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Content Delivery Networks (CDNs)
• Networks of cache clusters close to users 

• 72% of Internet traffic
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https://elitestrategies-elitestrategies.netdna-ssl.com/wp-content/uploads/2015/08/CDN-on-page-seo.png



 Cache misses are expensive
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Goal: minimize cache misses (mean and tail) 

Why? 
• Long latency (poor user experience)  

• Wide area traffic (cost for CDN and content provider)
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Unavailabilities are more common than in datacenters

Unavailabilities at the edge are common

Reasons: server overload, hardware failure 

A month-long trace of 2190 clusters 

10 10 9 9 10 8 8 10 10 10 10 10 10 9 10 10 10 10

All clusters: unavailability in 45.2% of observations 
10-server clusters: unavailability in 30.5% of observations

#available servers



DNS

HTTP

Bucket-based routing (coarser load balancing)
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Bucket-based routing makes unavailability worse
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all cached objects for buckets mapped 
to the server become unavailable

miss ratio spike
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State-of-the-art solution

Why?

Replication  

Limitations 
cannot remove spike 

object 1
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The problem: write load imbalance
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Cache writes come from cache misses 
Write load is imbalanced, production: max/min server load = 2.5 

• Reduces the effectiveness of replication  
• SSDs wear out at different rates
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State-of-the-art solution

no replication

cost {

replication
Replication limitations 

cannot remove spike  

waste limited space
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• removes miss ratio spikes 
• reduces bandwidth cost 
• near-perfect write load balancing

Server unavailability mitigation today is costly and ineffective
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C2DN Design
Erasure coding to reduce storage overhead  

Parity rebalance to balance write load 
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Quick primer on erasure coding: efficient fault tolerance
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Use erasure coding in CDN clusters?
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Lower storage overhead, cache more objects!  
Lower miss ratio and no unavailability impact? 



Naive use of erasure coding is insufficient
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Naive use of erasure coding is insufficient

• Limited miss ratio reduction 
• Cannot eliminate miss ratio spike when unavailability happens  
• Runtime overhead (more CPU usage, longer serving latency)
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Goal: rebalance the load 
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Observation
• flexibility in placing parity  
• parity chunks are needed rarely, 

lookup can be slightly more complex 

Technique 
• data placement: consistent hashing  
• parity placement: rebalance write load
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Parity assignment problem
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Write load of parity

Parity Server

Server leftover capacity

Balancing write load: similar cache eviction and SSD wear out rates

2. 3.

Donut Cluster
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Solution: MaxFlow 



In the paper
• Several other techniques and optimizations  

• hybrid redundancy  

• sub-chunking  

• transparent coding  

• …
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C2DN evaluation

19



Evaluation setup 

• Built C2DN using Apache Trafficserver  

• Replayed week-long production traces from Akamai  

• Evaluated using three AWS regions
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25 ms 85 ms
remote user origincluster



No more miss ratio spike
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Reducing normal case miss ratio
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Cache size 
Miss ratio 

(bandwidth) 
reduction

production 21%
2x production 16%
4x production 5%

Erasure coding reduces storage overhead 
Parity rebalance allows chunks to be evicted at similar time
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Near-perfect write load balancing
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In the paper
• Time-to-first-byte latency and content download time  

• no noticeable latency change  

• CPU and disk usage  
• manageable increase 

• …
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Summary
Unavailability and write load imbalance are common in CDN edge clusters 

Traditional approach for fault tolerance is not effective in caching

25

Questions?

Open sourced at  
https://github.com/Thesys-lab/C2DN
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