low-resolution (LR) → high-resolution (HR)
 - Resolution: point density
- SR for VoD (video-on-demand)
 - Offline model training: leveraging overfitting
 - Online streaming: LR content & SR model
 - Bandwidth reduction or QoE improvement
Motivation: A Case Study

- SR model: PU-GAN [1]
 - SR ratio: 4, 25K → 100K points
- Test video: Lab, 2 min
 - ~100K points per frame
- NVIDIA 2080Ti GPU

Positive Findings ☀
- Good upsampling accuracy
- Significant bandwidth saving, ~74%

Challenges 😞
- No generic QoE model
- Poor runtime performance
 - < 0.1 FPS, 7GB memory
- No color support

Our Approach: YuZu

- An empirical QoE model
 - Large-scale (1,446 participants) user studies
- YuZu system design & implementation
 - Intra-frame SR
 - Inter-frame SR
 - Network/Compute resource adaptation
- YuZu evaluation
 - QoE improvement
 - Runtime performance
YuZu Overview

Server

Volumetric Video

Optimized SR Model

Caching & Reusing Decision

Client

Scheduler

QoE Model

Network/Compute Resource Adaptation

Color & Render

Chunks
Quality Level 1
Time

Chunks
Quality Level 2
Time

Chunks
Quality Level 3
Time

Chunks
Quality Level 4
Time

chunks
chunks
chunks
chunks

chunks
chunks
chunks
chunks
QoE Model & User Studies

• An empirical QoE model
 – Point density, viewing distance, SR ratio, visibility, quality switch, stall, etc.

• User studies
 – 4 volumetric videos of human portraits
 – Our optimized PU-GAN [1] model
 – 1,446 participants from 40 countries
 – 10-fold cross validation & cross-video validation

• Takeaways
 – Median QoE prediction error: 12.49%
 – Generic for volumetric videos of the same genre (human portraits)

System Design of YuZu

- Intra-frame SR
 - Speed up SR upsampling within a frame
- Inter-frame SR
 - Cache and reuse SR results across frames
- Network/Compute resource adaptation
Intra-frame SR

- Speed up SR a single frame
- Optimize patch generation
 - 3D SR: per-patch basis
 - Trim pre- and post-processing
- Optimize model structure
 - Pruning through layer-by-layer profiling
 - More efficient feature extraction
- Data reduction
 - Merge SR input with SR output
 - Maintain the same SR ratio with less computation overhead
Inter-frame SR

- Speed up SR across consecutive frames
 - Similarity across consecutive frames

- Cache & reuse SR results
 - Per-patch basis
 - Similarity between patches
 - Only patches at same location
 - Dynamic programming
 - Minimize # of patches to be upsampled

- Offline
 - Precompute caching & reusing decisions for VoD content
Network/Compute Resource Adaptation

• Trade-off
 – Download HR content: high network resource usage
 – Download LR content and Upsample it: high compute resource usage
• QoE-driven, two-stage adaptation
 – Before download each chunk
 • Coarse-grained Search
 • Search quality/SR-ratio assignment of to-be-downloaded chunk
 – Before upsample each frame
 • Fine-grained Search
 • Fine-tune SR ratios
Evaluation

• Implementation
 – 10,848 LoC (lines of code) in C/C++
• SR performance breakdown
 – Effectiveness of each optimization for 3D SR
• QoE improvement of YuZu
• End-to-end performance of YuZu
• YuZu vs. viewport-adaptive streaming
SR Performance Breakdown

- **O1 (Baseline):** vanilla PU-GAN [1] model
 - 2080Ti desktop, SR ratio: 4

- **Cumulative optimizations**
 - O2: O1 + optimize patch generation
 - O3: O2 + optimize model structure
 - O4: O3 + merge SR input with SR output
 - O5: O4 + cache & reuse SR results

- **Takeaways**
 - Significantly speed up upsampling (up to 307x)
 - Huge GPU memory usage reduction (up to 87%)
 - No accuracy degradation

YuZu’s QoE Improvement

- 4 volumetric videos
 - Downsample to 25% # of points
- Optimized PU-GAN [1] model (YuZu)
 - 4 SR ratios: x1 (no SR), x2, x3, x4
- Subjective ratings
 - 512 participants
- Takeaways
 - YuZu boost QoE by up to 150%
 - Positive correlation between QoE improvement and SR ratio

YuZu’s End-to-end Performance

• Fluctuating bandwidth
 – 12 LTE Traces
• Baseline
 – 100% points, x1 SR
• Only C&R
 – 100% points, x1 SR
 – Cache & rescue SR results
• Full-fledged YuZu
• Takeaways
 – Significant QoE improvement (83%/62%) and data usage reduction (49%/40%) for YuZu/Only C&R
YuZu vs. Viewport-Adaptive Streaming

- ViVo [1]
 - 6-DoF motion prediction
 - Content in viewport
- Wired network with stable bandwidth
 - 50, 75, 100 Mbps
- 4 videos with 32 users’ motion traces
- YuZu outperforms ViVo by 101% to 175% on QoE

Demo

- Left: 25% points x4 SR, right: 25% points x1 SR
Conclusion

• An empirical QoE model
 – Large-scale (1,446 participants) user studies

• YuZu system design & implementation
 – Intra-frame SR
 – Inter-frame SR
 – Network/Compute resource adaptation

• YuZu evaluation
 – QoE improvement
 – Runtime performance
YuZu: Neural-Enhanced Volumetric Video Streaming

Anlan Zhang1, Chendong Wang1*, Bo Han2, Feng Qian1

1University of Minnesota, Twin Cities 2George Mason University

April, 2022