### C2DN: How to Harness Erasure Codes at the Edge for Efficient Content Delivery

Juncheng Yang\*

Anirudh Sabnis<sup>#</sup>, Daniel S. Berger<sup>&</sup>, K. V. Rashmi<sup>\*</sup>, Ramesh K. Sitaraman<sup>#\$</sup>

\*Carnegie Mellon University, #University of Massachusetts, Amherst, \$Akamai, &University of Washington, Microsoft Research











## Content Delivery Networks (CDNs)

- Networks of cache clusters close to users
- 72% of Internet traffic





## Cache misses are expensive





## Unavailabilities at the edge are common

A month-long trace of 2190 clusters

**#available servers** 9 10 8 8 10 10 10 10 10 10 9 9

> All clusters: unavailability in 45.2% of observations 10-server clusters: unavailability in **30.5%** of observations

Unavailabilities are more common than in datacenters

Reasons: server overload, hardware failure

#### 10 10

## Bucket-based routing (coarser load balancing)



## Bucket-based routing makes unavailability worse





### State-of-the-art solution



#### Limitations

cannot remove spike

Why?



## The problem: write load imbalance

Cache writes come from cache misses

Write load is imbalanced, production: max/min server load = 2.5

- Reduces the effectiveness of replication lacksquare
- SSDs wear out at different rates





### State-of-the-art solution

#### **Replication limitations**

cannot remove spike waste limited space



### Server unavailability mitigation today is costly and ineffective



- removes miss ratio spikes
- reduces bandwidth cost
- near-perfect write load balancing

#### o spikes h cost load balancing

# C2DN Design

Erasure coding to reduce storage overhead Parity rebalance to balance write load

### Quick primer on erasure coding: efficient fault tolerance



### Use erasure coding in CDN clusters?





## Naive use of erasure coding is insufficient

#### chunks are evicted at different times





## Naive use of erasure coding is insufficient

#### chunks are evicted at different times



- Limited miss ratio reduction
- Cannot eliminate miss ratio spike when unavailability happens
- Runtime overhead (more CPU usage, longer serving latency)

#### ppens ncy)



## Goal: rebalance the load

#### Observation

- flexibility in placing parity
- parity chunks are needed rarely,
  lookup can be slightly more complex

#### Technique

- data placement: consistent hashing
- parity placement: rebalance write load







## Parity assignment problem



Write load of parity Server leftover capacity

### Solution: MaxFlow

Balancing write load: similar cache eviction and SSD wear out rates

## In the paper

- Several other techniques and optimizations
  - hybrid redundancy
  - sub-chunking
  - transparent coding
  - •

# **C2DN evaluation**

## **Evaluation setup**

- Built C2DN using Apache Trafficserver
- Replayed week-long production traces from Akamai
- Evaluated using three AWS regions



![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

### No more miss ratio spike

![](_page_20_Figure_1.jpeg)

## Reducing normal case miss ratio

| Cache size    | Miss ratio<br>(bandwidth)<br>reduction |
|---------------|----------------------------------------|
| production    | 21%                                    |
| 2x production | 16%                                    |
| 4x production | 5%                                     |

### Erasure coding reduces storage overhead Parity rebalance allows chunks to be evicted at similar time

### Near-perfect write load balancing

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_3.jpeg)

## In the paper

- Time-to-first-byte latency and content download time
  - no noticeable latency change

• CPU and disk usage

•

. .

manageable increase

![](_page_23_Figure_5.jpeg)

![](_page_23_Figure_6.jpeg)

Unavailability and write load imbalance are common in CDN edge clusters

Traditional approach for fault tolerance is not effective in caching

![](_page_24_Figure_3.jpeg)

Open sourced at <a href="https://github.com">https://github.com</a>

### ge clusters ng

#### https://github.com/Thesys-lab/C2DN

### **Questions?**