LightGuardian:
A Full-Visibility, Lightweight, In-band Telemetry System Using Sketchlets

Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen,
Shiyi Liu, Naiqian Zheng, Ruixin Wang, Hanbo Wu, Yi
Wang, Nicholas Zhang
Background

- measurement is central to successful network operations
Background

Packet lost

What’s wrong
Background

High latency

What's wrong
Background

• measurement is central to successful network operations

• **full-visibility**

 • per-hop *flow-level* information for *all flows*

• **lightweight**

 • computation, memory, bandwidth

• **robustness**

 • link failures, device failures
Background

- existing solution
 - sampling
 - probing
 - sketch-based
 - in-band

\{ (currently) lack of **full-visibility** \}

\{ (currently) lack of **lightweight** \}
LightGuardian Overview

• Accurate & versatile device-local sketches

• In-band telemetry with sketchlets

• Incremental network-wide aggregation
LightGuardian Overview

- Accurate & versatile device-local sketches
LightGuardian Overview

• In-band telemetry with sketchlets
LightGuardian Overview

- In-band telemetry with sketchlets
LightGuardian Overview

• Incremental network-wide aggregation
Device-local Sketch Design: SuMax

- record both of the sum value and the maximum value
Device-local Sketch Design: SuMax

- record both of the **sum** value and the maximum value

SuMax Sketch

\[\langle f, +1 \rangle \]

\[14 \rightarrow 4 \rightarrow 20 \]

\[9 \rightarrow 8 + + \leftarrow 13 + + \]

\[3 + + \]

\[19 + + \]
Device-local Sketch Design: SuMax

• approximate conservative update strategy

SuMax Sketch
Device-local Sketch Design: SuMax

- record both of the sum value and the **maximum** value
Transmission of Sketchlets

SuMax sketch S

Switch X
Transmission of Sketchlets

Transport Layer

TCP Header

device ID

sketchlet ID

Application Layer

packet

carry-bit

active-bit

Idle sketch S_1

Active sketch S_2

Switch X
Transmission of Sketchlets

• Sketchlets Selection: K-chance Selection

- just takes $\lceil \log(k + 1) \rceil$ bits (2~3 bits)
Reconstruction and Analysis

- Incremental reconstruction

$$f_1 = \min(9, \infty, \infty, 10) = 9$$

valid 😊
Reconstruction and Analysis

• Incremental reconstruction

\[
\begin{align*}
\hat{f}_1 &= \min(9, \infty, \infty, 10) = 9 \\
\hat{f}_2 &= \min(\infty, \infty, \infty, \infty) = \ldots \\
\text{valid} & \quad \text{🙂} \\
\text{invalid} & \quad \text{:-(}
\end{align*}
\]
Reconstruction and Analysis

• Locating Inflated Latency
• Locating Packet Drops
 • Blackhole
 • Loop
 • Random packet drops
• Locating Abnormal Jitters
• Finding Abnormal Forwarding Path
Experimental Results

• Testbed
 • Tofino-40GbE
Experimental Results

• How accurate can our SuMax sketch measure per-flow statistics?

• Flow size estimation
Experimental Results

• How accurate can our SuMax sketch measure per-flow statistics?
• Flow size estimation
• Cardinality estimation
Experimental Results

• How accurate can our SuMax sketch measure per-flow statistics?
 • Flow size estimation
 • Cardinality estimation
 • Entropy estimation
Experimental Results

- How accurate can our SuMax sketch measure per-flow statistics?
 - Flow size estimation
 - Cardinality estimation
 - Entropy estimation
 - Delay distribution

![Graph showing WMRE vs Memory usage (KB)]
Experimental Results

• How accurate can our SuMax sketch measure per-flow statistics?
 • Flow size estimation
 • Cardinality estimation
 • Entropy estimation
 • Delay distribution
 • Maximum inter-arrival time
Experimental Results

• How accurate can LightGuardian detect network anomalies?

• Locating blackholes
Experimental Results

• How accurate can LightGuardian detect network anomalies?

• Locating blackholes

• Locating loops
Experimental Results

• How accurate can LightGuardian detect network anomalies?
 • Locating blackholes
 • Locating loops
 • Locating abnormal jitters

![Graph showing F1-score vs Memory usage (KB) with different thresholds]
Experimental Results

• How much is the overhead of sending and aggregating sketchlets?

• FCT
Experimental Results

• How much is the overhead of sending and aggregating sketchlets?
• FCT
• Per-hop latency
Experimental Results

• How much is the overhead of sending and aggregating sketchlets?
 • FCT
 • Per-hop latency
 • Bandwidth overhead
Experimental Results

• Is LightGuardian resilient to network failures?

• Full-Recovery Rate (FRR):
 • the probability of recovering all sketches

• Recovering-Sketch Rate (RSR):
 • the ratio of the number of recovered sketches to the number of all sketches
LightGuardian

- **full-visibility**: deploy SuMax sketch, monitor various per-flow per-hop information for all flows
- **Lightweight**: use only 0.07% total bandwidth capacity
- **Robustness**: incremental reconstruction
Thank you!

• Our code is open-source!

• https://github.com/Light-Guardian/LightGuardian

• zyk@pku.edu.cn