
C2DN: How to Harness Erasure Codes at the Edge
for Efficient Content Delivery

Juncheng Yang*

Anirudh Sabnis#, Daniel S. Berger&, K. V. Rashmi*, Ramesh K. Sitaraman#$

*Carnegie Mellon University, #University of Massachusetts, Amherst, $Akamai, &University of Washington, Microsoft Research

1

Content Delivery Networks (CDNs)
• Networks of cache clusters close to users

• 72% of Internet traffic

2

https://elitestrategies-elitestrategies.netdna-ssl.com/wp-content/uploads/2015/08/CDN-on-page-seo.png

 Cache misses are expensive

3

User
Origin

Cache Servers

CDN Edge Cluster

HTTP
Cache miss

Content ProviderLow latency
High latency, high cost

Goal: minimize cache misses (mean and tail)

Why?
• Long latency (poor user experience)

• Wide area traffic (cost for CDN and content provider)

4

Unavailabilities are more common than in datacenters

Unavailabilities at the edge are common

Reasons: server overload, hardware failure

A month-long trace of 2190 clusters

10 10 9 9 10 8 8 10 10 10 10 10 10 9 10 10 10 10

All clusters: unavailability in 45.2% of observations
10-server clusters: unavailability in 30.5% of observations

#available servers

DNS

HTTP

Bucket-based routing (coarser load balancing)

5

User

DNS/Load Balancer
consistentHash(cmu.edu)=E

cm
u.edu

E’s ip

bucket: sub domain name

DNS:
 -> E

 -> D

 -> D
…

cmu.edu

usenix.org

cnn.com

A B

C D

FE

Bucket-based routing makes unavailability worse

6

all cached objects for buckets mapped
to the server become unavailable

miss ratio spike

0 250 500 750 1000
Time (min)

0

1

2

Re
la

tiv
e

m
is

s
ra

tio
 in

cr
ea

se

no mitigation

SLA violation

Cache Servers

CDN Edge Cluster

7

State-of-the-art solution

Why?

Replication

Limitations
cannot remove spike

object 1

object 1

object 2

object 2

0 250 500 750 1000
Time (min)

0

1

2

Re
la

tiv
e

m
is

s
ra

tio
 in

cr
ea

se

no mitigation

replication (CDN)

0 250 500 750 1000
Time (min)

0

1

2

Re
la

tiv
e

m
is

s
ra

tio
 in

cr
ea

se

no mitigation

replication (CDN)

0 250 500 750 1000
Time (min)

0

1

2

Re
la

tiv
e

m
is

s
ra

tio
 in

cr
ea

se
no mitigation

replication (CDN)

30%

The problem: write load imbalance

8

Cache writes come from cache misses
Write load is imbalanced, production: max/min server load = 2.5

• Reduces the effectiveness of replication
• SSDs wear out at different rates

cnn.com

cmu.edu

a.com b.com

objectobject object

object

object

object

object

objectcmu.edu

9

State-of-the-art solution

no replication

cost {

replication
Replication limitations

cannot remove spike

waste limited space

10

• removes miss ratio spikes
• reduces bandwidth cost
• near-perfect write load balancing

Server unavailability mitigation today is costly and ineffective

average miss ratio

m
is

s
ra

tio
 s

pi
ke no replication

C2DN

replication

C2DN Design
Erasure coding to reduce storage overhead

Parity rebalance to balance write load

11

Quick primer on erasure coding: efficient fault tolerance

12

d1 d2 d3

K data chunks
p1

P parity chunks

Any K of K+P chunks can
recover the original data

d1 d2 d3

Encode

2-way replication

d1 d2 d3

d1 d2 d3

33% overhead 100% overhead

Use erasure coding in CDN clusters?

13

d1 d2 d3

K data chunks
p1

P parity chunks

Any K of K+P chunks can
recover the original data

d1 d2 d3

Encode

User

get d1 d2 d3

d1 d2 d3 p1

Lower storage overhead, cache more objects!
Lower miss ratio and no unavailability impact?

Naive use of erasure coding is insufficient

14

chunk chunk

chunk

chunk

chunk

chunk

chunk

chunk

chunk

chunk

chunk

d

d

d

p

chunks are evicted at different times

Naive use of erasure coding is insufficient

• Limited miss ratio reduction
• Cannot eliminate miss ratio spike when unavailability happens
• Runtime overhead (more CPU usage, longer serving latency)

15

chunkchunk

chunk chunkchunk

chunk

chunk chunkchunk chunkchunk d

d

d

p

chunks are evicted at different times

Goal: rebalance the load

16

Observation
• flexibility in placing parity
• parity chunks are needed rarely,

lookup can be slightly more complex

Technique
• data placement: consistent hashing
• parity placement: rebalance write load

6�

2EMHFW�KDVK

ORFDWLRQ

6� 6�

6�

ZULWH

ORDG

6�

DVVLJQHG

OHVV�ORDG

'DWD

EXFNHW

'�

'DWD

EXFNHW�'�

,PEDODQFHG�VHUYHU�ORDG�DIWHU�DVVLJQLQJ

GDWD�EXFNHWV�XVLQJ�FRQVLVWHQW�KDVKLQJ

less load

Parity assignment problem

17

Write load of parity

Parity Server

Server leftover capacity

Balancing write load: similar cache eviction and SSD wear out rates

2. 3.

Donut Cluster

1.

a) Architecture

1. Read local cache.
2. Read other data chunks.
3. Read parity if needed.

HTTP

DNS

Frontend

Cache

WAN
Origin
Server

b) Data bucket assignment

S4

Object hash
location

S1 S2

S3

write
load

S1
assigned
less load

Data
bucket
D1

Data
bucket D1

Imbalanced server load after assigning
data buckets using consistent hashing

S T

Parity buckets Assign S1
more parity

Balance load by assigning parity buckets
using MaxFlow MinCut formulation

c) Parity rebalance

S1

S2

S3

S4

2. 3.

Donut Cluster

1.

a) Architecture

1. Read local cache.
2. Read other data chunks.
3. Read parity if needed.

HTTP

DNS

Frontend

Cache

WAN
Origin
Server

b) Data bucket assignment

S4

Object hash
location

S1 S2

S3

write
load

S1
assigned
less load

Data
bucket
D1

Data
bucket D1

Imbalanced server load after assigning
data buckets using consistent hashing

S T

Parity buckets Assign S1
more parity

Balance load by assigning parity buckets
using MaxFlow MinCut formulation

c) Parity rebalance

S1

S2

S3

S4

2. 3.

Donut Cluster

1.

a) Architecture

1. Read local cache.
2. Read other data chunks.
3. Read parity if needed.

HTTP

DNS

Frontend

Cache

WAN
Origin
Server

b) Data bucket assignment

S4

Object hash
location

S1 S2

S3

write
load

S1
assigned
less load

Data
bucket
D1

Data
bucket D1

Imbalanced server load after assigning
data buckets using consistent hashing

S T

Parity buckets Assign S1
more parity

Balance load by assigning parity buckets
using MaxFlow MinCut formulation

c) Parity rebalance

S1

S2

S3

S4

2. 3.

Donut Cluster

1.

a) Architecture

1. Read local cache.
2. Read other data chunks.
3. Read parity if needed.

HTTP

DNS

Frontend

Cache

WAN
Origin
Server

b) Data bucket assignment

S4

Object hash
location

S1 S2

S3

write
load

S1
assigned
less load

Data
bucket
D1

Data
bucket D1

Imbalanced server load after assigning
data buckets using consistent hashing

S T

Parity buckets Assign S1
more parity

Balance load by assigning parity buckets
using MaxFlow MinCut formulation

c) Parity rebalance

S1

S2

S3

S4

Solution: MaxFlow

In the paper
• Several other techniques and optimizations

• hybrid redundancy

• sub-chunking

• transparent coding

• …

18

C2DN evaluation

19

Evaluation setup

• Built C2DN using Apache Trafficserver

• Replayed week-long production traces from Akamai

• Evaluated using three AWS regions

20

25 ms 85 ms
remote user origincluster

No more miss ratio spike

21

0 250 500 750 1000
Time (min)

0

1

2

Re
la

tiv
e

m
is

s
ra

tio
 in

cr
ea

se
0.00

0.25
replication (CDN)

C2DN-NoRebal
C2DN

Reducing normal case miss ratio

22

Cache size
Miss ratio

(bandwidth)
reduction

production 21%
2x production 16%
4x production 5%

Erasure coding reduces storage overhead
Parity rebalance allows chunks to be evicted at similar time

C2DN
C2DN

C2
DN

C2
DN

Near-perfect write load balancing

23

In the paper
• Time-to-first-byte latency and content download time

• no noticeable latency change

• CPU and disk usage
• manageable increase

• …

24

20 50 100 500
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

CDN
C2DN

20 50 100 500
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

CDN
C2DN

CDN C2DN CDN C2DN
0

2

4

6

IO
P
S
 (

K
)

read write

CDN C2DN CDN C2DN0

1

2

3

CP
U

us
ag

e
(#

 c
or

es
)

kernel user

Summary
Unavailability and write load imbalance are common in CDN edge clusters

Traditional approach for fault tolerance is not effective in caching

25

Questions?

Open sourced at
https://github.com/Thesys-lab/C2DN

average miss ratio

m
is

s
ra

tio
 s

pi
ke

no replication

C2DN

replication

https://github.com/Thesys-lab/C2DN

