Don't Yank My Chain: Auditable NF Service Chaining

Guyue (Grace) Liu, Hugo Sadok, Anne Kohlbrenner, Bryan Parno, Vyas Sekar, Justine Sherry

Network Function Virtualization (NFV)

Commodity Server

Academia Efforts To Promote NFV

Cloud-based Network Functions

Firewall

VPN

Enterprises Are Reluctant To Adopt NFV

Current NFV Deployments Are Not Auditable

Why?

Cannot meet government and industrial regulations requirements, e.g., HIPAA, FERPA, GDPR, and PCI.

Traditional Auditing Approach

Traditional Network Function (NF) chain

No Existing Tools To Audit Virtualized NFs

Modern virtualized NF chain

AuditBox Contribution

Offer missing capabilities to audit NFV deployments

Coarse, manual correctness checks

Provable, continuous assurance of correctness

AuditBox Contribution

Offer missing capabilities to audit NFV deployments

What Does Correctness Mean?

Runtime Correctness = Network implements the intended NF forwarding policies

- Packet correctness
- Flow correctness

Offline Auditability = Must provide a tamper-proof 'audit trail'

Limitations of Prior Work

• Long history of work on verifying Internet paths [EPIC USENIX'20, OPT SIGCOMM'14, ICING CONEXT'11]

Assumptions:

Immutable Packets

Pre-known Paths

Stateless
Processing Nodes

Assumptions Do Not Hold for NFV

• Long history of work on verifying Internet paths [EPIC USENIX'20, OPT SIGCOMM'14, ICING CONEXT'11]

Assumptions:

Immutable Packets

Pre-known

Paths

VS

Mutable Packets

Dynamic Paths

Stateless Processing Nodes

Stateful Processing Nodes

Assumptions Do Not Hold for NFV

 Long history of work on verifying Internet paths [EPIC USENIX'20, OPT SIGCOMM'14, ICING CONEXT'11]

• Assumptions:

Immutable Packets

Mutable Packets

Pre-knov Paths Assumptions do not hold for NFV

Dynamic Paths

Stateless
Processing Nodes

Stateful Processing Nodes

Outline

1. Motivation

2. Our Insight

3. AuditBox Design

4. Evaluation

Our Observation

Q

The complexity of auditing comes from NFs' internal processing

Our Insight

Q

The complexity of auditing comes from NFs' internal processing

Run NFs within Trusted Execution Environment (TEEs), and only audit actions between NFs over the untrusted network.

Our Insight

Prior Work: SafeBricks [NSDI'18], ShieldBox [SOSR'18], LightBox [CCS'19], S-NFV [SDN-NFV Security'16], etc.

Prior work focuses on securing individual NFs on a single server, not auditing the entire service chain across servers

Threat Model

Design Overview

Design Overview

Control Controller **Audit Offline Auditability:** Trails (trusted) Plane Policy Secret Logging Administrator/ **Auditor** Secure Channels Intel SGX **Trusted NFs:** NF NF **Enclave** Data Verification shim (trusted) . . . Shim Shim Plane Host 1 Host N **Runtime Correctness:** A hop-by-hop verification protocol **Untrusted Network**

(e.g., switches, routers)

NF Hop-by-hop Verification Protocol

- A shim in each enclave implements the protocol
- Leverage transitive trust to verify packets and enforce policy

Optimization 1: Simple AuditTrailer

One symmetric key for all NFs in the same policy pipelet

Optimization 2: Updatable GMAC

Reuse the first GMAC when computing the second GMAC to reduce overheads

Outline

1. Motivation

2. Our Insight

3. AuditBox Design

4. Evaluation

Evaluation

 Proofs: We provide security proofs that AuditBox can achieve both runtime correctness and offline auditability

 Functionality Evaluation: AuditBox correctly detects a broad class of policy violations

 Performance Evaluation: AuditBox enables auditing for unmodified NFs with low overhead

Evaluation: NF Chain Goodput

Achieves 18 Gbps goodput for a simple NF chain

AuditBox Summary

- 1st NFV auditing system
- Leverages trusted execution environments to provide
 - Runtime correctness guarantees
 - Offline auditability
 - And still achieve good performance
- Promotes the adoption of NFV for security sensitive enterprises

Don't Yank My Chain: Auditable NF Service Chaining

Guyue Liu, Hugo Sadok, Anne Kohlbrenner,* Bryan Parno, Vyas Sekar, Justine Sherry

Carnegie Mellon University *Princeton University