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Abstract
Data centers increasingly deploy commodity servers with

high-speed network interfaces to enable low-latency commu-
nication. However, achieving low latency at high data rates
crucially depends on how the incoming traffic interacts with
the system’s caches. When packets that need to be processed
in the same way are consecutive, i.e., exhibit high temporal
and spatial locality, caches deliver great benefits.

In this paper, we systematically study the impact of tempo-
ral and spatial traffic locality on the performance of commod-
ity servers equipped with high-speed network interfaces. Our
results show that (i) the performance of a variety of widely
deployed applications degrades substantially with even the
slightest lack of traffic locality, and (ii) a traffic trace from
our organization reveals poor traffic locality as networking
protocols, drivers, and the underlying switching/routing fab-
ric spread packets out in time (reducing locality). To address
these issues, we built Reframer, a software solution that de-
liberately delays packets and reorders them to increase traffic
locality. Despite introducing µs-scale delays of some packets,
we show that Reframer increases the throughput of a network
service chain by up to 84% and reduces the flow completion
time of a web server by 11% while improving its throughput
by 20%.

1 Introduction

Recent advances in networking hardware have boosted the
speed of Network Interface Cards (NICs) and packet switch-
ing devices, facilitating faster Internet access [1, 2] and
improving performance in datacenters [3]. At the same
time, this sudden growth in networking speeds has not been
followed by a similar trend in Central Processing Unit (CPU)
core frequencies and memory access latencies [4, 5]. This
places tremendous pressure on today’s commodity server
architectures. Accessing main memory for each packet
is prohibitive, thus high-speed packet processing inher-
ently requires packets and the instructions & data needed to

process these packets to reside in cache memories to the
greatest extent possible. For these reasons, recent efforts
have explored ways to optimize cache utilization, for instance,
(i) using Direct-Memory Access (DMA) or Remote DMA
(RDMA) [6] to eliminating CPU involvement in the reception
of incoming packets, (ii) with Data Direct I/O (DDIO) [7, 8]
completely avoiding main memory, (iii) placing incoming
packets into a Last Level Cache (LLC) slice as close as
possible to the core responsible for handling these packets [9],
and (iv) realizing Network Function (NF) chains without
inter-core communication (thus eliminating LLC cache pollu-
tion) [10] and with whole-stack optimizations (minimizing
LLC accesses) [11].

Optimal utilization of memory caches requires that packets
to be processed (with a given set of instructions and data)
arrive as close as possible in time to each other, i.e., high
temporal and spatial locality of the received packet stream. In
this paper, we investigate the impact of packet ordering on the
performance of I/O-intensive applications. We first measure a
variety of performance metrics including throughput, average
processing cycles per packet, average CPU instructions per
packet, etc., as functions of the level of traffic locality of a set
of streams of packets . In our experiments, the relevant data
is both packets belonging to the same flow and the metadata
that is associated with them. Our investigation reveals an
unexpected sharp performance degradation (up to a factor
of 3×) with even the slightest lack of temporal and spatial
traffic locality for packets that could have been processed
using the same instructions and data. As an example, we
discovered that the number of CPU cycles per packet for an
iperf server were reduced by a factor of 2−3×when packets
arrive in small bursts of 5 packets belonging to the same flow
as opposed to bursts of a single packet.

In practice, there are several hindrances to cache-optimized
I/O processing. First, slow NICs at the client do not produce
bursts of packets that will arrive “back-to-back” at a receiver
with a faster NIC. Moreover, the multiplexing of different
traffic flows along the path from a client to a server results
in packets belonging to a client’s flow being spaced apart
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(i.e., interleaved with other flows), thus diminishing local-
ity. Even worse, we observe the existence of an increasing
friction between emerging networking trends, which advocate
that congestion control mechanisms pace packets, i.e., spread
packets in a flow apart from each other as much as possi-
ble to minimize the risk of congestion in the network (see
§3), and the desire to process incoming packets in memory
caches to the greatest extent possible (due to trends in com-
puter architecture) [12]. To understand whether real-world
traffic exhibits sufficient ordering, we analyzed a real-world
traffic trace from one of the packet gateway interfaces of our
organization. This traffic exhibits a very low level of spatial
locality, as more than ~60% of the packets belonging to the
same flow are interleaved with packets belonging to other
flows, which is far from ideal conditions for cache-optimized
packet processing.

These apparently completely opposite requirements of
(i) pacing traffic for better network-level statistical multi-
plexing and (ii) processing packets in bursts for better cache
effectiveness calls for a solution that satisfies both require-
ments at the same time. Based on the above, we explore
the counter-intuitive idea of increasing packet processing
throughput by deliberately delaying and reordering packets
before they reach the application running on the server(s),
thus rebuilding high traffic locality. We built Reframer, a net-
work function that leverages this idea, to buffer and reorder
packets between different flows. By introducing Reframer at
the destination network (or directly at an end server), we (i)
maximize the number of subsequent cache hits in the servers,
thus reducing the processing time for each burst and (ii) are
compatible with the emerging pacing-based congestion con-
trol mechanisms (e.g., BBR [13]) as we do not affect the
pacing of the packets across the Internet. Reframer can be
deployed on the same server where one needs to increase
cache hit performance (e.g., CPU core and/or SmartNIC) or
upfront as part of a network function service chain to improve
the throughput of the service chain itself by up to 60% (see
§5.2) and subsequent web servers throughput by 20% while
reducing the flow completion time by 11%, despite delaying
the individual packets. Moreover, we show that Reframer
improve performance an order of magnitude more than flow-
oblivious batching [14], showing the need to increase per-flow
spatial locality.

Contributions. In this paper, we:

• Unveil that trends in networking, spreading packets apart,
are antithetical to today’s high-performance computer archi-
tectures, which require bursty communication to efficiently
use cache memories for high-speed networking.

• Systematically measured the performance degradation due
to the lack of spatial locality in the streams of packets pro-
cessed by servers for a variety of I/O-intensive applications
(including large data transfers and network functions). Our
results show significant performance degradation, up to a

factor of 2−3×, mainly due to cache misses (§2).
• Analyzed the levels of spatial and temporal locality in real-

world traffic captured between our organization and our ISP.
This traffic shows poor locality, which leads to sub-optimal
performance at each of the servers (§3).

• Built a Reframer prototype to reorder packets, thus exploit
servers’ caches when processing packets at high speed (§4).
Reframer improves the throughput and latency of chained
NFs by up to 84% and 46% respectively, using a realistic
packet trace and various Reframer deployments (§5).

2 How Much Does Order Matter?

This section shows how explicit packet ordering increases
temporal and spatial locality and, consequently, boosts the
performance of real-world applications. Our results show
that, when packets belonging to the same flow are inter-
leaved by even a few other packets, the latency of a packet
processing application may increase by more than 2× be-
cause of a higher number of cache misses and executed
CPU instructions. These results motivate our Reframer sys-
tem, whose goal is to build per-flow batches of packets that
can be submitted to the servers, as opposed to batches of
arbitrary packets belonging to different flows as in state-of-
the-art software switches (e.g., Batchy [14]).

The experimental methodology used in this section is
described in §2.1. We decompose the effects of packet
ordering into three categories: network stack effects (§2.2),
software switching effects(§2.3), and more advanced NF
effects (§2.4).

2.1 Experimental Setup

Testbed. All the experiments in this section use the same
testbed. Two back-to-back interconnected servers, each with
a single-socket 8-core Intelr Xeonr Gold 5217 (Cascade
Lake) CPU clocked at 2.3 GHz and 48 GB of DDR4 RAM
at 2666 MHz. Each core has 2×32 KiB L1 (instruction &
data caches) and 1 MiB L2 caches, while one 11 MiB LLC is
shared among the cores. Each server has a dual port 100 GbE
Mellanox ConnectX-5 NIC with firmware version 16.28.1002.
Hyper-threading is enabled on both servers and the Operating
System (OS) is the Ubuntu 18.04 distribution with Linux
kernel v5.3. One server acts as a traffic generator and receiver
while the other server is the Device Under Test (DUT). We
also utilized the Linux perf tool on the DUT during the
execution of the experiments to monitor CPU performance
counters (e.g., CPU cache misses).
Spatial locality factor (SLF). We define SLF as the average
number of packets, in the same flow, that arrive back-to-back
at the DUT. For example, if there are three flows (A, B, and
C) and SLF = 1, the DUT receives packets in the pattern
"ABCABC. . . ". For SLF = 2, the pattern is "AABBCC. . . ".
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(a) CPU cycles per packet.
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(b) L1 cache misses per packet.

Figure 1: Impact of packet spatial locality on the performance of an iperf server, with and without LRO.

2.2 Network Stack Effects

Packet ordering has a profound impact on the performance
of general purpose network stacks and their applications,
especially TCP receive-side processing. In these experiments,
we show that lack of traffic locality greatly degrades CPU
utilization (up to a factor of 3×) even when sophisticated TCP
accelerations are used.

In these experiments, we use Linux iperf [15] to establish
128 TCP connections (with 1500 B packets) to the DUT that
runs an iperf server. The duration of each test is 15 seconds.

We utilize the Linux traffic control mechanism (tc) on the
client side to synthetically order the sending packets with a
given value of SLF . We restrict the sending rate to ~8 Gbps,
as forcing a real TCP stack to exhibit a specific SLF at high
speeds is extremely hard. On the DUT side, we restrict iperf
to use only one core to clearly delimit the benefits of packet
ordering from potential artefacts introduced by parallelism.
Lack of locality makes TCP accelerations ineffective. A
variety of TCP accelerations have been devised to mitigate the
effects of the increasingly faster NICs’ transmission speeds
on the relatively stable CPU speed. In this experiment, we
show that the most notable of these accelerations, i.e., Large
Receive Offload (LRO), is ineffective with low traffic locality.

Ideally, LRO should combine SLF consecutive packets of
the same flow received at the NIC into a single “super-frame”,
removing all the Ethernet & IP headers from the merged
packets and possibly coalescing redundant packets, such as
TCP acknowledgements. However, interleaved packets from
different flows prevent LRO from merging consecutive pack-
ets which leads to inefficiency of LRO.

The blue boxes of Fig. 1a show that LRO performance
is improved significantly when the spatial locality factor in-
creases from 1 to 16, i.e., more consecutive packets in a flow
arrive at the DUT. This increase in SLF reduces the number
of CPU cycles per packet by 69% (from ~10k to ~3k), which
shows low traffic locality harms TCP acceleration by LRO.
Even without LRO (red boxes in Fig. 1a), the number of CPU
cycles per packet decreases by 53% with an increasing SLF .

Two explanations for the benefits of spatial locality are:
1 Fewer cache misses. Ordered packets increase L1 cache

hit ratio as common per-flow data structures are fetched only
once for all packets. Fig. 1b shows that the number of L1
cache misses per packet decreases by 54% when packets are
processed back-to-back. Particularly, we observed an increase
in performance for the “__inet_lookup_established” Linux
kernel routine. This function performs a lookup in the lis-
tening sockets hash table to assign the received packet to the
corresponding socket. The improvement is identical regard-
less of whether LRO is enabled or not and simply depends on
having a better packet locality.
2 Fewer CPU instructions per packet. Since iperf uses

multiple threads to serve clients’ requests, when SLF is small,
the scheduling routines of the Linux kernel are called more
frequently to switch among iperf threads. By increasing
SLF , each thread is able to handle multiple consecutive
packets (ideally SLF packets) within a single scheduling
round of the Linux kernel. Consequently, the number of flow
handling routines and executed CPU instructions decreases
dramatically with or without LRO enabled (see Fig. 2). LRO
further reduces the average number of CPU instructions per
packet thanks to the creation of super-frames of packets.
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Figure 2: Impact of packet spatial locality on CPU instruc-
tions per packet of an iperf server, with or without LRO.
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Figure 3: Impact of spatial locality on the forwarding performance of OVS 2.13.9 using the Linux kernel v5.3 data path.

Takeaway. From this experiment we conclude that the per-
formance of today’s high-speed networking applications is
highly dependant on the spatial locality of the received pack-
ets, as this impacts cache-miss ratios and the number of CPU
instructions per packet. Based on Fig. 1a, we observe that sys-
tems without LRO acceleration but with good spatial locality
of packets (i.e., SLF = 16) perform better than systems with
LRO but with poor locality of packets (i.e., SLF < 5), making
it beneficial to process ordered streams of packets.

2.3 Software Switching Effects

This section quantifies the effects of locality on the per-
formance of the kernel-based Open vSwitch (OVS) [16];
a widely deployed production quality multi-layer software
switch. Many Virtual Machine (VM) and container-based
cloud platforms (e.g., VMware NSX-T [17], OpenStack [18],
Red Hat’s OpenShift [19], and Kubernetes [20]) use OVS.
OVS classification pipeline. Upon a packet’s arrival, OVS
employs a multi-stage classification pipeline. The first stage
is a 213 entry Exact Match Cache (EMC) for frequently used
flows. This cache uses a 32-bit hash of the packet’s header,
which can be the Receive-Side Scaling (RSS) hash, as a key
mapped to a rule for the corresponding packet. In OVS 2.10,
a second classification stage called Signature Match Cache
(SMC) was introduced as an experimental feature. This cache
stores a 16-bit signature for each flow along with a corre-
sponding 16-bit index into a flow table (with up to 216 rules),
a total of 32 bits; hence, it is more memory efficient than
EMC, which stores the entire forwarding rule.

If neither of the first two cache levels matches an incoming
packet, then that packet is classified by the kernel’s Megaflow
cache [21]. This cache is based on the Tuple-Space Search
(TSS) algorithm [22] that uses more aggressive bitwise wild-
carding to aggregate multiple flows into a single match. Fi-
nally, a miss in the Megaflow cache results in a packet redi-
rection to the “slow path”, where packets traverse a pipeline
of OpenFlow tables to derive their corresponding actions.

OVS setup choice. Due to the fact that the EMC is an n-way
associative cache (similar to a modern CPU cache), only n out
of 213 entries can be used to store any given flow. In OVS ver-
sion 2.13.9 n = 2, implying this cache will likely exhibit high
contention even when the number of flows is much smaller
than the EMC. Measurements of these OVS caching schemes
showed that EMC does not yield the expected levels of perfor-
mance improvements over the SMC [23]. Specifically, EMC
slightly outperforms the SMC only with low numbers of flows
(< 200), while SMC offers higher performance with more
flows [23]. We verified this through our own experiments,
hence we disable EMC to achieve higher performance.
OVS experiment. We deployed OVS 2.13.9 on the DUT
with a data path through the Linux kernel v5.3 of the DUT.
The forwarding behavior is defined by two sets of OpenFlow
v1.4 rules with 1k and 10k entries. These rules classify input
packets based on their source and destination Ethernet and
IP addresses and forward matching packets toward the traffic
receiver through the same port (i.e., the Mellanox port of the
DUT attached to OVS). Only one rule in each rule set matches
the input traffic. We used a Data Plane Development Kit
(DPDK)-based traffic generator to inject a trace of 10k User
Datagram Protocol (UDP) flows, where each flow consists of
1500-B packets, at the rate of 5.5 Mpps ≈ 66 Gbps*. Fig. 3
shows the performance of the kernel-based OVS classifier,
focusing on the 25th & 50th (Fig. 3a) and 75th (Fig. 3b) latency
percentiles.
Packet ordering greatly benefits OVS’s caching scheme.
When no particular locality is enforced (i.e., SLF = 1), the
75th latency percentile (see Fig. 3b) ranges between 132 µs-
343 µs and 126 µs-300 µs for 10k and 1k rules, respectively;
while lower latency variance is observed in Fig. 3a for the
25th and 50th latency percentiles. However, both latency and
its variance substantially decrease with increasing SLF for
both rule sets. The greatest improvement is observed for
SLF ∈ [20,24], where packet locality results in 2.5− 5×

*Similar results occur for TCP packets. With 64-B packets, the effect of
packet ordering is less profound, but still relevant.
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Figure 4: Impact of traffic spatial locality on the packet processing latency and the CPU cycles per packet performance of a NAT
and a firewall (with and without rule caching) NFs.

lower 75th latency percentiles, 2× lower medians, and 15-
22% lower 25th latency percentiles with negligible latency
variance. For higher values of the spatial locality factor (i.e.,
SLF ∈ [28,32]), we observe a slight latency increase com-
pared to the lowest attainable latencies shown in this figure.
This behavior is not observed in the other experiments in this
section, suggesting the limits of packet ordering be studied
on a case-by-case basis.
10k rules at the cost of 1k rules. An equally important ben-
efit of this use case is shown in the case of SLF ∈ [20,24],
where the red and blue boxplots and error bars in Fig. 3 ex-
hibit very similar ranges. This means that packet ordering
amortizes the additional cost of a 10x larger classifier (i.e.,
10k vs. 1k rules) by making the most out of OVS’s caches.

2.4 Network Functions’ Effects
In addition to network stacks (§2.2), packet locality may also
affect more advanced NFs. To investigate this, we imple-
mented two NFs in FastClick [24], a stateless firewall and a
(stateful) Network Address Translation (NAT)*. Unlike §2.2,
we allocate two cores per NF with one RX queue per core
to show that the benefits of packet locality is not limited to
single-core scenarios. We will further discuss the impact of
number of RX queues on the DUT performance in §5.1. In
these experiments, the traffic generator emulates 10k clients
sending a total of 20 million 1-KB UDP packets to the DUT
with a total rate of ~50 Gbps (6.2 Mpps) and a given spatial
locality factor SLF . Fig. 4 shows the average end-to-end la-
tency and the number of CPU cycles per packet for these two
applications.
NAT NF case. We deployed the NAT NF on the DUT. Fig. 4
shows that the end-to-end latency decreases from 103 µs to
74 µs as the spatial locality factor increases from SLF = 1
to SLF = 32. When SLF = 1, some packets are dropped
since for each packet, the CPU must wait for the many cycles

*We also deployed a chain of NFs on the DUT as a complementary
experiment in Appendix A.1

it takes to fetch the appropriate NAT table’s row from the
memory, greatly decreasing the available useful processing
time and the capacity of the NF to serve incoming packets. In
contrast, when input packets are partially ordered by flow, the
NF amortizes the cost of this NAT table lookup over several
consecutive packets within the same flow, thus reducing the
average processing time needed to serve each packet.

Firewall NF case (without software-based rule caching).
We deployed a firewall NF implementing a tree-based Access
Control List (ACL) with 20k rules on the DUT. We consider
two different variants of this firewall. The first variant assumes
no rule caching, thus it executes the matching algorithm for
each incoming packet. Since all packets of the same flow
typically match the same rule, then with an increasing spatial
locality factor, we expect a reduction in the frequency of
fetching data (rules) from main memory into the system’s
cache(s). The blue boxes in Fig. 4 show similar trends as in
the previous experiment, i.e., an increasing spatial locality
factor improves the performance of the firewall in terms of
both average end-to-end latency (Fig. 4a) and number of CPU
cycles per packet (Fig. 4b).

Firewall NF case (with software-based rule caching). The
second variant of this firewall NF implements a simple in-
memory rule cache. This cache stores the hash of the last
served packet and the matched rule. For each incoming packet,
the firewall calculates the packet’s hash value, and if it is the
same as the entry in the cache, then it assumes that the packet
will match the same rule as the previous packet. However, if
after executing the rule the new packet does not match the
rule, then the cache will be updated with a new matching rule
and a new packet hash. The green circles in Fig. 4 show faster
convergence to the minimum values compared to the firewall
without caching as the firewall’s cache matches an increas-
ingly large fraction of input packets (i.e., SLF−1 packets for
a given SLF) without invoking the firewall’s classifier.

Packet spatial locality analysis. Looking closely at the per-
packet CPU cycle curves shown in Fig. 4b, we note that the
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Figure 5: Impact of spatial locality on the number of L1
misses per packet for a Firewall (w/o caching) and NAT NF.

data fits an equation of the form cost = α ∗ (1/SLF) + β,
where β is the CPU cost of processing the data that has al-
ready been accessed and is in the cache, hence it is the asymp-
totic limit when SLF is large. In contrast, α ∗ (1/SLF) is a
weighted version of the cost of getting the data that can be
shared, e.g., when SLF = 2, the cost per packet is amortized
over two packets.

In the case of the NAT, when SLF > 1 the main cost is the
lookup of the appropriate replacement values in the NAT table
and this lookup only has to be done once for the first packet,
hence α≈ 1 times the cost of this lookup. In the case of the
firewall, we expect that for a given number of firewall rules F ,
β ∝ γ∗F when the firewall rules cannot be cached (i.e., when
the rules cannot fit into the cache), hence the firewall rules
have to be repeatedly loaded and hence the cost cannot be
shared (i.e., α≈ 0). However, we see that this is not the case
in Fig. 4, as an application still benefits from processor-based
caching of the data even without software-based rule caching.

Serving packets at the speed of L1 cache. We now high-
light the fundamental role played by core-specific L1 cache
in enhancing the performance of the above NFs. To measure
cache-related events, we utilized the Linux perf tool during
the execution of the experiments shown in §2.4. Since the
NFs’ data size (NAT table and firewall rules) are smaller than
the LLC and L2 capacity, we see almost no LLC and L2
misses; hence, the reduction in the number of CPU cycles is
mostly due to better utilization of the L1 cache.

Fig. 5 shows the effect of locality on the number of L1
cache misses for both the NAT and firewall experiments. In
both cases, we observe a substantial decrease in the number
of L1 cache misses. Our analysis reveals that we can observe
the effects of ordering even on the L2 and LLC misses by
deploying a memory-intensive NF (e.g., Deep Packet In-
spection (DPI)) or a chain of multiple NFs on the DUT
(Appendix A.1). Our results demonstrate that better utiliza-
tion of core-specific caches is the key for increasing the NFs’
performance and ordering packets minimizes cache misses.

2.5 Summary
In this section, we explored the effects of spatial locality of
network data by conducting experiments across Linux net-
work stack and DPDK-based stateless & stateful NFs at vari-
ous levels of a system’s software stack. The common denom-
inator of this study is that packet ordering greatly increases
the utilization of a server’s memory hierarchy (mostly CPU
caches), which in turn results a substantial improvement in
key performance indicators, such as latency, throughput, and
CPU utilization.

We leverage these insights to design a system that vertically
(i.e., hardware to application layer) exploits the benefits of
packet ordering (see §4) and demonstrate complementary
results using additional real world applications (see §5).
Before this, we investigate whether today’s Internet traffic
exhibits a low or high spatial locality factor (see §3).

3 Packets Order in Real-world Traffic

This section analyzes a trace from our organization (i.e., a
university) to understand the spatial & temporal locality in
realistic traffic (§3.1) and explores opportunities to in-
crease traffic locality by reordering packets (§3.2). Our
analysis shows that >60% of the packets belonging to a
flow are interleaved with packets of other flows, hence
non-ideal for high-speed packet processing (based on §2).
Moreover, today’s networking trends further exacerbate
this – as novel congestion control mechanisms (e.g.,
BBR [25], Timely [26], HULL [27], and Carousel
[28]) advocate pacing packets to fight “bufferbloat”, i.e.,
keeping queue occupancy in routers’ buffers as low as
possible. Even the built-in self-clocking of traditional
TCP congestion control mechanisms [29], which inherently
spreads packets out over time to avoid congesting a link, is
harmful to cache-optimized high-speed network communica-
tion. In §4, we advocate rebuilding per-flow traffic bursts as
close as possible to the servers that process them.
Trace statistics. We captured 28 min of traffic from our cam-
pus to & from our upstream network provider. The outgoing
traffic (i.e., from the campus toward the Internet) had 420
million packets with an average size of 1069.43 B and the
incoming traffic (i.e., from the Internet toward the campus)
had 378 million packets with an average size of 882.82 B.
Fig. 6 shows the TCP flow size distribution for this traffic.
In the rest of this document, we refer to the outgoing and
incoming traffic as the TX and RX traces, respectively.

3.1 Spatial & Temporal Distance
The performance benefits of packet spatial locality were
shown in §2 with the greater the number of consecutive pack-
ets belonging to the same flow (i.e., the spatial locality factor),
the greater the benefits. Additionally, we concluded that even
a small spatial locality factor (e.g., SLF = 5) could yield a
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Figure 7: Distribution of the spatial & temporal distance for
the campus trace. (Note that the x-axis is logarithmic).

significant improvement, as was shown in Fig. 4. However,
the improvements depend on the traffic’s actual spatial local-
ity. Therefore, in this section, we examine how unordered
the trace from our organization is. To do so, we calculate
the spatial and temporal distance of packets in every TCP
flow. Spatial distance shows the number of packets between
two consecutive packets of the same flow and can be used to
assess opportunities to exploit cache memories. The higher
the spatial locality, the greater the number of opportunities
to increase cache-hit ratios. Temporal distance measures the
time between two consecutive packets of the same flow and
can be used to estimate how long one would have to wait for
another packet in order to reorder packets and increase spatial
locality. Fig. 7 shows the histogram of these metrics for the
campus trace. These results do not consider single-packet
flows*, as these metrics are undefined for such flows.
Spatial distance. Fig. 7a shows that the spatial distance of
the per-flow packets are larger than one packet in ~60% of the
RX trace (without single-packet flows) and ~75% of the TX
trace (without single-packet flows) – i.e., there is at least one
packet between consecutive packets of the same flow. The
rate of our campus trace is ∼2.2 Gbps, which underestimates
the values reported for the spatial distance. In networks with

*Based upon the source addresses, we expect that some of these are
likely to be part of SYN attacks.
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higher rates (e.g., multi-tens- & multi-hundred-gigabit rates),
the spatial distance would intuitively be much larger, which
further reduces the locality. As shown in §2, this lack of
spatial locality can dramatically degrade performance, up to
factor of 3×. Fig. 8 shows the number of switches across dif-
ferent flows that an application should theoretically perform
when processing different batch sizes of packets. The number
of switches can be more than 5× larger when the packets are
unordered. Frequent switching could cause detrimental perfor-
mance events (e.g., context switches and/or cache evictions),
the number of which depends on the system’s microarchitec-
ture (e.g., cache hierarchy) and the application characteristics
(e.g., the type of processing and the size of the per-flow state).
Temporal distance. Fig. 7b demonstrates that temporal
distance between consecutive flow packets in a flow is
typically smaller than a few tens of microseconds, making it
possible to reduce the spatial distance by buffering packets
for a short time so that they can be reordered. The potential
for reordering of traffic destined/originated to/from two cloud
providers is described next.

3.2 Potential of Per-flow Ordering

We identified the top hundred IP addresses of the TCP connec-
tions, which appeared in independent flows of the TX trace.
From those, we select those of two popular cloud providers,
referred to as Cloud1 and Cloud2

†. We calculated the prob-
ability of receiving packets of the same TCP flow within
different fixed-size time windows to determine whether by
waiting for a short amount of time we can reorder packets to
make per-flow batches of packets, i.e., regenerate high spa-
tial locality. Additionally, since user-space packet processing
frameworks (e.g., DPDK) use a fixed batch size for process-
ing packets (typically 32 for a DPDK-based application), we
assume that up to 32 packets per flow can be buffered‡. Fig. 9
shows the distribution of batch sizes for different buffering
times. These results consider all flow sizes, including single-
packet and mice flows which dramatically reduces the size

†Table 1 (in Appendix A) shows the statistics of these flows.
‡In some cases it might be possible to buffer up to ~300 packets, see

Fig. 23 (in Appendix A).
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of the per-flow batches. Clearly, increased buffering time is
positively correlated with receiving more packets in the same
flow. However, the statistical properties of traffic (e.g., a cloud
service) should be taken into account when ordering packets.
For instance, it is possible to make per-flow batches of size
6, even in 32-µs time frames, for 25% of the incoming traffic
from Cloud1; whereas 25% of the outgoing traffic toward
Cloud2 could only be made into per-flow batches of size 4.
Summary. This section showed that most of the flows
in a campus trace could benefit to some extent from
ordering, as it increases locality, i.e., decreases both spatial
and temporal distances. However, the improvements depend
on the traffic characteristics and type of service. Ordering of
larger flows can potentially lead to much bigger improvements
(see the tails of the box plots in Fig. 9). Therefore, a cloud
provider/operator might only apply reordering to specific
services and/or tune the waiting time based on the Service
Level Objective (SLO) and the flow rate.

4 The Reframer Design
As we have shown in Section 2, receiving unordered packets
leads to high cache misses and more CPU cycles per packet,
which increases the cost of packet processing in networking
devices. This section presents our proposal to achieve in-
creased end-to-end data locality (both temporal and spatial)
of packets in each flow. Our solution maximizes locality
and is compatible with today’s trends in Internet congestion
control paradigms that pace packets. We leverage the idea
of briefly buffering, delaying, and reordering the (possibly
paced) incoming packets to increase spatial locality for net-
work traffic. As a result, Reframer pays the imposed price
of receiving paced packets only one time at the beginning
of a NFs and applications chain instead of allowing every
single NF pays that for itself. Reframer is developed as a
software solution that uses CPU cycles to classify flows and
create batches with higher locality. Following the trend of
Network Functions Virtualization (NFV), advantages of soft-
ware network functions like Reframer include more flexibility,
faster development cycles, and nearly no resource limitation

(e.g., number of per-flow queues) in comparison to hardware
alternatives. On the other hand, similar to many networking
software systems, the main design challenge is efficiency in
terms of both time and space complexity: one needs to strike
a delicate balance between the complexity of the reordering
procedure, which consumes CPU cycles, and the gains at the
application/NFs, which saves CPU cycles; Hence, it is crucial
for Reframer to employ an optimized data structure that takes
a short time and space for reordering packets regardless of
incoming packets rate and the number of concurrent flows.
With Reframer, the incoming packets are efficiently buffered
and reordered and then delivered to their destinations. Fig.10
shows the operation of Reframer when a stream of packets
belonging to three flows (i.e., green, blue, and brown) arrive
at the Reframer.
Flow classification. Reframer maintains two main data struc-
tures to reorder packets: a flow classification table and a flush
list. For each flow, the flow table stores the timestamp (T S)
when the first packet of that flow has been added to the batch
of that flow. It also stores a pointer to the list of the buffered
packets for that flow. The flush list is a double-linked list
that stores flow identifiers sorted by timestamp described in
the flow table. Reframer updates all these data structures in
constant time for a variety of operations: buffering of a packet
in the flow table (when a flow entry already exists), adding/
removing flow identifiers to/from the flush list, finding the
oldest flow identifier, and emitting a batch of packets. Only
insertion of new flows in the flow table is not performed in
constant time because of the cuckoo-hash table. Additionally,
Reframer stores only a few bytes of metadata per flow that
allows CPU cores to work at the speed of L1 and L2 caches.

In case the number of packets in the flush list meets a
configurable limitation (maximum burst size), Reframer
passes the batch to the scheduler.
Buffering Time. The flush list can buffer flows for a maxi-
mum amount of time, which we call the buffering time (Tbuff ).
The optimal buffering time mostly depends on two param-
eters: (i) flows’ average throughput and (ii) the end-to-end
latency between a Reframer instance and the destination. The
former parameter affects the possibility of receiving multiple
packets of the same flow in a short time window. For instance,
the inter-arrival time of 1000 B packets is 8 µs at 1 Gbps and
Reframer can rebuild a per-flow batch with up to 8 packets
by buffering packets for 64 µs. The latter parameter sets the
upper bound for the buffering time., i.e., a higher end-to-end
latency provides more flexibility to wait for packets. It is
possible to adjust buffering time by automatically calculating
both of these parameters; However, in the current version of
Reframer, it should be configured manually by an operator.

Reframer collects additional information to track its ef-
ficiency, i.e., (i) it measures the amount of time that flows
were being delayed without actually receiving more packets,
and (ii) it records the average amount of packets per batches.
These statistics could potentially enable Reframer to fine-tune
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Figure 10: Reframer consists of 3 components: (i) a classifier
arranges input packets to a flow table, (ii) a scheduler flushes
flows from the table upon a timeout or burst-size, (iii) a com-
pression module coalesces packets to eliminate redundancy.

the buffering time by finding the sweet spot between these
two statistics for each application.
Priority. When either the flow classifier informs the sched-
uler of a full-size batch that is ready to be forwarded or the
flush list contains flows reaching the buffering time, the sched-
uler computes an ordering of the batches based on some con-
figurable priorities.

The oldest batches in the flow table are extracted from the
head of the flush list. The scheduler resets the per-flow data
entries upon emission of the corresponding batches.

In the example shown in Fig. 10, we assume the maximum
batch size is 4 packets and the maximum buffer time is equal
to 6 time units. At time t = 7, Reframer receives the fourth
packet of the blue flow and at the same time the buffering time
of the green flow expires since the first packet was received
at time 0. Both batches are handled by the scheduler for
transmission. Reframer’s scheduler supports a variety of
priority models for ordering batches ready to be sent:
Shortest flow first prioritizes mice over elephant flows.
Oldest flow first prioritizes older over newer flows with
respect to the timestamp of the first packet; and
Oldest flow in the queue first prioritizes older over newer
flows with respect to their waiting time in the queue.
We envision a tailor-made priority model based upon the
network operator’s SLOs.
Compressor & Output. Before leaving the Reframer, each
batch of packets of the same flow passes through a per-
protocol optimizer, e.g., multiple TCP ACKs are coalesced if
all packets are in order between ACKs. In the future, we will
also look at payload coalescing if the MTU allows it.

Reframer supports an integrated “bypass” mechanism.
Thus, Reframer allows an operator to define class(es) of traffic
that should not be reordered by Reframer based on any given
field of the packet (e.g., IP DSCP field). We implemented
the obvious case of TCP SYN, as a TCP SYN will never be
followed by other packets; therefore, a SYN is never delayed.
Additionally, in §5.3 we will show that bypassing mice flows
may increase the benefit of Reframer because the possibility
of receiving multiple packets of the same mice flow in a pe-
riod of Tbuff is low and it is not worth to delay such packets.
However, in this work, we have not implemented a heavy
hitter detection module, which is left for future optimization
and it is not discussed here.
Reframer Implementation. We use FastClick [24] to build
a Reframer prototype, which enables many placement scenar-
ios at high speed as will be shown in §5. The classification
and flow-state management is handled by its MiddleClick [30]
extension, thus the code is only thousand lines long*.

5 Reframer Evaluation
This section assesses the feasibility and performance of
Reframer in increasing the temporal and spatial locality
of a stream of traffic by briefly buffering and reordering
packets. We evaluate performance at both per-packet and
per-flow granularity in two scenarios: (i) to improve the per-
packet processing throughput of an NF service chain and (ii)
to reduce the Flow Completion Time (FCT) of TCP traffic
streams served by an HTTP web server. Our results show
that the NF chain throughput can be increased by ~84% and
the HTTP flow completion times be decreased by 100s of
milliseconds by simply delaying packets by few 10s or 100s
of microseconds. Specifically, this section answers the follow-
ing key questions about the opportunities and challenges in
reordering packets: (i) Can Reframer increase the packet
processing throughput of an NF chain by increasing the
traffic locality of a real-world traffic trace (§5.1)? (ii) How
do the Reframer benefits vary depending on where it is de-
ployed (separate or same server as the application, and
then on a CPU core or a SmartNIC (§5.2)? (iii) How can
Reframer handle latency-sensitive traffic (§5.3)? (iv) Can
Reframer reduce the flow completion time of an HTTP web
server (§5.4)?
Testbed. We use the testbed presented in §2.1, running an
NF service chain of the NAT and the Firewall presented in
§2.2 augmented with a router and a flow statistic NF. First,
we place Reframer between the traffic source and the DUT,
running on a dedicated Intel Xeon E5-2667 CPU clocked at
2.3 GHz and 128 GB of RAM at 2133 MHz. This machine
has two Mellanox ConnectX-6 NICs. While this introduces
the cost of a supplementary machine, it gives us an understand-
ing of the maximum performance achievable when processing
the analysed traffic traces.

*The source code is available at: https://github.com/hamidgh09
/Reframer
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Figure 11: Traces characteristics - the X-axis is the number
of multiples of our campus trace played in parallel

Workloads. We use two different types of workloads in our
experiments: (i) per-packet experiments on the NF chain and
(ii) per-flow experiments with the HTTP web server. The per-
packet experiments are based on our campus traffic trace
described in §3 with millions of flows in total, a throughput of
~2.2 Gbps, and an average packet size of ~1 KB. To evaluate
Reframer with a higher traffic throughput, we split the traffic
trace into 32 consecutive windows, each of 20 seconds, and
we replay them in parallel from our traffic generator. When
splitting the trace, we rewrite the flow identifiers so that any
two windows do not have any flow in common (which would
otherwise increase the traffic locality of the original trace).
Figure 11 shows the number of flows and throughput when
running a number of parallel trace segments. For the per-
flow experiment with the HTTP server, we generate HTTP
requests of 1MB files from 4096 clients using WRK [31]
towards an NGINX web server.

5.1 Packet-Level Experiments (NF Chain)
In this experiment, we show that (i) Reframer is effective
in increasing the spatial traffic locality (i.e., higher SLF) of
our real-world traffic trace and, consequently, (ii) increasing
the throughput of an NF chain. Since the trace is replayed,
we focus on per-packet metrics (e.g., CPU instructions, la-
tency) and the throughput of the NF chain. The NF chain con-
sists of a Flow Statistic Tracker→Router→Firewall→NAT
chain, all implemented in FastClick [24] using state-of-the-
art NF elements and DPDK [32] for I/O. We install 10k
rules into the firewall and 200 different routes into the router
elements. We deploy the chain in a run-to-completion
model and we consider it as the Baseline in all packet-
level experiments. To measure the impact of Reframer,
we compare the NFs chain performance with and without
deploying a Reframer instance in front of the chain on an
external server. Note that the latency is end-to-end in all the
experiments which means it includes the time spent in the Re-
framer buffers. In this experiment, 8 CPU cores are assigned
to the NFs chain with 8 RX queues on the NIC (one queue per
core). The NIC uses RSS to map traffic among queues. We
evaluate alternative deployments with Reframer co-located
with the NF chain in §5.2.
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Figure 12: Performance of Reframer versus a baseline NF
with increasing load when processing a real trace: (a) CPU
cycles per packet, (b) Throughput, and (c) Latency.

Figure 12 shows the effectiveness of Reframer in improving
the performance of the NF chain for different workloads (load
is expressed as the number of parallel trace segments). At all
loads, in Fig. 12(a), we see a substantial decrease in the num-
ber of CPU cycles when using Reframer. The reason is the
increase in spatial locality from an average of ~1.2, i.e., near
the minimum possible spatial locality, to an average of ~1.9,
~2.9, and ~3.3 at the output of the Reframer with 16 µs, 64 µs,
and 128 µs of buffering times respectively. Fig. 12(b) shows
that at high loads, throughput continues to scale well for
Tbuff = 64 µs and 128 µs, up to ~64 Gbps (a 84-100% improve-
ment) while the throughput peaks at ~48 Gbps for Tbuff =16 µs.
In contrast, the baseline throughput peaks at ~33.6 Gbps and
then falls - as the DUT cannot keep up. Fig. 12(c) shows that
at low loads, the end-to-end latency is roughly the baseline
latency plus Tbuff when using Reframer. However, we see the
Reframer benefit appears as the load increases to maximum
capacity of the NFs chain. We discuss and evaluate how to
reduce the additional latency introduced by Reframer in §5.3.
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Figure 14: Maximum throughput of Reframer and DUT with
different number of cores.

High number of RX queues has small impact on the DUT
throughput. We repeated the above experiment with 30
parallel trace segments and various numbers of RX queues
on the DUT in a range of 8 to 500 (which is the maximum
possible number of RX queues on the DUT’s NIC). We pre-
serve the total number of descriptors around 8192 by setting
per queue descriptors to max(32,214−[logN]) where N is the
total number of RX queues. In this experiment we show that
by increasing the number of RX queues the average spatial
locality increases from ~1.2 to ~2.5 without Reframer. How-
ever, despite the improvement in the traffic locality, Figure
13 shows only a slight increase in the maximum throughput
of baseline. The main reason is, having hundreds of RX
queues leads to more empty polling in the DUT which is
costly and negatively affects the performance. It is worth
noting that, fetching incoming packets from RX queues is
hardware-specific and depends on the data structures that
NICs are using to process incoming packets; hence, opti-
mizing algorithms and data structures in future NICs may
lead to better results. However, discussing the future road
map of NICs is out of scope of this paper. On the other
hand, when Reframer is located between the traffic source and
DUT, increasing the number of DUT RX queues has a nega-
tive impact on the throughput because incoming packets are
already sorted and classifying flows in different hardware
queues does not increase packets’ locality. So we set 8 RX
queues (one per core) for DUT when Reframer exists in the
network. Finally, we see 53% more throughput with Reframer
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Figure 15: Impacts of Reframer when collocated with the NF
chain: (a) Cycles per packet and (b) Throughput.

vs. using hundreds of RX queues for the baseline case.
Packets’ locality benefit persists with various number of
DUT cores. We also show that Reframer benefits do not de-
pend on the number of DUT cores. To do so, we measured
the maximum throughput of DUT by running the experiment
with various number of cores assigned to DUT. Reframer’s
buffering time is set to 128 µs in all cases. Figure 14a demon-
strates that the throughput increase rate is almost the same for
different number of cores.
Reframer scales almost linearly with the number of cores.
As we discussed in §4, Reframer benefits from an optimized
data structure to classify, order, and flush packets in a constant
time. Our stress test reveals that Reframer is able to handle up
to 28 Gbps with only one core. Here, we increase the offered
load gradually until we see ~1% packet drops in Reframer.
Figure 14b shows that Reframer’s capacity increases almost
linearly when increasing the the number of cores.

5.2 Same-Server Deployment
In the previous section, we showed that deploying Reframer
on a dedicated server increases spatial and temporal locality,
ultimately resulting in significant performance gains. In the
following experiments, we evaluate deploying Reframer on
the same server where an application is running. Using the
same NF chain (Baseline) as previously, we consider two
deployments: (i) chaining Reframer with the NF chain, i.e.,
the entire chain running to completion on the same CPU
cores (referred to as in-chain deployment), and (ii) deploying
Reframer on a SmartNIC.
In-chain deployment. We evaluate the performance of Re-
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Figure 16: Impacts of Reframer when collocated with the NF
chain: (a) Average latency and (b) 99.9th percentile latency.

framer for the in-chain deployment versus the baseline for dif-
ferent buffering times. Generally, increasing buffering time in
Reframer will lead to more packet locality, since it increases
the possibility of receiving more packets of the same flow;
Hence, we see a considerable increase in the DUT throughput
and reduction in the end-to-end latency. Fig. 15 shows that by
placing Reframer right before the service chain, the number
of cycles per packet decreases with increasing buffering time
while throughput increases by 60% when Reframer buffers
packets for 64 µs. To evaluate the impact of Reframer on the
packets end-to-end latency, we restrict the incoming packet
rate to ~30 Gbps which is less than the maximum capacity of
DUT in the baseline mode. In Fig. 16 we can see the average
latency is reduced by 46% with Tbuff =64 µs. Additionally,
Reframer improves the tail latency by ~26% even when it
is collocated with service chain on the same server. In this
experiment, latency benefits start to fade gradually from a
specific buffering time because the cost of delaying packets
surpasses the processing speed-up. The baseline numbers
are mostly the same for all x axis values because we have no
buffering in baseline mode. The fluctuation in baseline values
is inevitable because DUT cores are at a maximum load.
SmartNIC deployment. As a proof-of-concept deploy-
ment for offloading Reframer into a NIC to save CPU core
resources on the server, we deployed Reframer on two ARM
cores of a Mellanox Bluefield SmartNIC – equipped with
16×64-bit Armv8 A72 cores and two 100 Gbps ports while
the NFs chain works on a single CPU core. Fig. 17 shows im-
provements in throughput similar to the in-chain deployment.
We discovered that the performance using a single ARM core
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Figure 17: Impact of Reframer when offloaded into a Smart
NIC which precedes the NF chain: (a) Cycles per packet, (b)
Throughput. Latency is given in Appendix A.2

was limited by the current Mellanox drivers for the cards, a
constraint/limitation confirmed with Mellanox.
Flow-oblivious batching is highly suboptimal. We also
compare Reframer with a Batchy-like [14] implementation
written in FastClick. Batchy is a state-of-the-art packet
processing system that buffers packets in a flow-oblivious
manner at multiple locations in an NF chain, i.e., Batchy does
not create bursts of packets from the same flow but mix all
flows that must be processed by the same NF element. We
observe that Batchy improves the throughput of the chained
NFs by 4%, whereas Reframer improves throughput by 48%.
These results corroborate our analysis in section (§2), where
we showed how detrimental it is to process streams of packets
that are highly interleaved between different flows as opposed
to per-flow batches.

5.3 Latency-Sensitive Flows
In our previous experiments, Reframer delayed all types of
packets for a Tbuff interval, possibly increasing the FCT or
packet processing time of short flows. We argue that an op-
erator could explicitly tag which traffic classes should be
delayed to improve application throughput. To evaluate the
impact of delaying only large flows, we ran an experiment
similar to the one described in §5.1, but we explicitly flag only
large flows so that Reframer can batch them while bypass-
ing the unflagged packets and show the results for increasing
number of parallel trace segments in Fig. 18. Compared
to the case where all flows are delayed, the throughput of
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Figure 18: Reframer provides differentiated services by prior-
itizing small flows over large flows which are bypassed.

the NF chain slightly decreases (between 0% and 4% ac-
cording to the number of parallel trace segments), while the
latency of the packets belonging to the small flows align with
the best of the baseline (at low loads) or the latency of Re-
framer minus the buffering delay (at higher loads). Somewhat
surprisingly, Reframer achieves lower latencies than the base-
line for small flows across all traffic loads by simply delaying
and reordering only large flows. We leave the detection of
heavy-hitters, for instance detecting which flows could have
generated multiple larger bursts, as future work.

5.4 Flow-Level Experiments (HTTP Server)

In this experiment, we evaluate Reframer to assess its impact
on a web server application using TCP connections to dispatch
files of 1MB to a set of 2048 clients continuously fetching
files. By controlling the rate and number of clients’ requests,
we are also able to substantially increase the throughput of
the test and exploit the 100G NIC interfaces. To simulate
4096 independent clients with more realistic latencies, we
place a machine in-the-wire that delays packets in per-flow
queues by ~10 ms±~2 ms. Hence, each connection exhibits
slightly different delays, for an average ~20 ms delay. The
focus of this experiment is on flow-level metrics, with the
goal to check whether (i) Reframer improves the FCT of
the dispatched files and (ii) the buffering delays cause any
troubles to the underlying congestion control mechanism (i.e.,
TCP Cubic). We compare the baseline against Reframer.
We selected NGNIX 1.14 as the web server running on 16
cores of the DUT, while Reframer runs on a dedicated NF
machine using 6 cores. Reframer reorders packets in both
directions, aggregates TCP ACKs from the client to the server,
and eventually reorders out-of-order TCP packets. Fig. 19(a)
shows that Reframer increases the application throughput by
20%. The observed improvements are due to the increase in
spatial locality from 1.25 to 14. Fig. 19(b) shows that despite
introducing delays in the order of microseconds, Reframer
reduces FCT of TCP connections by fractions of a second
(from 3.4 s to 3.1 s). ACK coalescing accounts for ¼ of the
throughput improvements but does not affect the FCT.
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Figure 19: Impact of Reframer when reordering packets of
HTTP flows: (a) Throughput and (b) FCT.

6 Related Work

Batching. Previous efforts [14, 24, 33–35] have shown the
importance of processing entire batches of packets rather than
individual packets (not necessarily belonging to the same
flow) in order to amortize the costs of the interrupts in the NF
processing system (e.g., Batchy [14], SCC [35]). Our work
is orthogonal to these approaches because Reframer improves
the performance of a server application in a “transparent” way,
e.g., by reordering packets on the NIC or before being sent
to the application. Moreover, existing packet processors do
not increase the traffic locality at the per-flow level, which we
show to be critical to achieve high performance in §5.2.
Traffic coalescing. Receive Side Coalescing (RSC) [36] aka
LRO accelerates TCP processing by merging consecutive
packets of a TCP flow into a single frame. Unfortunately, as
shown in §2.2, hardware-based LRO breaks as soon as packets
are interleaved. Similarly, the software implementation of
LRO in the Linux kernel, called Generic Receive Offload
(GRO) [37], suffers from the same problem.
Packet schedulers. We distinguish between hardware and
software packet schedulers. Hardware packet schedulers typi-
cally try to realize different approximations of universal sched-
ulers mapping packet ranks to the available queues on the
hardware (e.g., [38–43]). Another set of hardware packet
schedulers (e.g., [44–52]) focus on network-level optimiza-
tion in datacenters (e.g., minimize traffic congestion). None
of all these works have explicitly looked at the possibility of
batching and scheduling packets to increase traffic locality at
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the per-flow level. For instance, pFabric [44] would nullify
any high traffic locality by purposely interleaving flows.

Stardust [53] is a hardware-based fabric architecture for
datacenter scale networks. Stardust classifies packets per
destination and chops them into bounded-size cells. This
technique enables Stardust to send chops of packets in a burst,
which potentially minimizes the cost of processing them at
the destination. However, based on our understanding, Star-
dust’s cells are flow-agnostic, whereas Reframer improves the
performance of NFs and applications by increasing the traffic
locality at the per-flow level. Moreover, Reframer purposely
delays packets, which is the pivotal aspect of our proposed
solution.

Software-based packet schedulers (e.g., [30, 54–61]) oper-
ate at the CPU level with the goal of dispatching the incoming
flows (or coflows) of traffic to the different cores on the ma-
chine running packet processing operations. Also in this case,
none of these approaches have explicitly looked at the im-
pact of traffic locality on the performance of the applications
receiving the packets.

To summarize, existing scheduling schemes do not take
into consideration the impact of per-flow traffic locality. In
contrast, Reframer schedules and prioritizes bursts of flows
using a variety of policies while exploiting opportunities for
packet coalescing and increased traffic locality.
TCP accelerations. AccelTCP [62] and Tonic [63] are dual-
stack solutions that offload or generalize stateful TCP oper-
ations to NICs in order to simplify the end host stack. Such
operations include connection setup and teardown as well as
connection splicing that relays packets of two connections
entirely within a NIC. To the best of our knowledge, none of
these works explicitly aim to increase per-flow traffic locality.

7 Conclusions

This work unveiled the importance of packet order-
ing on many applications, specifically NFs and TCP
applications. We showed that receiving traffic by bursts
of packets of the same flow could improve a server’s
performance by a factor of 3× as opposed to receiving
packets of interleaved flows. Analyzing realistic traffic, we
found that by slightly delaying traffic, even by only 64 µs,
one can potentially re-build bursts of packets. We then
described Reframer, a software NF, capable of re-building
bursts at 28 Gbps with a single core, and scalable to 100 Gbps
with a few cores. We showed Reframer is still highly bene-
ficial when deployed as part of an NF chain, while bringing
performance improvements to the server and its services. We
believe this paper will spur new research around the deli-
cate interaction between congestion control mechanisms and
cache-based optimizations. It also calls for further potential
improvements, e.g., decreasing the number of frames by
coalescing payload or realizing Reframer in hardware.
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A Supplementary Material

This section provides some additional material for this paper.

A.1 Deploying a chain of NFs
In addition to experiments discussed in §2.4, we deployed a
chain of network functions on the DUT as a complementary
experiment. In this test, we connected a Router, a NAT, a
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Figure 20: Impact of packet order on the performance of a
Router�NAT�Firewall�FC chain of NFs.

firewall, and a Flow statistics counter (FC) in a row, as a chain
of NFs. The DUT uses 4 CPU cores to serve the packets and
it is implemented in a run-to-completion model to exploit the
parallelism on the processors. All the other configurations are
similar to §2.4.

Since the deployed chain is both CPU and memory inten-
sive, the scale of CPU cycles per packet and the end-to-end
latency are higher in compare to individual NAT and firewall
experiments in §2.4. However, the results in Figure 20 con-
firm that, regardless of the complexity of the implemented
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NFs, ordering the packets has a significant impact on the
DUT’s performance.

Similar to §2.4, the fundamental reason of such enhance-
ment is efficient utilization of system caches. In this exper-
iment, since the DUT needs more data to process a packet,
the improvement in cache misses has been extended to L2
and LLC. Figure 20d shows a substantial improvement in
terms of number of LLC misses. Note that this improvement
is not happening only in LLC. We also can see the same trend
(with smaller improvement factors) in L1 (Figure 20b) and
L2 (Figure 20c) caches.

A.2 Running Reframer in a SmartNIC
Figure 21 shows the latency induced by the Reframer versus a
baseline NF, when deployed on two Arm cores of a Mellanox
Bluefield SmartNIC.

A.3 Analyzing the Trace
To perform the analysis, we have used PcapPlusPlus to create
a CSV file composed of useful fields. Then, we split the
62-GB file to per-flow CSV files via Spark. Finally, we use
Python data science libraries (e.g., Pandas and NumPy) to
calculate the probability of receiving different batch sizes
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Figure 23: Impact of increasing the waiting time on the prob-
ability of receiving packets with the same TCP flow.

within different time windows. Listing 1 shows the python
code used to process each flow.
ACK coalescing. Fig. 22 shows the potential improvement
from TCP ACK coalescing in the campus trace. We cal-
culated the distribution of the number of per-flow packets
with enabled TCP acknowledgment flag (ACK) within a time
frame.
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import pandas as pd
import numpy as np

# Calculate the size of ordered batches for each flow
# based on the input window size (ws)
def process(flow,ws):

# Getting the timestamp of packets in a flow
ts = flow['ts'].to_numpy()

# Initialize variables
batch_size=1
i=1
ordered_size=np.empty((0))
threshold=32

# Check the size of flow
if ts.size == 1:

# Add the batch_size to the array of ordered_size
ordered_size = np.append(ordered_size,batch_size)

else:
# Sort the timestamps
sorted_ts = np.sort(ts)
# Start from the first packet of a flow
base_ts = sorted_ts[0]

# Continue while there is still more packets
while i < sorted_ts.size:

# Increase the size as long as the next packet
# arrives before the end of the window size
if sorted_ts[i] - base_ts < ws :

batch_size = batch_size + 1

# If the size of the batch is larger than
# the threshold or the next packet of the flow
# comes after the end of the window size.
# The batch size and the time counter,
# we should stop the time counter. Stopping
# the counter means that we start the counter
# again with the next packet. Also, we update the
# beginning of the window size with the timestamp
# of the newly arrived packet.
if (batch_size >=threshold) \

or (sorted_ts[i] - base_ts >= ws):
# Update the beginning of the window size
base_ts = sorted_ts[i]
# Add the batch size to the array
ordered_size = np.append(ordered_size,batch_size)

# Reset the batch size
if batch_size != 1:

batch_size = 1
i = i + 1
ordered_size = np.append(ordered_size,count)

return ordered_size

Listing 1: Python function used to calculate the size of the per-flow batches.
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Table 1: Flow statistics per Internet Protocol (IP) address of two popular cloud providers.

IP #Flows Flow Size (#Packets)
Min Mean Median Max

TX RX TX RX TX RX TX RX TX RX

Cloud-1

IP-1 19985 20039 1 1 47.45 54.08 16 16 87131 221594
IP-2 5384 5433 1 1 14.92 19.11 13 15 92 157
IP-3 4741 4748 1 1 42.55 51.58 15 15 43500 32540
IP-4 4567 4564 1 1 52.62 37.18 16 16 38515 19168
IP-5 4245 3805 1 1 187.12 1397.09 8 29 57392 217309
IP-6 4155 4000 1 1 12.83 13.63 12 10 831 2775
IP-7 3980 3958 1 1 13.48 9.63 11 8 663 394
IP-8 3759 3759 2 2 258.30 318.38 11 10 33403 33356
IP-9 3154 3159 1 1 28.86 21.89 14 10 310 279
IP-10 2996 2984 1 1 39.76 22.48 56 28 238 228

Cloud-2

IP-1 19776 19762 1 1 165.77 137.07 10 10 1615124 764636
IP-2 18120 18103 1 1 19.26 44.42 10 10 17929 42637
IP-3 15967 15945 1 1 39.33 68.71 11 11 68306 92210
IP-4 11168 11150 1 1 105.09 62.86 10 10 255327 121520
IP-5 9207 9235 1 1 110.75 119.08 21 20 9129 7665
IP-6 8828 8803 1 1 521.57 265.83 10 10 1353933 587496
IP-7 5897 5879 1 1 51.44 67.54 15 14 12448 13422
IP-8 5330 4993 1 1 42.93 77.05 12 11 7248 18137
IP-9 4499 4479 1 1 116.08 198.77 16 15 16625 37459
IP-10 3785 3775 1 1 57.22 75.43 17 16 4371 8287
IP-11 3369 3362 1 1 235.40 306.51 17 15 19614 22311
IP-12 3355 3279 1 1 1501.01 493.11 18 19 4905771 1409104
IP-13 3152 3144 1 1 23.20 33.87 11 10 867 2617
IP-14 3113 3078 1 1 28.69 47.82 15 14 2952 7922
IP-15 2864 2868 1 1 59.26 83.18 12 12 9143 22045
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